Groovy Documentation

zGroovy Introduction
zGetting Started Guide

zUser Guide

zAdvanced Usage
Guide

zCookbook Examples
QTesting Guide
zDeveloper Guide
zModules

€50

Introduction to Groovy

1 HOME o e e e e 8

1.1 Project INformation e 10
1.1.1 Groovy Release NOtes e e 11
1.1.1.1 Groovy 1.5 1€1aSE NOIESo\ttt e e e 12
1.1.1.2 Groovy 1.6 1elease NOIESottt e e e e 28
1.1.1.3 Groovy 1.7 release NOIESottt e 61
1.1.1.4 Groovy 1.8 1elease NOIESot ittt e e e 72
1.1.1.4.1 Groovy 1.8.1 release NOESttt ittt e e e e e e e e e e e e 109
1.1.1.5 Groovy 2.0 relea@se NOIESottt e e e e 111
1.1.1.6 Groovy 2.1 release NOIESottt e e e e e e 131
1.1.2 News and Further INformation 153
11,201 BOOKS . .ottt 153
1.1.2.2 GrOOVY SEBIES . .t ittt ettt et e e e e e e e e e e e 156
11283 PLEAC EXamPIEs . . oot 157
T B FAQ o 158
1.1.8.1 Class Loading . ..ottt e 158
1.1.3.2 FAQ - Classes and Object Orientationttt e e 159
T A BB FAQ - ClOSUIES . .ottt ittt e e e e e e e e e e e e e 159
1.1.3.4 FAQ - Collections, Lists, ©1C.ttt e e e 159
118 5 FAQ - GO ..ttt 161
1188 FAQ - REGEXD .« oottt 164
11087 GONeral . oo 167
1.1.3.7.1 How can | edit the documentation 167
1.1.3.8 Language QUESHIONSottt e e e 167
1.1.3.8.1 Can | break a Groovy statement into multiple lines anyway lwant? i .. 167
1.1.3.8.2 How can | dynamically add a library to the classpath 167
1.1.3.8.3 Why does == differ from Java e 168
1.1.3.9 Learning about Groovy FAQ it 169
1.1.3.10 License INfOrmationttt 169
1.1.3.11 Runtime vs Compile time, Static vS DynamiC it e 169
1.1.4 Roadmap, Discussions and PropoSsalst 171
11041 DISCUSSIONS . .. e 172
1.1.4.1.1 Feature Wish List 172
1.1.4.1.2 New Groovy Console Wish List e e 184
11,4 2 PrOPOSalS . . . oottt e e e 185
1.1.4.2.1 Annotation usage With properties e 186
1.1.4.2.2 AST Macros and Annotations ot 188
1.1.4.2.3 C Sharp GrooVINatOrottt et e e e e e e e e e e e e e 195
1.1.4.2.4 GJIT - Groovy Just-In-Time Compiler e e e 207
1.1.4.25 Grapes and grab()o vttt e e 207
1.1.4.2.6 Groovy realtime archive internet IoOKUP e 213
1.1.4.2.7 JSR-295 Binding BUIlder 215
1.1.4.2.8MACrO USE CaSES . ..ttt ittt et ittt ettt e e et e e 222
1.1.4.2.9 MetaClass Redesign (by blackdrag) 225
1.1.4.2.10 MetaClass Redesign (by blackdrag) part 2 e 235
114211 MOP 2.0 i8S . . . ot ottt ettt et e e e e e e 237
1.1.4.2.12 Multiple Assignment Proposalt e 239
1.1.4.2.13 MUtIProject bUIldso e e 249
1.1.4.2.14 Proposed Website Revampo e 251
1.1.4.215 Web based GroovyShell e 255
1.1.4.2.16 Miscellaneous Feature Requests and Enhancements i 256
1.1.4.2.17 Groovy 2.0 modularization 256
1.1 4.8 ROAAMAD . .. oottt e e e 279
1.1.4.3.1 noteson JDK 7 and JDK B fUtUre i e 280
1.1.4.83.2 Not Yet Documented 280
11D AR CIES . 283
11,8 SUCCESS SHOMES . . .o ittt ettt e et e e e e e e e e 286
11,7 VerSiON SCNEME . .. 286
1.2 DOCUMEBN AtON . . 287
1.2.1 Getting Started GUIAEo e e e e e 288
1.2.1.1 DowWnload e 289
1.2.1.1.1 InvOKeDYNamIC SUPPOI . . . oot e 295
1.2.1.2 Feature OVeIVIBW . .. ittt e e e 296
1.2.1.2.1 GrOOVIES . oot 297
1.2.1.2.2 Groovy Beans 301
1.2.1.2.3 GrooVyMarkUpo 306
1.2.1.2.4 Groovy TemMpIatesot e e 309
1. 2.1, 3 QUICK SHart . .o 316
1.2.1.3.1 Installing GroOVY . . .ot 322
1,218 2 RUNNING .o e e 323
1.2.1.4 Beginners TULOrial e 326

1.2.1.4.1 Tutorial 1 - Getting Started 326

1.2.1.4.2 Tutorial 2 - Code as data, Or ClOSUIESttt e e et et 336
1.2.1.4.3 Tutorial 3 - Classes and ObJeCtSttt e e 339
1.2.1.4.4 Tutorial 4 - Regular eXpressions basiCst e 339
1.2.1.4.5 Tutorial 5 - Capturing regeX QrOUPS« v vttt e e et et e e e e et e e e e e e e 344
1.2.1.4.6 Tutorial 6 - Groovy SQILo e 350
1.2.1.5 Differences to Other Languagesottt e e e 353
1.2.1.5.1 Differences from Java 354
1.2.1.5.2 Differences from Python e 356
1.2.1.5.3 Differences from RUbDY 359
1.2.1.6 Groovy style and language feature guidelines for Java developers i 359
1.2.1.7 For those new to both Java and GrooVYttt e e 377
1.2.1.7.1 UNOO25-SHartingottt et e et e 378
1.2.1.7. 2 UNOS T S INtegerS . . o e 390
1.2.1.7.3 UNOB525-DECIMalS ottt it e e 428
1.2.1.7.4 UNOBBE-FIOatSottt e 457
1.2.1.7. 5 UNOBAS-Datesot 500
1.2.1.7.6 INT015-ColleCtions i e e e 539
1,21, 7.7 UNTO25- ArTAYS . . o ottt e et e e e e e e e e 576
1.2.1.7.8 UNTOBE-MaPS . . . oottt e e e 584
1.2.1.7.9 UNT515-CharaCtersottt et e e e 606
1,217 10 UNTB25-OtiNGgS . . oottt 626
1.2.1.7. 01 UNTB85-Patterns . .. o 649
1.2.1.7.02 UN2015-Fileso 691
1.2.1.7. 18 UN2025-StrEams . .. ottt ettt 706
1.2.1.7.14 UN2515-ClOSUIESottt et e e e e e e e e e e e e e 740
1.2.1. 715 UN2525-ClasSeSottt ittt ettt e e e 758
1.2.1.7.16 UN2535-CONtrolo 783

1 20,707 UNBOT STy DS . oo ottt ettt e et e 810
1.2.1.7.18 UNBO025-INheritance 833
1.2.1.7.19 UNSBOB5-EXCOPIONS .. oo 850
1.2.1.7.20 UNS515-INterCeptiono e 857
1.2.1.7.21 UNB525-MetaClassesttt e e e e 904
1.2.1.7.22 JN3535-RefleCtion 926
1.2.1.8 Groovy for the OffiCe o 940
1.2.1.9 Groovy QUICK Start ProjeCct e 940
1 2 2 RefOrBNCE e 942
1. 2.8 USEr GUIAE . ..ottt e e e 942
1.2.3.1 Control StrUCIUIESot 947
1.2.3.1.1 Logical BranChingo e e 947
12,301 2 LO0PING . oottt e 951
1.2.3.1.3 Returning values from if-else and try-catch blocks i 956

1.2 8.2 OPBIaAIOrS . . o ittt et e 957
1.2.3.2.1 Operator Overloadingot 962
1.2.83.83 Bitwise Operationsottt 965
1.2.3.4 SCripts @nd ClasSeSttt et 966
102,88 S A EMENESot 969
1.2.3.5.1 Extended Guide to Method Signatures e 977
1.2.83.6 Reserved Words 982
1.2.83.7 Strings and GStrNGottt 985
102,88 ClOSUIES . ottt e e 993
1.2.3.8.1 Closures - Formal Definition 997
1.2.3.8.2 Closures - Informal GUIAE ot 101
12,89 BUIIAEIS . oo 102
1.2.3.9.1 How Builders Work 103
1.2.3.9.2 FactoryBuilderSUppOrt 103
1.2.3.9.3 The @DelegatesTo annotationt e e 103
1.2.3.10 Groovy TrUth ..o 105
12311 InpuUt QUIPUL . . .o e e e e e 105
1.2.3.12 C0llECHIONS . . . ot ittt e 105
1.2.3.13 Regular EXpressioNs e 106
1.2.3.13.1 Documenting Regular EXpressions in GrooVYttt e 106
1.2.3.14 GDK EXtensions 10 ObJECE oot e e 108
B2 T 1 T o - 108
1.2.3.16 Advanced OOt 110
1.2.3.16.1 Groovy way to implement interfaces i e 110
1.2.3.17 Annotations With GroOVYot e e e 110
1028018 GBNBIICS .« . ottt t ettt e e 111
1.2, 8,19 USING ENUMS . . oo e e e e e e e 111
1.2.3.20 Static IMPort USageottt e e e 112
1.2.3.21 Scoping and the Semantics of "def" 112
1.2.3.22 Database featUresot 112

1.2.83.23 DYN@mIC GrOOVY . . ot ettt ittt e et et e e e e e e e e e e e e e 114

1.2.3.23.1 Evaluating the MetaClass runtime e 114

1.2.3.23.2 EXpandoMEtaClass ittt e e e e 114
1.2.3.23.3 Global AST Transformationsttt e 116
1.2.3.23.4 Local AST Transformationsttt e e 117
1.2.3.23.5 Per-Instance MetaClasst 117
1.2.3.23.6 RUNtiMe MiXiNS 117
1.2.3.23.7 Using invokeMethod and getProperty i e 118
1.2.3.23.8 Using methodMissing and propertyMisSSingttt e 118
1.2.3.24 Ant Integration with GrooVvy 118
1.2.3.24.1 The groovy Ant Task e e e e e e e e e 118
1.2.3.24.2 The groovyC Ant Task i e e 119
1.2.3.24.3 The groovydoc ANt task i e 119
1.2.3.24.4 Using ANt from GrOOVYottt ettt e e e e e e e e e e e e e 120
1.2.3.24.5 Using Ant Libraries with AntBuUilder 121
1.2.3.25 Bean Scripting Frameworko 122
1.2.3.26 Compile-time Metaprogramming - AST Transformations e 122
1.2.3.26.1 Bindable and Vetoable transformation e 122
1.2.3.26.2 BUilding AST GUIEo oottt et e e e e e 123
1.2.3.26.3 Category and Mixin transformations e 123
1.2.3.26.4 Compiler Phase GUIAE i e e e e e e 123
1.2.3.26.5 Delegate transformation e 124
1.2.3.26.6 Immutable AST MaCIOttt e e e e e 124
1.2.3.26.7 Immutable transformation 124
1.2.3.26.8 Lazy transformation e 124
1.2.3.26.9 Newify transformation 125
1.2.3.26.10 PackageScope transformation e 125
1.2.3.26.11 Singleton transformation e 125
102,327 GPath . .o 125
1.2.83.28 Groovy and JMX . ..o e 125
1.2.3.28.1 Groovy JMXBUIIEro 128
1.2.3.29 Groovy Categories ittt ittt it et e e e e e e e e 131
1.2.3.830 Groovy CLI . .o 132
1.2.3.31 Groovy CONSOIEottt e e e 132
1.2.83.32 Groovy Math 133
1.2.3.833 Groovy Shell 134
1.2.83.34 Groovy Utils .. .o 135
1.2.3.34.1 ConfigSIUIPEr . . o o 135
1.2.3.34.2 ObjectGraphBuilder 135
1.2.3.34.3 0bservableMap 136
1.2.3.35 GUI Programming With GrOOVYottt e e e e e e e et e e e e e 136
1.2.3.35.1 SWING BUIldero 136
1.2.3.35.2 SWINGXBUIAET . . . oo e 156
1.2.8.36 IDE SUPPOIt . ittt et et e e e 157
1.2.3.36.1 ECliPSe PlIUGiN . ..o 157
1.2.3.36.2 Intellid IDEA Plugin by JetBrains e 181
1.2.3.36.3 Old and deprecated PAgES o« vttt ittt e e e e 182
1.2.3.36.4 Other PIUgiNSo oo e e e e e e 182
12,8 37 INtegration e e 183
1.2.3.38 JSR 223 Scripting With Groovy 183
1.2.3.89 LOggiNg . vt ittt e e 184
1.2.3.40 Migration From Classic 10 JSR Syntaxt 184
1.2.3.41 Processing XMLo e 185
1.2.3.41.1 Creating XML using Groovy's MarkupBuilder e 185
1.2.3.41.2 Creating XML using Groovy's StreamingMarkupBuilder i 186
1.2.3.41.3 Creating XML with Groovy and DOMo e 186
1.2.3.41.4 Processing XML With XS LT e 187
1.2.3.41.5 Reading XML using Groovy's DOMCAtegoryttt e e 187
1.2.3.41.6 Reading XML using Groovy's XmIParsert e 188
1.2.3.41.7 Reading XML using Groovy's XmISIUIpEr e 188
1.2.3.41.8 Reading XML with Groovy and DOM e e 189
1.2.3.41.9 Reading XML with Groovy and SAX e 189
1.2.3.41.10 Reading XML with Groovy and StAX i e 189
1.2.3.41.11 Reading XML with Groovy and XPath e 190
1.2.3.41.12 Updating XML with DOMCAtEGOIYt ottt e et e e e e e e e e e e e e e e 191
1.2.3.41.13 Updating XML wWith XmIParser e et e 191
1.2.3.41.14 Updating XML with XmISIUrper e e e e 192
1.2.3.41.15 Using Other XML LIbrariest e e e e e e 192
1.2.3.41.16 Validating XML with @ DTD o e e e e e 194
1.2.3.41.17 Validating XML with a W3C XML Schema i e 195
1.2.3.41.18 Validating XML with RELAX NG e e 195
1.2.3.41.19 XML EXamMPIe . . . oot e e e e e 195

1.2.3.42 Process Managemento e e 196

1.2.3.43 Running Groovy on .NET 2.0 using IKVMo e 196

1.2.3.44 Things 10 reMEMIDEr e 196
1.2.3.45 Things you can do but better leave undone e 196
1.2.3.46 Using Spring Factories With Groovy 197
102,847 Wb S A . . oo 197
1.2.83.48 OSGi @Nd GrOOVY . ..ottt ittt e e et e e e e e e e e e e e 197
1.2.4 Advanced Usage GUIJEttt et et e e e e e e e 199
1.2.4.1 Advanced compiler configurationt 199
1.2.4.2 Ant Task Troubleshootingot e e e e 201
1.2.43 Make a builder 201
1.2.4.4 BUIlderSUPPOIt . . . 203
1.2.4.5 CompiliNg GrOOVY . . oottt et et e e e e e e e e 203
1.2.4.5.1 Compiling With Maven2 e e e e 204
1.2.4.6 Creating an extension MOdUIE e 204
1.2.4.7 Design Patterns With GroOVYot e e e e e e 204
1.2.4.7.1 Abstract Factory Pattern e 205
1.2.4.7. 2 Adapter Pattern ... e 205
1.2.4.7.3 Bouncer Pattern 206
1.2.4.7.4 Chain of Responsibility Pattern 206
1.2.4.7.5 Composite Pattern e 207
1.2.4.7.6 Decorator Pattern 207
1.2.4.7.7 Delegation Pattern e 208
1.2.4.7.8 Flyweight Pattern e 209
1.2.4.7.9 terator Pattern 209
1.2.4.7.10 Loan my Resource Pattern e 209
1.2.4.7.11 Null Object Pattern e 209
1.2.4.7.12 Pimp my Library Pattern e 210
1.2.4.7. 18 ProXy Patlern e 210
1.2.4.7.14 Singleton Pattern e 210
1.2.4.7.15 State Pattern 211
1.2.4.7.16 Strategy Pattern 213
1.2.4.7.17 Template Method Pattern e e e 213
1.2.4.7. 18 Visitor Pattern 214
1.2.4.8 Dynamic language beans in SPringt 215
1.2.4.9 EMbedding GrOOVYottt et et e e e e e e e e 217
1.2.4.10 Mixed Java and Groovy AppliCationst 217
1.2.4.11 Influencing class loading at runtime e 218
1.2.412 Internationalization 218
1.2.4.13 Meta-annotations 219
1.2.4.14 Optimising Groovy bytecodes with SO0t 219
1.2.4.15 Polyglot Programming With GroOVY e e 219
1.2.4.15.1 Calling Clojure from GrOOVYottt it e e et e e e e e e e e e e e e e 219
1.2.4.15.2 Calling Scala from GroOVYttt et e e e e e e e e e e 220
1.2.4.15.3 Constraint Programmingot 220
1.2.4.15.4 Functional Programming wWith Groovy i e 221
1.2.4.15.5 JSR-223 access to other JVM 1anguagesottt e 223
1.2.4.16 Refactoring With Groovy 223
1.2.4.16.1 Introduce ASSErtioN 223
1.2.4.16.2 Replace Inheritance with Delegation e 223

12 417 SCUNEY . .ottt et e e 224
1.2.4.18 Writing Domain-Specific LANQUAGESottt e e e e e e 224
1.2.4.19 Type checking eXIENSIONSot e e e e e 224
1.2.5 Testing GUILEo e 227
1. 2.5 UNit TeStiNg .. oot e 227
1.2.5.1.1 Using JUnit 4 With GroOVY o e 228
1.2.5.2 Using Other Testing Frameworks e e e e 229
1.2.5.2.1 Using EasyMock With Groovyo e 229
1.2.5.2.2 Using InstinCt With GroOVYot e e e e e 229
1.2.5.2.3 Using JBehave With GrooVYt e e e 230
1.2.5.2.4 Using JDUMMY With GrOOVY oottt et e e e e e e e e e e e e e e 231
1.2.5.2.5 Using JMockit With GrooVYo e 231
1.2.5.2.6 Using JMocCk With GroOVY o e e e e 231
1.2.5.2.7 Using Popper With GroOVYot e e e e e e e e e e 231
1.2.5.2.8 Using RMock With GrooVvyo e e e e 233
1.2.5.2.9 Using TESING With GroOVYottt e e e e e e e e e e 233
1.2.5.83 Groovy MOCKS . ..ot e 233
1.2.5.3.1 Developer Testing using Closures instead of MOCKS e 234
1.2.5.3.2 Developer Testing using Maps and Expandos instead of Mocks 234
1.2.5.3.3 Mocking Static Methods USing GrOOVYttt e e 235
1.2.5.3.4 Using MockFor and StubFor 235
102,54 GMOCK . . ottt 236

1.2, 5. 5 INtegrating TP T P . . .o e 236

1.2.5.6 Model-based testing using ModeldJUnit e 237

1.2.5.7 Test CombDINAtiONS oottt e e e e e e 237
1.2.5.7.1 Effectiveness of testing combinations with all pairs i 239
12,58 TSt COVEIAGE . . o it ittt ittt e e e e e e e e e e 239
1.2.5.8.1 Code Coverage with CobertUrat e e e 239
1.2.5.9 Testing Web Applications e 240
1.2.5.10 Testing WED ServiCeso e e e 240
1.2.5.11 Using Testing Frameworks with Groovy e e e 241
1.2.5.11.1 Using GSpec With GroOVYot e e e e e e e e 242
1.2.8 DEVEIOPEr GUIAE . . .ottt e e e e 243
1.2.6.1 Building Groovy from SOUICEot e e e e 243
1.2.6.1.1 Setting up Intellid IDEA to build Groovyt e e 243
1.2.6.2 Building Groovy from Source using ANt e 243
1.2.6.3 Continuous Integration e 244
1.2.6.4 From source code to bytecode e 244
12085 Gt oo 244
1.2.6.6 GrooVy BacCKStageottt 245
1.2.6.6.1 Groovy Method INVOKationt e 245
1.2.6.7 Groovy INternalso 245
1.2.6.8 Release ProCess 245
1.2.6.9 Setup Groovy Development Environment e 246
1.2.7 CooKboOoK EXamples e 246
1.2.7.1 Accessing SQLSErver USING GrOOVYt v ittt et et ettt e e e e e ettt e 246
1.2.7.2 Alternate Spring-Groovy-Integration 246
1.2.7.3 Auto setup and download dependencCies Jarsttt e 247
1.2.7.4 Batch Image Manipulation e 247
1.2.7.5 Calculating a SHA1 hash for large files e e 248
1.2.7.6 command line groovy doc or methods [00OKUD oot e 248
1.2.7.7 Compute distance from Google Earth Path (in .kmlfile) 249
1.2.7.8 Concurrency With GrOOVY oot e e e e e e e e e e e 250
1.2.7.9 Convert SQL Result TO XML . ..ot e e e e e e e e e 251
1.2.7.10 Embedded Derby DB eXampleso e 251
1.2.7.11 Embedding a Groovy Console in a Java Server Application i 252
1.2.7.12 Executing External Processes From GroOVYyttt et 253
1. 2.7 A8 EXPECE fOr GrOOVY . . .ottt et et et e e e e e e e e e e 253
1.2.7.14 Formatting simple tabular text data e 256
1.2.7.15 Greedy Coin Changer in GrOOVYttt ettt e e e e e e e e e e e e e 258
1.2.7.16 Groovy Alternatives t0 INner Classesottt e 258
1.2.7.17 GrOOVY @S SCHPE . o o vttt ittt e e et e e e e e e e e e e e e e e e 258
1.2.7.18 Guy Steele's word split example using Groovy and GParst 259
1.2.7.19 How many Triangles (list, regex, grep) eXamplet 260
1.2.7.20 Installing or Update Groovy Automatically e 260
1.2.7.21 InstallTextMateGroovyBundle e 260
1.2.7.22 Integrating Groovy in an application - @ SUCCESS SIOrYottt e 261
1.2.7.28 Herator THCKS . .. 262
1.2.7.24 Martin Fowler's closure examples in GrOOVYttt e et e e 263
1.2.7.25 Other EXamples i 263
1.2.7.26 Parsing Groovy DOC ONliNeot e e e e e 263
1.2.7.27 Plotting graphs with JFreeChart 264
1.2.7.28 POOrMansMiXinNSt 264
1.2.7.29 Reading from @ Blobo o 265
1.2.7.830 ReCipes FOr Fileo e 265
1.2.7.31 Regex search for a class in the JVM runtime classpath 266
1.2.7.32 Search one or more jar files for a specified file or directory 266
1.2.7.33 Simple file download from URL e 267
1.2.7.34 S0IVING SUAOKU . . . oot e 267
1.2.7.35 StreamingMarkupBuilder and IMAP client example 267
1.2.7.36 SwingBuilder with custom widgets and observer pattern 268
1.2.7.837 Tomeat t00lSo 268
1.2.7.38 Unsign Jar Files (ReCUrSIVElY) e e 268
1.2.7.39 Using Groovy with BOOSt 269
1.2.7.40 Using Hibernate with Groovy e e e 269
1.2.7.41 Using JGoodies Animation with Groovy 270
1.2.7.42 Using JScience With GrOOVYottt e e e e e e e e e e e e e 270
1.2.7.43 Using MarkupBuilder for Agile XML Creationt e 271
1.2.7.44 Using Regex Patterns to find word phone numbers 273
1.2.7.45 Using the Delegating Meta Classttt e e e e e 274
1.2.7.46 Using the Eclipse Modeling Framework (EMF) e e 274
1.2.7.47 Using the Eclipse UML2 FrameWorK i e et e e e e e 274
1.2.7.48 Using the Proxy Meta Classot e e e e e 274
1.2.7.49 Windows Look And Feel for groovyConsole it 275

1.2.7.50 WrappingGroOVYSCrIPt oottt ettt e e e e e e e e e e e e 275

1.2.7.51 Wrting 10 @ BlOb . . .o e 275

1.2.7.52Yaml @and GrOOVYottt e et et e e e e e e e e e e e e 276
1.2.8 NEeW DOCUMEBNES . .o e 276
1.2.8.1 NeW USer GUIdEttt e e e e e e e e et e e e e 276
1.2.8.1.1 Downloading, Installing and RUNNING e 276
1.2.8.1.2Up and RUNNINGo e 277

1.2.9 TMPGIroovy Categories i ittt ettt et e et e e e e e e e e e e e e e e e e 278
1.3 Community @nd SUPPOIottt e e e 279
1801 SUP POt .o 280
1.3.2 CoNtribULINGo e 280
1.3.3 FOrums and NEWSGIrOUDPSttt ittt e e e e e e et e e e e e e e e 281
1.3.4 Mailing ListS . ..o o e 281
1.8 5 USEI GrOUPS . ottt ittt e et et e e e e e e e e e e e e e e e e e 281
1.3.6 MOAUIES . . . 281
1.3.6.1 COM SCHPHNG . . oottt ettt e e et e e e e e e e e e e e e 281
1.3.6.1.7 Al ADOUL ArTaY S . . ottt e e e e e e e 282
1.3.6.1.2 Change Logttt e 282
1.3.6.1.3 COM Data Types in SCHPIOMo e e e e e e e 282
1.3.6.1.4 COM EVENISottt et e e e e e e 283
1.3.6.1.5 COM Methods and Properties in SCriptom 283
1.3.6.1.6 Passing Values by Reference (in-0out) 283
1.3.6.1.7 SCriptom ArChiVe . .. 283
1.3.6.1.8 SCriptom ArtiCIESo 285
1.3.6.1.9 The Least You Need to Know about COM e 286

1.808. 2 GaANt .ot 286
1.8.6.3 GFreeMarker ot 286
1.3.6.4 GoOogle Data SUPPOItottt e e e e e 287

1. 8085 M .ot 287
1.3.6.6 GraphiCcsBUIlder 287
1.3.6.6.1 Alphabetical INdeX e 288
1.3.6.6.2 GraphicsBuilder - Animation 296
1.3.6.6.3 GraphicsBUIlder - GDK 296
1.3.6.6.4 GraphicsBuUilder - Groodlesot e 296
1.3.6.6.5 GraphiCsBUIIAEr - GrOUPSt o ittt e e e e e e e e e e e e e 297
1.3.6.6.6 GraphicsBUIIdEr - MISCot e e e 297
1.3.6.6.7 GraphicsBuilder - OUliNEs 297
1.3.6.6.8 GraphicsBuUilder - Paints 298
1.3.6.6.9 GraphicsBUIlder - Shapes i e 299
1.3.6.6.10 GraphicsBuilder - STroKES e 302
1.3.6.6.11 Graphicsbuilder - SV G 302
1.3.6.6.12 GraphicsBuilder - SWINGo 302
1.3.6.6.13 GraphicsBuilder - Transformations e 302
1.3.6.6.14 GraphicsBuilder - Tutorials 302

1.8.6.7 Grapplet . ..o 302
1.8.6.8 GHifON L. o 303
1.3.6.8.1 Download Griffon 303
1.3.6.8.2 GreBt . ..ottt 303
1.3.6.8.3 Griffon JavaOne 2008 Dev NOtESottt e e 303
1.3.6.8.4 Griffon QUICK Start 303
1.3.6.8.5 Griffon RoadMapot 304
1.3.6.8.6 Installing Griffon e 304
1.3.6.8. 7 UberBuilder 304

1.3.6.9 GrO0OSh . .o 304
1.3.6.10 Groovy Jabber-RP C ... 305
1.3.6.11 GrooVYM S . 305
1.3.6.11.1 GroovydMS DesSign DOCSo ottt et e e e e e e e e e 305
1.3.6.11.2 GrOOVYJMS DOCS . . o ittt ittt e e et e e e e e e e e e e e e 305
1.3.6.11.3 GroovyJMS Reference LiNKSot e e e 306
1.3.6.11.4 GroovyJMS Roadmap and Planningo e 306
1.3.6.11.5 GroovyJMS - v0.1 Docs and Example 306
1.3.6.11.6 Groovy Messaging Service APl 307
1.3.6.12 GroovyLab 307
1.3.6.13 Groovy MONKEY . . . oottt et et e e e e e e e e 307
1.3.6.14 GrooVyReStEto 308
1.3.6.14.1 GroovyRestlet User GUIAEot e e e 308
1.3.6.14.2 RestletTutorialEXamples e 309
1.3.6.14.3 SpringIntegrationEXampPIEs it 310
1.3.6.15 GrOOVY SCIEBNCE . . . ot ittt et et e e e e e e e e e e e e e e e 310
1.3.6.16 Groovy SO AP .o 310
1.8.6.17 GrooVY SW T L 311
1.3.6.17.1 Asample application e 311

1.8.6.17.2 BiNdiNgo 312

1.3.6.17.3 Changelogt e 312

1.3.6.17.4 groovy-swt - Comparing the java and the groovy code i 313
1.3.6.18 GroOVY W S . . 314
1.3.6.18.1 CONSUMING @ WED SEIVICE . . . oo\ttt ettt e et e e e e e e e e e e e e e 314
1.3.6.18.2 Currency rate calCulator e 314
1.3.6.18.3 GroovyWS grape config file 314
1.3.6.18.4 GroovyWS installation 314
1.3.6.18.5 Publishing a web-service e 314
1.3.6.18.6 TerraServer-USA by MICrosoftt e e 315
1.3.6.18.7 Using the AegisS Mappingttt e e e e e e e e e e 315
1.3.6.18.8 Using the client with complex objects 315
1.3.6.18.9 Using the Grails XFire plugin and GroovyWS e 315
1.3.6.18.10 Using WSClient in Grails e e e 315
1.3.6.18.11 USINg WS-SECUITYottt e e e e e e e e e e e e e e 316
1.3.6.18.12 WSClient configurationttt e e e e 316
1,808,109 GO P ..t 316
1.8.6.20 GOQL . .ottt 317
1.8.6.21 HT TP BUIldEr . ..ot e e e e e e e e e e e e e 317
1.8.6.22 JideBUilder 317
1.8.6.28 MetaBuUilder 318
1.3.6.24 Native LaunCher 319
1.3.6.25 ProxXy-0-MatiC e 320
1.3.6.26 WIndows NSIS-INstaller 320
1.3.6.27 WINAOWS SEIVICES ittt ittt ettt e et e e e e e e et e e e e e e e 321
1.8.6.28 WINGSBUIIAEr . . . o 321
1.3.6.20 XMLR P C . . 322
1.3.6.30 GroOVYF X . . 322
1.3.6.30.1 Layout in GrooVyF X 323
1.3.6.30.2 SceneGraphBUIlder 323
1.3.6.30.3 SceneGraphBuilder - CONtAINErSttt e e e e 323
1.3.6.30.4 SceneGraphBuilder - CONrolS 326
1.3.6.30.5 SceneGraphBuilder - effects e 332
1.3.6.30.6 SceneGraphBuUilder - INPULo e 336
1.3.6.30.7 SceneGraphBUIlder - NOAES it e 337
1.3.6.30.8 SceneGraphBuilder - paint e 338
1.3.6.30.9 SceneGraphBuUIlder - Shapesttt 339
1.3.6.30.10 SceneGraphBuUIlder - stageot e 342
1.3.6.30.11 SceneGraphBuilder - transforms e 342
1.3.6.30.12 SceneGraphBuilder - Web 343
1.3.6.30.13 TimeliNeBUIlder e 343
1.8.6.31 GaCIYK . oot 344
1.8.6.32 GIMaAVEN .. .ottt 344
1.3.6.33 Groovy TransfOrmMsottt e e e e e e e 344
1.3.6.38.1 SCalify ...t 344

1.3.7 Related Projects 344

Home
Groovy...

is an agile and dynamic language for the Java Virtual Machine

builds upon the strengths of Java but has additional power features inspired by languages like Python,
Ruby and Smalltalk

makes modern programming features available to Java developers with almost-zero learning curve
provides the ability to statically type check and statically compile your code for robustness and
performance

supports Domain-Specific Languages and other compact syntax so your code becomes easy to read and
maintain

makes writing shell and build scripts easy with its powerful processing primitives, OO abilities and an Ant
DSL

increases developer productivity by reducing scaffolding code when developing web, GUI, database or
console applications

simplifies testing by supporting unit testing and mocking out-of-the-box

seamlessly integrates with all existing Java classes and libraries

compiles straight to Java bytecode so you can use it anywhere you can use Java

Experience Groovy 2.1

Groovy 2.1 is the latest major and stable version of
the popular alternative language for the JVM.

To learn more about the novelties, make sure to read
the detailed release notes. In a nutshell, Groovy 2.1

¢ offers full support for the JDK 7 “invoke
dynamic” bytecode instruction and API for
improved performance,

® goes beyond conventional static type checking
capabilities with a special annotation to assist
with documentation and type safety of
Domain-Specific Languages and adds static
type checker extensions,

® provides additional compilation customization
options,

* features a meta-annotation facility for
combining annotations elegantly,

® and provides various other enhancements and
minor improvements.

"Groovy is like a super version of Java. It can leverage Java's enterprise capabilities but also has cool productivity
features like closures, builders and dynamic typing. If you are a developer, tester or script guru, you have to love
Groovy."

Samples

A simple hello world script:

def name='World'; println "Hello $name!"

A more sophisticated version using Object Orientation:

class Greet {
def name
Greet(who) { name = who[0].toUpperCase() +
who[1l..-1] }
def salute() { println "Hello $name!" }

g = new Greet('world') // create object
g.salute() // output "Hello World!"

Leveraging existing Java libraries:

On

import static org.apache.commons.lang.WordUtils.*

class Greeter extends Greet {
Greeter (who) { name = capitalize(who) }

new Greeter('world').salute()

the command line:

groovy -e "println 'Hello ' + args[0]" World

Latest news [more]

Guillaume Laforge posted on Jun 14, 2013
Groovy 2.1.5 bug fix release

Dear all,
I'm pleased to announce the release of Groovy 2.1.5.

Groovy 2.1.5 is a bug fix release of the Groovy 2.1 branch. In particular, it fixes a problem we've encountered with
Groovy 2.1.4 where the extension module descriptors were not found in the "all" JAR, which meant that the usual
nice GDK methods extensions for XML and other modules were not found by Groovy.

You can download Groovy 2.1.5 in the download area and have a look at the JIRA release notes.

Thanks to all who contributed to this release!

Keep on groovy'ing!

Edit

Project Information

Some useful project information:

® Groovy Release Notes
® Groovy 1.5 release notes
® Groovy 1.6 release notes
® Groovy 1.7 release notes
® Groovy 1.8 release notes
®* Groovy 1.8.1 release notes
Groovy 2.0 release notes
® Groovy 2.1 release notes
® News and Further Information
® Books
Groovy 1.0 parties
Groovy Series
latest posts from our mailing-lists
News
®* Release candidate of Groovy 2.0 available
® PLEAC Examples
® Events
* FAQ
¢ (Class Loading
® FAQ - Classes and Object Orientation
® FAQ - Closures
® FAQ - Collections, Lists, etc.

http://jira.codehaus.org/browse/GROOVY-6205
http://groovy.codehaus.org/Download?nc
http://jira.codehaus.org/secure/ReleaseNote.jspa?projectId=10242&version=19320

* FAQ - GSQL
FAQ - RegEx
General
®* How can | edit the documentation
® |anguage questions
® Can | break a Groovy statement into multiple lines anyway | want?
®* How can | dynamically add a library to the classpath
®* Why does == differ from Java
® | earning about Groovy FAQ
® |icense Information
® Runtime vs Compile time, Static vs Dynamic
® Roadmap, Discussions and Proposals
® Discussions
® Feature Wish List
®* New Groovy Console Wish List
® Proposals
Annotation usage with properties
AST Macros and Annotations
C Sharp Groovinator
GJIT - Groovy Just-In-Time Compiler
Grapes and grab()
Groovy realtime archive internet lookup
JSR-295 Binding Builder
Macro Use Cases
MetaClass Redesign (by blackdrag)
MetaClass Redesign (by blackdrag) part 2
MOP 2.0 ideas
Multiple Assignment Proposal
® Multiple Assignment
Multiproject builds
Proposed Website Revamp
Web based GroovyShell
Miscellaneous Feature Requests and Enhancements
® Groovy 2.0 modularization
® Roadmap
®* notes on JDK 7 and JDK 8 future
®* Not Yet Documented
® Gldapwrap - Usage

® Articles
¢ James Strachan on Groovy
®* Nov 2004 - JSR Keynote
® Success Stories
® Version Scheme
Google Summer of Code
® GSoC 2013

Groovy Release Notes

Groovy 1.5 release notes
Groovy 1.6 release notes
Groovy 1.7 release notes
Groovy 1.8 release notes
Groovy 2.0 release notes

® Groovy 2.1 release notes

Groovy 1.5 release notes

© InfoQ

Article originally published on InfoQ

Groovy, the Java-like dynamic language for the JVM, matures over time like good wines. After the successful
release of Groovy 1.0 in January 2007, the next major milestone with the 1.5 label already hits the shelves. With it,
come several interesting novelties that we will examine in this article. The major addition to the language is the
support of Java 5 features with annotations, generics and enums, making Groovy the sole alternative dynamic
language for the JVM fully supporting frameworks like Spring, Hibernate, JPA, Google Guice, or TestNG.
Apart from the new Java 5 features, a few syntax enhancements find their way in the language, as well as a more
powerful dynamic behavior customization, a Swing Ul builder on steroids, and improved tooling support.

A groovier Groovy and why it matters

Groovy's key selling point has always been its seamless integration with Java. You can mix and match Groovy
and Java classes together in very easy ways: You may have a Groovy class extending a Java class implementing a
Groovy interface, and vice versa. Most of the other alternative JVM languages unfortunately won't let you
seamlessly interchange classes of two different languages. So if you want to use the best language for the job
without compromising your nice class hierarchy, you won't have many options to choose from, and Groovy gives you
all the freedom for integrating both languages in the most transparent way.

Groovy shares the same libraries, the same object model, the same threading model, and the same security model
as Java. In a way, you can consider Groovy as an implementation detail of your Java project, without having to
bear problematic impedance mismatch issues.

Groovy is Java, and Groovy makes Java groovier. Compared with other languages, Groovy is certainly the language
that provides the flattest learning curve to Java developers, thanks to a very similar syntax.

This is even more important to keep in mind that Groovy generates normal Java bytecode and uses the usual JDK
libraries, so you won't need to learn whole new APIs or have complex integration mechanisms: out of the box,
Groovy and Java are interchangeable. The added benefit is that you can protect the investmentyou made in Java
skills for your developers, or in costly application servers, or third party or home-grown libraries, as you can
reuse all of them without a problem from Groovy.

Speaking of calling into JDK, third party, or in-house libraries, alternative languages which don't support strong
typing, can't always call all Java methods because of the fact they can't choose a certain polymorphic variation of
the same method. When choosing an alternative language to improve your productivity or make your code more
readable, if you need to call other Java classes, you will have to be very careful to the choice of language you will
make, as you may encounter some road blocks along the way.

These days, all major Enterprise frameworks require the use of features like annotations, enums or generics, to be
leveraged at their fullest extent. Fortunately, with Groovy 1.5, developers can benefit from the support of all these
Java 5 features in their projects. Let's see how annotations, enums and generics can be used from Groovy.

Java 5 additions

The Groovy compiler always generates Java bytecode which is compatible with older Java VMs, but relies on JDK
1.4 for the core libraries it is using. However, for certain of these Java 5 additions, using Java 5 bytecode was
required, so that, for example, the generated classes may contain the bytecode information representing

http://www.infoq.com/articles/groovy-1.5-new
http://groovy.codehaus.org/

annotations with runtime retention policy. So although Groovy 1.5 can run on JDK 1.4, certain of these features will
only be usable on JDK 5 - when this is the case, it will be mentioned in this article.

Variable arguments

In Java 5, the ellipsis notation was created to denote methods with variable length arguments. With those little triple
dots, Java lets users put as many parameters of the same type at the end of a method - actually, the vararg
parameter is just an array of elements of that type. Varargs were already present in Groovy 1.0 - and still work with a
JDK 1.4 runtime, but it is good to show how you can use them. Basically, whenever the last argument of a method is
an array of objects, or a parameter declaration with a triple dot, you can pass multiple parameters to this method.

A first example will show the usage of varargs in Groovy with the ellipsis:

int sum(int... someInts) {

def total = 0

for (int i = 0; i < somelInts.size(); i++)
total += somelInts[i]

return total

}

il
il
-

assert sum(1)
assert sum(1l, 2)
assert sum(1l, 2, 3)

3
6

The assertions used in this example show how we can pass as many ints as desired. It is also interesting to see
that, for more syntax compatibility with Java, the classical for loop has been added into Groovy - despite the
presence of the groovier version with the in keyword that can also transparently iterate over various array or
collection types.

Note that it is possible to have varargs support even with an array as last parameter by declaring the method as
follows:

int sum(int[] someInts) { /* */ }

This snippet is really trivial, and there are obviously more expressive ways of calculating a sum. For instance, if you
have a list of numbers, you can sum all of them in a single line of code:

assert [1, 2, 3].sum() == 6

Varargs in Groovy don't require JDK 5 as the underlying Java runtime, unlike annotations that we are now going to
look at in the following section.

Annotations

As shown in the documentation of JBoss Seam which supports Groovy for writing its entities, controllers and
components, annotations like @Entity, @ld, @Override and others can be used to decorate your beans:

http://docs.jboss.com/seam/1.3.0.ALPHA/reference/en/html/ch10.html

@Entity
@Name ("hotel")
class Hotel implements Serializable

{
@Id @GeneratedvValue
Long id

@QLength (max=50) @NotNull
String name

@Length (max=100) @NotNull
String address

@QLength (max=40) @NotNull
String city

@QLength(min=2, max=10) @NotNull
String state

@QLength(min=4, max=6) @NotNull
String zip

@QLength(min=2, max=40) @NotNull
String country

@Column (precision=6, scale=2)
BigDecimal price

@QOverride
String toString() {
return "Hotel (${name}, S${address}, S{city},

${zip})"
}
}

The Hotel entity is marked with the @Entity annotation, and it's given a name through @Name. Different parameters
can be passed to your annotations like in the @Length annotation constraint where different upper and lower bound
can be set for validation purpose. You can also notice Groovy properties in action: Where are all the getters and
setters? Where are the public or private modifiers? You don't have to wait for Java 7 or 8 to get properties! By
convention, defining a property is as simple as String country: a private country field will be auto-generated, as well
as a public getter and setter. Your code becomes naturally more concise and readable.

Annotations can be used on classes, fields, methods and method parameters, like in Java. There are, however, two
gotchas to be aware of. Firstly, you can use annotations in Groovy, but you cannot yet define them - however, it will
be possible in an upcoming version of Groovy. Secondly, although the syntax is almost 100% the same as in Java,
there is a little difference when an array of values is passed in parameter of the annotation: instead of curly braces
to surround the elements, Groovy requires the use of square brackets to offer a more homogeneous syntax - since
Groovy lists and arrays use square brackets to surround their elements as well.

With annotations in Groovy 1.5, you can easily define your JPA or Hibernate annotated beans (http://www.curious-cr
eature.org/2007/03/25/persistence-made-easy-with-groovy-and-jpa/) in Groovy, add an @ Transactional annotatio
n on your Spring services, test your Swing Ul with TestNG and Fest (http://www.jroller.com/aalmiray/entry/testing_gr
oovy_uis_with_fest). All the useful and powerful enterprise frameworks leveraging annotations can be used from
your Groovy-powered projects.

Enums

Whenever you need a fixed set of constants of a same type, Enums come in handy. Say you need a clean way to
define constants for days without resorting to using integer constants? Then Enums are your friend. The following
snippet shows how to define the days of the week:

enum Day {
SUNDAY, MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY

}

Once you have defined your enum, you can use it as in Java with the usual notation Day.MONDAY and you can
spice up your switch / case statements with it as well:

http://www.curious-creature.org/2007/03/25/persistence-made-easy-with-groovy-and-jpa/
http://www.curious-creature.org/2007/03/25/persistence-made-easy-with-groovy-and-jpa/
http://www.jroller.com/aalmiray/entry/testing_groovy_uis_with_fest
http://www.jroller.com/aalmiray/entry/testing_groovy_uis_with_fest

def today = Day.SATURDAY

switch (today) {

// Saturday or Sunday

case [Day.SATURDAY, Day.SUNDAY]:
println "Weekends are cool"

break

// a day between Monday and Friday
case Day.MONDAY..Day.FRIDAY:
println "Boring work day"

break

default:

println "Are you sure this is a valid day?"

}

Notice that Groovy's switch is a bit more powerful than C-like languages switches in that it is possible to use any
kind of object in the switch and case. Instead of stacking up seven different case block with each enumerated value,
you can regroup them in lists or ranges: whenever the value is in the list or the range, the case will be true and its
associated instructions will be executed.

A more complex example inspired by the Java tutorial takes a more astronomical perspective on enums, and shows
how your enums can have properties, constructors and methods:

enum Planet {

MERCURY (3.303e+23, 2.4397e6),
VENUS (4.869e+24, 6.0518e6),
EARTH (5.976e+24, 6.37814e6),
MARS (6.421e+23, 3.3972e6),
JUPITER (1.9e+27, 7.1492e7),
SATURN (5.688e+26, 6.0268e7),
URANUS (8.686e+25, 2.5559e7),
NEPTUNE (1.024e+26, 2.4746e7)

double mass
double radius

Planet (double mass, double radius) {
this.mass = mass;
this.radius = radius;

}

void printMe() ({
println "${name()} has a mass of ${mass} " +
"and a radius of ${radius}”

}

}
Planet.EARTH.printMe ()

Like annotations, enums in Groovy require a JDK 5+ to run on, as Java 5 bytecode is generated.
Static imports

In our previous examples of enums, we always had to prefix the enumerated value with its parent enum class, but
thanks to static imports (which work even on a JDK 1.4 runtime) we can save some characters by dropping the
Planet prefix:

import static Planet.*

SATURN.printMe ()

No more Planet prefix. But of course, static imports aren't only available for enums, but also work for other classes
and static fields. What about doing some math?

import static java.lang.Math.*

assert sin(PI / 6) + cos(PI / 3) == 1

Both the static methods of java.lang.Math and its static constants were statically imported to make the expression
more concise. But if the abbreviations of sine and cosine are not readable for you, you can use aliasing in Groovy
with the as keyword:

import static java.lang.Math.PI
import static java.lang.Math.sin as sine
import static java.lang.Math.cos as cosine

assert sine(PI / 6) + cosine(PI / 3) == 1

Aliasing also works with normal imports too, not just static imports, and it can be pretty handy for adding some
shortcut notation to very long class names as found in many frameworks, or for renaming methods or constants with
non-obvious names, or not following your naming convention standards.

Generics

A somewhat more controversial feature of Java 5 also finds its way in the latest release of Groovy 1.5 with Generics.
Initially, it may feel odd to add even more typing information to a dynamic language, after all. Java developers
usually believe that because of type erasure (for backward compatibility reasons with older versions of Java) no
information is left in the class bytecode to represent the generic type. However, this is wrong, since through the
reflection API, you are able to introspect a class to discover the types of its fields or of its methods arguments with
the generics details.

So for instance, when you declare of field of type List<String>, somewhere in the bytecode, this information is kept
in the form of some meta-information, although this field is really just of type List. This kind of reflexive information is
used by enterprise frameworks like JPA or Hibernate to be able to relate a collection of elements from an entity to
the entity representing the type of these elements.

To put this into practice, let us check if the generics information is kept on class fields:

class Talk {
String title

}

class Speaker {
String name
List<Talk> talks = []

}

def me = new Speaker(
name: 'Guillaume Laforge',
talks: [

new Talk(title: 'Groovy'),
new Talk(title: 'Grails')

1)

def talksField =

me.class.getDeclaredField('talks’)

assert talksField.genericType.toString() ==
'java.util.Listt<Talk>'

We defined two classes: a Speaker class giving Talks at conferences. In the Speaker class, the talks property is of

type List<Talk>. Then, we create a Speaker instance with two nice shortcuts for initializing the name and talks

properties, and for creating a list of Talk instances. Once this setup code is ready, we retrieve the field representing
the talks, and we check that the generic type information is correct: yes, talks is a List, but a List of Talks.

Covariant return types

In Java 5, if you have a method in a subclass with the same name and parameter types as in a parent class, but
with a return type derived from the parent method's return type, then we can override the parent method. In Groovy
1.0, covariant return types were not supported. But in Groovy 1.5, you can use them. Additionally, if you are trying to
override a method with a return type not deriving from the parent class method's return type, a compilation error will
be thrown. Covariant return types also work with parameterized types.

Beyond the support of Java 5 features which brought a few additions to the language, a few other syntax
enhancements have been introduced in Groovy 1.5, and we are going to discover them in the following section.

Syntax additions

Elvis operator

Apart from the Java 5 features that brought annotations, generics and enums into Groovy, a new operator finds its
way into the language: ?: the Elvis operator. When you see the operator in question, you will easily guessed why it

was nicknamed that way - if not, think in terms of Smiley. This new operator is, in fact, a shortcut notation for the
ternary operator. How many times are you using the ternary operator to change the value of a variable if its content
is null to assign it some default value? The typical case in Java is as follows:

String name = "Guillaume";
String displayName = name != null ? name
"Unknown";

In Groovy, since the language is able to "coerce" types to boolean values as needed (for instance where conditional
expressions are required like in if or while constructs), in this statement, we can omit the comparison to null,
because when a String is null, it is coerced to false, so in Groovy, the statement would become:

String name = "Guillaume"
String displayName = name ? name : "Unknown"
However, you will still notice the repetition of the name variable, which would violate the DRY principle (Don't Repeat

Yourself). As this construct is pretty common, the Elvis operator was introduced to simplify such recurring cases,
and the statements become:

String name = "Guillaume"”
String displayName name ?: "Unknown"

The second occurrence of the name variable is simply omitted and the ternary operator is no more ternary and is
shortened to this more concise form.

It is also worth noticing that there are no side effects to this new construct, since the first element (here the name) is
not evaluated twice as it would be the case with the ternary operator, so there's no need to introduce some
intermediate temporary value to hold the result of the first evaluation of the first element of the ternary operator.

Classical for loop

Although Groovy is not strictly speaking a 100% superset of Java, the Groovy syntax comes closer to the Java
syntax after each release, and more and more Java code is also valid Groovy. The net benefit of this is that when
you begin with Groovy, you can copy and paste Java code in your Groovy classes, and this should just work as
expected. Then, over time, as you learn the language, you start throwing away the semi-colons which are not
mandatory in Groovy, using GStrings (interpolated strings), or closures, etc. Groovy offers a rather flat learning
curve to Java developers.

However, there was one omission to this Java-syntax compatibility in the fact the classical for loop inherited from
Java's C background wasn't allowed in Groovy. Initially, the Groovy developers thought it was not the nicest syntax
of all and preferred using the for / in construct which was more readable. But as the Groovy users regularly asked
for this old construct to be also part of Groovy, the team decided to bring it back to Groovy.

With Groovy 1.5, you can either chose the Groovy for / in, or prefer the classical for loop:

for (i in 0..9)
println i

for (int i = 0; i < 10; i++)
println i

At the end of the day, it is probably more a matter of taste, and long time Groovy users usually prefer the most
concise syntax with the for / in loop instead.

Named parameters without parenthesis

With its malleable and concise syntax, and its advanced dynamic capabilities, Groovy is an ideal choice for
implementing internal Domain-Specific Languages. When you want to share a common metaphor between
subject matter experts and developers, you can leverage Groovy to create a dedicated business language which
models the key concept and business rules of your application. An important aspect of these DSLs is to make the
code very readable, and also easier to write by non-technical persons. To achieve this goal even further, the
grammar of the language was tweaked to allow us to use named parameters without the surrounding parenthesis.

First of all, in Groovy, named parameters look like this:

fund.compare(to: benchmarkFund, in: euros)
compare (fund: someFund, to: benchmark, in:
euros)

By adding new properties to numbers - which is possible in Groovy but beyond the scope of this article - we can also
write code like this:

monster.move(left: 3.meters, at: 5.mph)
Now by omitting parenthesis, the code can become a little clearer as shown below:

fund.compare to: benchmarkFund, in: euros
compare fund: someFund, to: benchmark, in:
euros

monster.move left: 3.meters, at: 5.mph

Obviously, this is not a big difference, but each statement becomes closer to real plain English sentences, and
removes the usual boiler-plate technical code of the host language. This little enhancement of the grammar of the
Groovy language gives more options to the designers of the business DSL.

Improved tooling support

A common show-stopper when Groovy was a young language, was the lack of good tooling support: both the tool
chain and the IDE support weren't up to the task. Fortunately, with the maturity and success of Groovy and the
Grails web framework, this situation has changed.

Introduction of the "joint" compiler

Groovy is well-known for its transparent and seamless integration with Java. But this is not just about being able to
call Java methods from Groovy scripts, no, the integration between both languages goes well beyond that. For
instance, it is totally possible to have a Groovy class extending a Java class which in turns implements a Groovy
interface, or vice versa. This is something other alternative languages don't alway support, unfortunately. However,
when mixing Groovy and Java classes together, so far, you had to be careful when compiling both type of classes
by cleverly choosing the order of compilation, and when cyclic dependencies were spanning both languages, you
may have hit a "chicken and egg" problem. Fortunately with Groovy 1.5, this is not the case anymore, and thanks to
a contribution from JetBrains, the makers of the award winning Java IDE Intellid IDEA, a "joint" compiler is available

http://www.jetbrains/idea/

with which you can compile both Groovy and Java sources together in one go without having to think about
dependencies between classes.

If you want to use the joint compiler from the command-line, you can call the groovyc command as usual, but specify
the -j flag which will enable the joint compilation:

groovyc *.groovy *.java -j -Jsource=1l.4
-Jtarget=1.4

For passing parameters to the underlying javac command, you can prefix the flags with the J prefix. You can also
use the joint compiler through its Ant task from you Ant or Maven build files:

<taskdef name="groovyc"
classname="org.codehaus.groovy.ant.Groovyc"
classpathref="my.classpath"/>

<groovyc

srcdir="${mainSourceDirectory}"”
destdir="${mainClassesDirectory}"
classpathref="my.classpath"
jointCompilationOptions="-j -Jsource=1l.4
-Jtarget=1.4" />

Maven plugin for Groovy

For the Maven users, there is also a fully featured Maven plugin hosted at Codehaus which allows you to build your

Java / Groovy applications: compile your Groovy and Java code, generate documentation from the JavaDoc tags, or
it even lets you write your own Maven plugins in Groovy. There is also a Maven archetype to bootstrap your Groovy

project more rapidly. For more information, you may have a look at the documentation of the plugin: http://mojo.code
haus.org/groovy/index.html

The GroovyDoc documentation tool

As a Java developer, you are used to documenting your code through JavaDoc tags in the comments of your
classes, interfaces, fields, or methods. In Groovy, you can also use such tags in your comments, and have them
being used by a tool called GroovyDoc to generate the equivalent JavaDoc documentation for all your Groovy
classes.

There's an Ant task you can define then use to generate the documentation as follows:

http://mojo.codehaus.org/groovy/index.html
http://mojo.codehaus.org/groovy/index.html

<taskdef name="groovydoc"
classname="org.codehaus.groovy.ant.Groovydoc">
<classpath>

<path path="${mainClassesDirectory}"/>

<path refid="compilePath"/>

</classpath>

</taskdef>

<groovydoc
destdir="${docsDirectory}/gapi"
sourcepath="${mainSourceDirectory}"
packagenames="**_,*" use="true"
windowtitle="Groovydoc" private="false"/>

New interactive shell and the Swing console

Groovy distributions always contained two different shells: a command-line shell as well as a Swing console.
Groovysh, the command-line shell, has never been very friendly in terms of interactions with its user: whenever you
wanted to execute a statement, you had to type 'go' or 'execute' after each one, so that it got executed. For quick
prototyping or playing with some new API, typing 'go' each time was very cumbersome. The situation has changed
in Groovy 1.5, since a new interactive shell is born. No need to type 'go' anymore.

This new shell features several enhancements, such as the use of the JLine library which provides ANSI coloring,
tab completion for commands, line editing capabilities. You can work with different script buffers, remember already
imported classes, load existing scripts, save the current script to a file, browse the history, etc. For detailed
explanations of the supported features, please have a look at thedocumentation.

The command-line shell isn't the only one that received some care, the Swing console has also been improved, with
a new toolbar, with advanced undo capabilities, the possibility to increase or decrease the font size, syntax
highlighting. A lot of polishing has been applied to the console.

IntelliJ IDEA JetGroovy plugin

| will save the best of tooling support till the end of this section by mentioning the JetGroovy plugin: a free and Open
Source Intellid IDEA plugin dedicated to the support of both Groovy and Grails. This plugin has been developed by
JetBrains themselves, and provides unmatched support for both the language and the web framework.

To list a few of the available features of the Groovy support:

¢ Syntax highlighting for all the syntax, plus different warnings for types not recognized, or when static type
information is not known to help spot potential errors.

® Ability to run Groovy classes, scripts and JUnit test cases written in Groovy.

* Debugger: You can debug step by step across your Java and Groovy code, set breakpoints, show variables,
the current stack, etc.

* Joint compiler: the compiler compiles both Groovy and Java classes together and is able to resolve
dependencies between both languages.

® Code completion for packages, classes, properties, fields, variables, methods, keywords, and even specific

http://groovy.codehaus.org/Groovy+Shel

support for the Swing Ul builder.

® Advanced class search and find usage.

* Refactorings: most of the usual refactorings you've come to love in Java are available as well and work
across Java and Groovy, like "surround with", introduce, inline or rename a variable, renaming for packages,
classes, methods, and fields.

* Imports optimizations and code formatting.

® Structure view: to have a bird's eye view of your classes.

At the end of the day, you won't even notice whether you're developing a class in Groovy or in Java, considering the
level of interplay and support offered inside IntelliJ IDEA. This is definitely a plugin to install if you're considering
adding some dose of Groovy in your Java project, or if you plan to develop Grails applications.

More information can be found on JetBrains website.

Although I'm only mentioning the plugin for IntelliJ IDEA, for your Groovy developments, you don't have to change
your habits. You can also use the Eclipse plugin which is regularly improved by the IBM Project Zero developers, or
Sun's brand new support of Groovy and Grails in NetBeans.

Performance improvements

Along with new features, this new release of Groovy brings noticeable performance improvements as well as lower
memory consumption, compared to previous versions. In our informal benchmarks measuring the duration of all our
test suites, we noticed speed improvements between 15% to 45% compared with our beta versions of Groovy 1.5 -
and certainly higher figures can be expected by comparing with the now old Groovy 1.0. More formal benchmarks
have yet to be developed, but those figures have also been confirmed by developers from an insurance company
that is using Groovy to write the business rules of their policy risk calculation engine, and from another company
who ran several tests on highly parallel machines. Overall, Groovy 1.5 should be faster and leaner in most
situations. Your mileage may vary depending on your own context of usage of Groovy.

Enhanced dynamic capabilities

Through the symbiotic relationships between the Groovy and Grails projects, new dynamic capabilities have been
introduced in Groovy, after having matured in the heart of Grails.

Groovy is a dynamic language: put simply, it means that certain things like method dispatch happens at runtime,
instead of at compile-time as it is the case of Java and other languages. There is a specific runtime system, called
the MOP (stands for Meta-Object Protocol) that is responsible for the dispatching logic. Fortunately, this runtime
system is open enough so that people can hook into the system and change its usual behavior. For each Java class
and for each Groovy instance, there is an associated meta-class which represents this runtime behavior of your
objects. Groovy offered various ways to interact with the MOP by defining custom meta-classes by extending some
base class, but thanks to the contribution from the Grails project, a groovier kind of meta-class is available: the
expando meta-class.

Again,code samples are easier to help us understand the concept. In the following example, the msg String instance
has got a meta-class that we can access through the metaClass property. Then we change the meta-class of the Str
ing class to add a new method called up to the String class, to have a shortcut notation for the toUpperCase() meth
od. To do so, we assign a closure to the up property of the meta-class which is created as we assign it the closure.
This closure takes no argument (hence why it starts with an arrow), and we call the toUpperCase() method on the
delegate of the closure, which is a special closure variable which represents the real object (here the String
instance).

http://www.jetbrains.net/confluence/display/GRVY/Groovy+Home

def msg = "Hello!"
println msg.metaClass

String.metaClass.up = { ->
delegate.toUpperCase() }
assert "HELLO!" == msg.up()

Through this meta-class, you can query the methods and/or properties which are available:

// print all the methods
obj.metaClass.methods.each { println it.name }
// print all the properties
obj.metaClass.properties.each { println it.name

}

You can even check that a certain method or property is available, with a finer granularity than through any
instanceof check:

def msg = 'Hello!'

if (msg.metaClass.respondsTo(msg,
'toUpperCase')) {

println msg.toUpperCase()

}

if (msg.metaClass.hasProperty(msg, 'bytes’')) {
println foo.bytes.encodeBase64()

}

These mechanisms are extensively used in the Grails web framework for instance to create dynamic finders: no
need for DAOs in most circumstances, as you are able to call a findByTitle() dynamic method on a Book domain
class. Through meta-classes, Grails automatically decorates the domain classes with such methods. Furthermore, if
the method doesn't exist yet, it will be created and cached on first use. This can be accomplished by other advanced
hooks as explained below.

Beyond those examples we've seen so far, expando meta-classes also provide some complementary hooks. Four
other kind of methods can be added to an expando meta-class:

* invokeMethod() lets you intercept all methods calls,

¢ while methodMissing() will be called on last resort only of no other method is found.
* get/setProperty() intercepts access to all properties,

* whereas propertyMissing() is called when no property can be found.

With expando meta-classes, customizing the behavior of the types of your application becomes easier and can save
precious time of development compared with the previous version of Groovy. Obviously, not everybody needs to use

those techniques, but they can be handy in a number of situations where you want to apply some AOP (Aspect
Oriented Techniques) to decorate your classes, and when you want to simplify and make more readable the
business code of your application, by removing some unnecessary boiler-plate code.

Swing on steroids

The Groovy project has the chance to have a team of talented Swing developers who worked hard to enhance the
capabilities of Groovy to build user interfaces in Swing. The basic brick for building Swing Uls in Groovy is the
SwingBuilder class: at a syntactical level in your source, you can visually see how Swing components are nested
within each other. A simplistic example from the Groovy website shows how to simply create a little GUI:

import groovy.swing.SwingBuilder
import java.awt.BorderLayout

import groovy.swing.SwingBuilder
import java.awt.BorderLayout as BL

def swing = new SwingBuilder ()

count = 0

def textlabel

def frame = swing.frame(title: 'Frame',
size:[300,300]) {

borderLayout ()

textlabel = label(text:"Clicked ${count}
time(s).",

constraints: BL.NORTH)

button(text: 'Click Me',

actionPerformed: {count++; textlabel.text =
"Clicked S${count} time(s)."; println
"clicked"},

constraints:BorderLayout.SOUTH)

}

frame.pack ()

frame.show()

In the novelties, the Swing builder concept has been extend to provide custom component factories. There are

additional modules, not bundled with Groovy by default, which integrates the Swing components from JIDE or from
the SwingX project into the usual Swing builder code.

Although this topic would deserve a full article, I'm only going to list some of the other improvements in this release,
for instance, the bind() method. Inspired by the beans binding JSR (JSR-295), you can easily bind components or
beans together to have them react upon changes made on each other. In the following example, the size of the

insets of the button will be changed according to the value of the slider component:

import groovy.swing.SwingBuilder
import java.awt.Insets

swing = new SwingBuilder ()

frame = swing.frame {

vbox {

slider(id: 'slider', value:5)

button('Big Button?!', margin:

bind (source: slider,

sourceProperty: 'value',

converter: { [it, it, it, it] as Insets }))
}

}

frame.pack ()

frame.size = [frame.width + 200, frame.height +
200]

frame.show()

Binding components together is such a common task when building user interfaces, that this task has been
simplified through this binding mechanism. There are also some other automatic binding options that can be used,
but again, a dedicated article would probably be better.

In other new and noteworthy features, a few handy new methods have been added which leverage closures to call

the infamous SwingUitilities class, and to start new threads: edt() will call invokeAndWait(), while doLater() will call i
nvokeLater(), and doOutside() will just launch a closure in a new thread. No more ugly anonymous inner classes:

just use closures through those shortcut methods!

Last but not least, separating the description of the view and its associated behavior logic has never been easier,
thanks to the build() method on SwingBuilder. You can create a separate script which only contains the view, while
the interactions or bindings between components are in the main class, making a clearer separation in the MVC
model.

Summary

In this article, the new and noteworthy features have been outlined, but we have barely scratched the surface of this
new version of Groovy. The big highlights are mainly around the new Java 5 features, such as annotations, enums
or generics: it makes Groovy perfectly capable of being integrated nicely and seamlessly with Enterprise frameworks
such as Spring, Hibernate, or JPA. With the improvements in the syntax and with the enhanced dynamic
capabilities, Groovy will let you customize your business logic by creating embedded Domain-Specific Languages,
that you can easily integrate at the extension points of your application. The developer experience has progressed
significantly through the work poured in the tooling support, this is no more a show stopper to the adoption of
Groovy. Overall, with Groovy 1.5, the goal of simplifying the life of developers has never been so well fulfilled, and
Groovy should definitely be part of all the Java developers' toolbox.

Groovy 1.6 release notes
©® InfoQ

Article originally published on InfoQ

Groovy is a very successful and powerful dynamic language for the Java Virtual Machine that provides seamles
s integration with Java, and has its roots firmly planted in Java itself for the syntax and APIs and other languages
such as Smalltalk, Python or Ruby for its dynamic capabilities.

Groovy is used in many Open Source projects such as Grails, Spring, JBoss Seam and more, as well as integrated
in commercial products and Fortune 500 mission-critical applications for its scripting capabilities offering a
nice extension mechanism to these applications, or for its ability to let subject matter experts and developers author
embedded Domain-Specific Languages to express business concepts in a readable and maintainable fashion.

In this article, Guillaume Laforge, Groovy Project Manager and Head of Groovy Development at SpringSource, will
go through an overview of the novelties offered by the newly released Groovy 1.6.

Overview of Groovy 1.6

As we shall see in this article, the main highlights of this Groovy 1.6 release are:

* Greater compile-time and runtime performance improvements

® Multiple assignments

® Optional return in if/else and try/catch blocks

¢ Java 5 annotation definition

¢ AST transformations and all the provided transformation annotations like@singleton, @Lazy, @ Immutabl
e, @Delegate and friends

®* The Grape module and dependency system and its @Grab transformation

® Various Swing builder improvements, thanks to the Swing / Griffon team, as well as several Swing console
improvements

® The integration of JMX builder

® Various metaprogramming improvements, like the EMC DSL, per-instance metaclasses even for POJOs,
and runtime mixins

® JSR-223 scripting engine built-in

¢ Qut-of-the-box OSGi readiness

All those improvements and new features serve one goal: helping developers be more productive and more
agile, by:

Focusing more on the task at hand than on boiler-plate technical code

Leveraging existing Enterprise APls rather than reinventing the wheel

Improving the overal performance and quality of the language

Enabling developers to customize the language at will to derive their own Domain-Specific Languages

But beyond all these important aspects, Groovy is not just a language, it's a whole ecosystem.

The improvements in Groovy's generated bytecode information helps capable tools coverage like Cobertura and its
Groovy support, or pave the way for new utilities like CodeNarc for static code analysis for Groovy.

The malleability of the syntax of the language and its metaprogramming capabilities give birth to advanced testing
tools such as theEasyb Behavior-Driven-Development project, the GMock mocking library or the Spock testing and
specification framework.

http://www.infoq.com/articles/groovy-1-6
http://groovy.codehaus.org/
http://grails.org/
http://www.springframework.org/
http://www.springsource.com/people/glaforge
http://www.springsource.com/
http://griffon.codehaus.org/
http://codenarc.sourceforge.net/
http://easyb.org/
http://code.google.com/p/gmock/
http://code.google.com/p/spock/

Again, Groovy's flexibility and expressivity and its scripting capabilities open the doors to advanced build scripting or
infrastructure systems for your continuous integration practices and project build solutions, such as Gant and Graddl
e.

At the tooling level, Groovy also progresses, for instance with its groovydoc Ant task to let you generate proper
JavaDoc covering, documenting and interlinking both your Groovy and Java source files for your Groovy/Java mixed
projects.

And at the same time, IDE makers improve their support for Groovy, by giving users powerful weapons such as
cross-language code refactoring, profound understanding of dynamic language idioms, code completion, and more,
to make developers productive when using Groovy in their projects.

Now, armed with this knowledge of the Groovy world, it's time to dive into the novelties of Groovy 1.6!

Performance improvements

A lot of care has been taken to improve both the compile-time and runtime performance of Groovy, compared to
previous releases.

The compiler is 3 to 5 times faster than in previous releases. This improvement has also been backported in the
1.5.x branch, so that both the old maintenance branch and the current stable branch benefit from this work. Thanks
to class lookup caches, the bigger the project, the faster the compilation will be.

However, the most noticeable changes will be in the general runtime performance improvements of Groovy. We
used several benchmarks from the Great Language Shootout to measure our progress. On those we selected,
compared to the old Groovy 1.5.x line, theperformance improvements ranged from 150% to 460%.
Micro-benchmarks obviously rarely reflect the kind of code you have in your own projects, but the overal
performance of your projects should improve significantly.

Multiple assignments

In Groovy 1.6, there is only one syntax addition for being able to define and assign several variables at once:

def (a, b) = [1, 2]

1
2

assert a
assert b

A more meaninful example may be methods returning longitute and latitude coordinates. If these coordinates are
represented as a list of two elements, you can easily get back to each element as follows:

http://gant.codehaus.org/
http://www.gradle.org/
http://www.gradle.org/
http://shootout.alioth.debian.org/

def geocode(String location) {
// implementation returns [48.824068,
2.531733] for Paris, France

}

def (lat, long) = geocode("Paris, France")

assert lat == 48.824068
assert long == 2.531733

And you can also define the types of the variables in one shot as follows:

def (int i, String s) = [1, 'Groovy']

1
'Groovy'

assert 1
assert s

For the assignment (with prior definition of the variables), just omit the def keyword:

def firstname, lastname

(firstname, lastname) = "Guillaume
Laforge" .tokenize ()

assert firstname == "Guillaume"
assert lastname == "Laforge"

If the list on the right-hand side contains more elements than the number of variables on the left-hand side, only the
first elements will be assigned in order into the variables. Also, when there are less elements than variables, the
extra variables will be assigned null.

So for the case with more variables than list elements, here, ¢ will be null:

def elements = [1, 2]
def (a, b, ¢) = elements

assert a == 1
assert b == 2
assert ¢ == null

Whereas in the case where there are more list elements than variables, we'll get the following expectations:

def elements = [1, 2, 3, 4]
def (a, b, ¢) = elements

assert a == 1
assert b == 2
assert ¢ == 3

For the curious minds, supporting multiple assignments also means we can do the standard school swap case in
one line:

// given those two variables
def a =1, b = 2

// swap variables with a list
(a, b) = [b, a]

assert a == 2
assert b == 1

Annotation definition

Actually, when | said that multiple assignments were the sole syntax addition, it's not entirely true. Groovy supported
the syntax for annotation definition even in Groovy 1.5, but we had not implemented the feature completely.
Fortunately, this is now fixed, and it wraps up all the Java 5 features supported by Groovy, such as static imports,
generics, annotations, and enums, making Groovy the sole alternative dynamic language for the JVM
supporting all those Java 5 features, which is critical for a seamless Java integration story, and for the usage in
Enterprise frameworks relying on annotations, generics and more, like JPA, EJB3, Spring, TestNG, etc.

Optional return for if/felse and try/catch/finally blocks

It is now possible for if/else and try/catch/finally blocks to return a value when they are the last
expression in a method or a closure. No need to explicitly use the return keyword inside these constructs, as long
as they are the latest expression in the block of code.

As an example, the following method will return 1, although the return keyword was omitted.

def method () {
if (true) 1 else O

}

assert method() == 1

For try/catch/finally blocks, the last expression evaluated is the one being returned. If an exception is thrown
in the try block, the last expression in the catch block is returned instead. Note that £inally blocks don't return
any value.

def method(bool) {

try {
if (bool) throw new Exception("foo")
1

} catch(e) {
2

} finally {
3

}

assert method(false) == 1
assert method(true) == 2

AST Transformations

Although at times, it may sound like a good idea to extend the syntax of Groovy to implement new features (like this
is the case for instance for multiple assignments), most of the time, we can't just add a new keyword to the
grammar, or create some new syntax construct to represent a new concept. However, with the idea of AST (Abstract
Syntax Tree) Transformations, we are able to tackle new and innovative ideas without necessary grammar changes.

When the Groovy compiler compiles Groovy scripts and classes, at some point in the process, the source code will
end up being represented in memory in the form of a Concrete Syntax Tree, then transformed into an Abstract
Syntax Tree. The purpose of AST Transformations is to let developers hook into the compilation process to be able

to modify the AST before it is turned into bytecode that will be run by the JVM.

AST Transformations provides Groovy with improved compile-time metaprogramming capabilities allowing
powerful flexibility at the language level, without a runtime performance penalty.

There are two kinds of transformations: global and local transformations.

® Global transformations are applied to by the compiler on the code being compiled, wherever the
transformation apply. A JAR added to the classpath of the compiler should contain a service locator file at ME
TA-INF/services/org.codehaus.groovy.transform.ASTTransformation with a line with the
name of the transformation class. The transformation class must have a no-args constructor and implement
the org.codehaus.groovy.transform.ASTTransformationinterface. It will be run against every
source in the compilation, so be sure to not create transformations which scan all the AST in an expansive
and time-consuming manner, to keep the compiler fast.

® Local transformations are transformations applied locally by annotating code elements you want to transform.
For this, we reuse the annotation notation, and those annotations should implement org.codehaus.groov
y.transform.ASTTransformation. The compiler will discover them and apply the transformation on
these code elements.

Groovy 1.6 provides several local transformation annotations, in the Groovy Swing Builder for data binding (€Binda
ble and @Vetoable), in the Grape module system for adding script library dependencies (@Grab), or as general
language features without requiring any syntax change to support them (@Singleton, @Immutable, @Delegate,
@Lazy, @Newify, @Category, @Mixin and @PackageScope). Let's have a look at some of these transformations
(@éBindable and @Vetoable will be covered in the section related to the Swing enhancements, and @Grab in the
section about Grape).

@Singleton

Whether the singleton is pattern or an anti-pattern, there are still some cases where we need to create singletons.
We're used to create a private constructor, a getInstance () method for a static field or even an initialized publi
c static final field. So instead of writing code like this in Java:

public class T {
public static final T instance = new T();
private T() {}

}

You just need to annotate your type with the @Singleton annotation:

@Singleton class T {}

The singleton instance can then simply be accessed with T. instance (direct public field access).
You can also have the lazy loading approach with an additional annotation parameter:

@Singleton(lazy = true) class T {}

Would become more or less equivalent to this Groovy class:

class T {
private static volatile T instance
private T() {}
static T getInstance () {
if (instance) {
instance
} else {
synchronized(T) {
if (instance) {
instance
} else {
instance = new T ()

}

}

Lazy or not, once again, to access the instance, simply do T. instance (property access, shorcut for T.getInsta
nce()).

@Immutable

Immutable objects are ones which don't change after initial creation. Such objects are frequently desirable because
they are simple and can be safely shared even in multi-threading contexts. This makes them great for functional and
concurrent scenarios. The rules for creating such objects are well-known:

No mutators (methods that modify internal state)

Class must be final

Fields must be private and final

Defensive copying of mutable components

equals (), hashCode() and toString() must be implemented in terms of the fields if you want to
compare your objects or use them as keys in e.g. maps

Instead of writing a very long Java or Groovy class mimicking this immutability behavior, Groovy lets you just write
an immutable class as follow:

@Immutable final class Coordinates {
Double latitude, longitude

}

def cl = new Coordinates(latitude: 48.824068,
longitude: 2.531733)
def c2 = new Coordinates(48.824068, 2.531733)

assert cl == c2

All the boiler-plate code is generated at compile-time for you! The example shows that to instantiate such immutable
coordinates, you can use one of the two constructors created by the transformation, one taking a map whose keys
are the properties to set to the values associated with those keys, and the other taking the values of the properties
as parameters. The assert also shows that equals () was implemented and allows us to properly compare such
immutable objects.

You can have a look at the details of the implementation of this transformation. For the record, the Groovy example
above using the@ Immutable transformation is over 50 lines of equivalent Java code.

@Lazy

Another transformation is @Lazy. Sometimes, you want to handle the initialization of a field of your clas lazily, so
that its value is computed only on first use, often because it may be time-consuming or memory-expensive to create.
The usual approach is to customize the getter of said field, so that it takes care of the initialization when the getter is
called the first time. But in Groovy 1.6, you can now use the @Lazy annotation for that purpose:

class Person {
@Lazy pets = ['Cat', 'Dog', 'Bird']
}

def p = new Person()
assert ! (p.dump().contains('Cat’'))

assert p.pets.size() == 3
assert p.dump().contains('Cat’)
In the case of complex computation for initializing the field, you may need to call some method for doing the work,

instead of a value like our pets list. This is then possible to have the lazy evaluation being done by a closure call, as
the following example shows:

http://groovy.codehaus.org/Immutable+AST+Macro

class Person {
@Lazy List pets = { /* complex computation
here */ } ()

}

There is also an option for leveraging Soft references for garbage collection friendliness for expensive data
structures that may be contained by such lazy fields:

class Person {

@Lazy(soft = true) List pets = ['Cat’,
'Dog', 'Bird’']
}

def p = new Person()
assert p.pets.contains('Cat')

The internal field created by the compiler for pets will actually be a Soft reference, but accessing p.pets directly
will return the value (ie. the list of pets) held by that reference, making the use of the soft reference transparent to
the user of that class.

@Delegate

Java doesn't provide any built-in delegation mechanism, and so far Groovy didn't either. But with the @Delegate tra
nsformation, a class field or property can be annotated and become an object to which method calls are delegated.
In the following example, an Event class has a date delegate, and the compiler will delegate all of Date's methods
invoked on the Event class to the Date delegate. As shown in the latest assert, the Event class has got a befo
re(Date) method, and all of Date's methods.

import java.text.SimpleDateFormat

class Event {
@Delegate Date when
String title, url

def df = new SimpleDateFormat ("yyyy/MM/dd")

def gr8conf = new Event(title: "GR8
Conference",
url: "http://www.gr8c

onf.org",
when:

df.parse("2009/05/18"))
def javaOne = new Event(title: "JavaOne",

url: "http://java.sun
.com/javaone/",

df.parse("2009/06/02"))

when:

assert gr8conf.before(javaOne.when)

The Groovy compiler adds all of Date's methods to the Event class, and those methods simply delegate the call to
the Date field. If the delegate is not a final class, it is even possible to make the Event class a subclass of Date si
mply by extending Date, as shown below. No need to implement the delegation ourselves by adding each and
every Date methods to our Event class, since the compiler is friendly-enough with us to do the job itself.

class Event extends Date {
@Delegate Date when
String title, url

}

In the case you are delegating to an interface, however, you don't even need to explictely say you implement the
interface of the delegate. The @Delegate transformation will take care of this and implement that interface. So the

http://www.gr8conf.org/
http://www.gr8conf.org/
http://java.sun.com/javaone/
http://java.sun.com/javaone/

instances of your class will automatically be instanceof the delegate's interface.

import java.util.concurrent.locks.*

class LockablelList {

@Delegate private List list [1]

@Delegate private Lock lock = new Reentrant
Lock ()

}

def list = new LockableList ()

list.lock()

try {
list << 'Groovy'
list << 'Grails'
list << 'Griffon'

} finally {
list.unlock()

}

assert list.size() == 3
assert list instanceof Lock
assert list instanceof List

In this example, our LockableList is now a composite of a list and a lock and is instanceof of List and Lock.
However, if you didn't intend your class to be implementing these interfaces, you would still be able to do so by
specifying a parameter on the annotation:

@Delegate(interfaces = false) private List list
=[]
@Newify

The @Newify transformation proposes two new ways of instantiating classes. The first one is providing Ruby like

approach to creating instances with a new() class method:

@Newify rubyLikeNew() {
assert Integer.new(42) == 42

}

rubyLikeNew()

But it is also possible to follow the Python approach with omitting the new keyword. Imagine the following tree
creation:

class Tree {

def elements

Tree(Object... elements) { this.elements =
elements as List }

}

class Leaf {
def value
Leaf (value) { this.value = value }

def buildTree() {
new Tree(new Tree(new Leaf(1l), new Leaf(2))
, new Leaf(3))

}

buildTree ()

The creation of the tree is not very readable because of all those new keywords spread across the line. The Ruby
approach wouldn't be more readable, since a new () method call for creating each element is needed. But by using
@Newify, we can improve our tree building slightly to make it easier on the eye:

@Newify ([Tree, Leaf]) buildTree() {
Tree (Tree(Leaf (1), Leaf(2)), Leaf(3))

}

You'll also notice that we just allowed Tree and Leaf to be newified. By default, under the scope which is
annotated, all instantiations arenewified, but you can limit the reach by specifying the classes you're interested in.
Also, note that for our example, perhaps a Groovy builder may have been more appropriate, since its purpose is to
indeed create any kind of hierarchical / tree strucutre.

If we take another look at our coordinates example from a few sections earlier, using both @ Immutable and @Newi
fy can be interesting for creating a path with a concise but type-safe manner:

@Immutable final class Coordinates {
Double latitude, longitude

}

@Immutable final class Path {
Coordinates[] coordinates

}

@Newify([Coordinates, Path])
def build() {
Path (
Coordinates (48.824068, 2.531733),
Coordinates (48.857840, 2.347212),
Coordinates (48.858429, 2.342622)

assert build().coordinates.size() == 3

A closing remark here: since a Path (Coordinates[] coordinates) was generated, we can use that
constructor in a varargs way in Groovy, just as if it had been defined as Path(Coordinates... coordinates).

@Category and @Mixin

If you've been using Groovy for a while, you're certainly familiar with the concept of Categories. It's a mechanism to
extend existing types (even final classes from the JDK or third-party libraries), to add new methods to them. This is

also a technique which can be used when writing Domain-Specific Languages. Let's consider the example below:

final class Distance {
def number
String toString() { "S{number}m" }

class NumberCategory {
static Distance getMeters (Number self) {
new Distance (number: self)

}

use (NumberCategory) {
def dist = 300.meters

assert dist instanceof Distance
assert dist.toString() == "300m"

}

We have a simplistic and fictive Distance class which may have been provided by a third-party, who had the bad
idea of making the classfinal so that nobody could ever extend it in any way. But thanks to a Groovy Category, we
are able to decorate the Distance type with additional methods. Here, we're going to add a getMeters () method
to numbers, by actually decorating the Number type. By adding a getter to a number, you're able to reference it
using the nice property syntax of Groovy. So instead of writing 300.getMeters (), you're able to write 300 .meter
S.

The downside of this category system and notation is that to add instance methods to other types, you have to
create static methods, and furthermore, there's a first argument which represents the instance of the type we're
working on. The other arguments are the normal arguments the method will take as parameters. So it may be a bit
less intuitive than a normal method definition we would have added to Distance, should we have had access to its
source code for enhancing it. Here comes the @Category annotation, which transforms a class with instance
methods into a Groovy category:

@Category (Number)
class NumberCategory {
Distance getMeters() {
new Distance (number: this)

}
}

No need for declaring the methods static, and the this you use here is actually the number on which the
category will apply, it's not the real this of the category instance should we create one. Then to use the category,
you can continue to use the use (Category) {}construct. What you'll notice however is that these kind of
categories only apply to one single type at a time, unlike classical categories which can be applied to any number of
types.

Now, pair @Category extensions to the @Mixin transformation, and you can mix in various behavior in a class,
with an approach similar to multiple inheritance:

@Category(Vehicle) class FlyingAbility {
def fly() { "I'm the ${name} and I fly!" }

}

@Category(Vehicle) class DivingAbility ({
def dive() { "I'm the ${name} and I dive!"

}
}

interface Vehicle {
String getName ()

}

@Mixin(DivingAbility)
class Submarine implements Vehicle {
String getName() { "Yellow Submarine" }

}

@Mixin(FlyingAbility)
class Plane implements Vehicle {
String getName() { "Concorde" }

}

@Mixin([DivingAbility, FlyingAbility])
class JamesBondVehicle implements Vehicle {
String getName() { "James Bond's vehicle”

}

assert new Plane().fly() ==
"I'm the Concorde and I fly!"
assert new Submarine().dive() ==
"I'm the Yellow Submarine and I dive!"

assert new JamesBondVehicle().fly() ==
"I'm the James Bond's vehicle and I

fly!"

assert new JamesBondVehicle().dive() ==

"I'm the James Bond's vehicle and I
dive!"
You don't inherit from various interfaces and inject the same behavior in each subclass, instead you mixin the

categories into your class. Here, our marvelous James Bond vehicle gets the flying and diving capabilities through
mixins.

An important point to make here is that unlike @Delegate which can inject interfaces into the class in which the
delegate is declared,@Mixin just does runtime mixing — as we shall see in the metaprogramming enhancements
further down in this article.

@PackageScope

Groovy's convention for properties is that any field without any visibility modifier is exposed as a property, with a
getter and a setter transparently generated for you. For instance, this Person class exposes a getter getName () a
nd a setter setName () for a private name field:

class Person {
String name

}

Which is equivalent to this Java class:

public class Person {
private String name;
public String getName() { return name; }
public void setName(name) { this.name =
name; }

}

That said, this approach has one drawback in that you don't have the possibility to define a field with package-scope
visibility. To be able to expose a field with package-scope visibility, you can now annotate your field with the @Packa
geScope annotation.

Grape, the Groovy Adaptable / Advanced Packaging Engine

To continue our overview of the AST transformations, we'll now learn more about Grape, a mechanism to add and
leverage dependencies in your Groovy scripts. Groovy scripts can require certain libraries: by explicitly saying so in
your script with the @Grab transformation or with the Grape.grab() method call, the runtime will find the needed
JARs for you. With Grape, you can easily distribute scripts without their dependencies, and have them downloaded
on first use of your script and cached. Under the hood, Grape uses lvy and Maven repositories containing the
libraries you may need in your scripts.

Imagine you want to get the links of all the PDF documents referenced by the Java 5 documentation. You want to
parse the HTML page as if it were an XML-compliant document (which it is not) with the Groovy Xm1Parser, so you
can use the TagSoup SAX-compliant parser which transforms HTML into well-formed valid XML. You don't even
have to mess up with your classpath when running your script, justgrab the TagSoup library through Grape:

import org.ccil.cowan.tagsoup.Parser

// find the PDF links in the Java 1.5.0
documentation
@Grab(group='org.ccil.cowan.tagsoup',
module='tagsoup', version='0.9.7")
def getHtml () {

def tagsoupParser = new Parser|()

def parser = new XmlParser (tagsoupParser)

parser.parse("http://java.sun.com/j2se/1.5.0/do
wnload-pdf.html")

}

html.body.'**'.a.@href.grep(~/.*\.pdf/) .each{
println it }

For the pleasure of giving another example: let's use the Jetty servlet container to expose Groovy templates in a few
lines of code:

http://www.mortbay.org/jetty/
http://groovy.codehaus.org/Groovy+Templates

import org.mortbay.jetty.Server
import org.mortbay.jetty.servlet.*
import groovy.servlet.*

@Grab(group = 'org.mortbay.jetty', module =
'jetty-embedded’', version = '6.1.0")
def runServer (duration) {

def server = new Server(8080)

def context = new Context(server, "/",
Context.SESSIONS);

context.resourceBase = "."

context.addServlet (TemplateServlet,
"*.gsp")

server.start ()

sleep duration

server.stop()

runServer (10000)

Grape will download Jetty and its dependencies on first launch of this script, and cache them. We're creating a new
Jetty server on port 8080, then expose Groovy's TemplateServlet at the root of the context — Groovy comes
with its own powerful template engine mechanism. We start the server and let it run for a certain duration. Each time
someone will hit http://localhost:8080/somepage.gsp, it will display the somepage . gsp template to the
user — those template pages should be situated in the same directory as this server script.

Grape can also be used as a method call instead of as an annotation. You can also install, list, resolve
dependencies from the command-line using the grape command. For more information on Grape, please refer to

the documentation.

Swing builder improvements

To wrap up our overview of AST transformations, let's finish by speaking about two transformations very useful to
Swing developers:@Bindable and @vVetoable. When creating Swing Uls, you're often interested in monitoring the
changes of value of certain Ul elements. For this purpose, the usual approach is to use JavaBeans PropertyChan
geListeners to be notified when the value of a class field changes. You then end up writing this very common
boiler-plate code in your Java beans:

import java.beans.PropertyChangeSupport;

http://localhost:8080/somepage.gsp
http://groovy.codehaus.org/Grape

import java.beans.PropertyChangeListener;

public class MyBean {
private String prop;

PropertyChangeSupport pcs = new PropertyCha
ngeSupport (this);

public void addPropertyChangeListener (Prope
rtyChangeListener 1) {
pcs.add(1l);

}

public void removePropertyChangeListener (Pr
opertyChangeListener 1) {
pcs.remove(l);

}

public String getProp() {
return prop;

}

public void setProp(String prop) {
pcs.firePropertyChanged("prop", this.pr
op, this.prop = prop);
}

Fortunately, with Groovy and the @Bindable annotation, this code can be greatly simplified:

class MyBean {
@Bindable String prop

}

Now pair that with Groovy's Swing builder new bind () method, define a text field and bind its value to a property of
your data model:

textField text: bind(source: myBeanInstance,
sourceProperty: 'prop’')

Or even:
textField text: bind { myBeanInstance.prop }

The binding also works with simple expressions in the closure, for instance something like this is possible too:
))

bean location: bind { pos.x + ', + pos.y }

You may also be interested in having a look at ObservableMap and ObservableList, for a similar mechanism on
maps and lists.

Along with @Bindable, there's also a @Vetoable transformation for when you need to be able to veto some
property change. Let's consider a Trompetist class, where the performer's name is not allowed to contain the
letter 'z";

http://groovy.codehaus.org/api/groovy/util/ObservableMap.html
http://groovy.codehaus.org/api/groovy/util/ObservableList.html

import java.beans.*
import groovy.beans.Vetoable

class Trumpetist {
@Vetoable String name

}

def me = new Trumpetist()
me.vetoableChange = { PropertyChangeEvent pce
->
if (pce.newValue.contains('z'))
throw new PropertyVetoException("The
letter 'z' is not allowed in a name", pce)

}

me.name = "Louis Armstrong"
try {
me.name = "'Dizzy Gillespie"

assert false: "You should not be able to
set a name with letter 'z' in it."
} catch (PropertyVetoException pve) {

assert true

}

Looking at a more thorough Swing builder example with binding:

import groovy.swing.SwingBuilder
import groovy.beans.Bindable

import static javax.swing.JFrame.EXIT ON_CLOSE

class TextModel {
@Bindable String text

}

def textModel = new TextModel ()

SwingBuilder.build {

frame(title: 'Binding Example (Groovy) ',

size: [240,100], show: true,
locationRelativeTo: null,
defaultCloseOperation: EXIT ON _CLOSE) {
gridLayout cols: 1, rows: 2
textField id: 'textField’
bean textModel, text: bind{
textField.text }
label text: bind{ textModel.text }

}
}

Running this script shows up the frame below with a text field and a lable below, and the label's text is bound on the

text field's content.

A O O Binding Example (Groovy)

Croovy 1.6 is pretty cool

Croovy 1.6 is pretty cool

SwingBuilder has evolved so nicely in the past year that the Groovy Swing team decided to launch a new project
based on it, and on the Grails foundations: project Griffon was born. Griffon proposes to bring the Convention over
Configuration paradigm of Grails, as well as all its project structure, plugin system, gant scripting capabilities, etc.

If you are developing Swing rich clients, make sure to have a look at Griffon.

Swing console improvements

Swinging along the topic of Uls, the Swing console has also evolved:

® The console can be run as an Applet (groovy.ui.ConsoleApplet).
® Beyond syntax highlighting, the editor also supports code indentation.
® Drag'n droping a Groovy script over the text area will open the file.
® You can modify the classpath with which the script in the console is being run, by adding a new JAR or a
directory to the classpath as shown in the screenshot below.
GroovyConsole File Edit View History

—
ann categorymixin.groovwy - G Run 2R B
SEA:[2]e| 4]0 [m][%] @[] RunSelection R
e e ey e Add Jar to ClassPath
String toString() { "§{numberjm” } Add Directory to ClassPath
J Clear Script Context
#Category | Humber)
class NHumbercategory | mSpE([Last 38|
Distance getMeters|) | .
new Distance|nurber: this) Inspect Variables)

b
;

ECatmonrvinisranos .

® A couple options have been added to the view menu item: for showing the script being run in the output area,
and for visualizing the execution results.

® GroovyConsole File EditHismry Script

a00 categol Clear Output BW |
L EE] | K
I=1EE] E1 L M @ Larger Font %L —
final class Distance
Saf rumbar Smaller Font {1385
String toString() { "s{number}m”
} + Capture Standard Output
@Cat&g@r!’{wmgr; '!(Shﬂw Fu" 5[3.[|(TraCES
class Numbercategory { Show Script in Output

Distance getMeters() { N . \
new Distance(number: this) Visualize Script Results

) } + Show Toolbar

BECateaorviDistancey

* When an exception is thrown in your script, the lines of the stacktrace relative to your script are clickable, for
easy navigation to the point where the error occurred.

http://griffon.codehaus.org/
http://griffon.codehaus.org/

D218 Ble| ($[DI6) 8% [sl® (]

throw new Exception| Boom!")|

Exception thrown: Boom!

java.lang.Exception: Boom!
at ConsoleScript@.run(ConsoleScript®:1)

Execution terminated with exception.

® Also, when your script contains compilation errors, the error messages are clickable too.

RISE (2] 4100 (8] %) | <]

class Foo [}

1 compilation error:

unexpected token: } at line: 1. column: 11

Execution terminated with exception.

Back on the visualization of the results in the script output area, a fun system was added to let you customize how

certain results are rendered. When you execute a script returning a map of Jazz musicians, you may see something
like this in your console:

[o N N CroovyConsole
| |)| = || |. -ﬂ_::'. I-:- 4 =

def jazz = [trumpet: "Louis RArmstrong”, saxophone: "Charlie Parker”])

["trumpet”:"Louis Armstrong”, "saxophone”:"Charlie Parker”]

Execution complete, 1:69

What you see here is the usual textual representation of a Map. But, what if we enabled custom visualization of
certain results? The Swing console allows you to do just that. First of all, you have to ensure that the visualization
option is ticked: view -> Visualize Script Results — for the record, all settings of the Groovy Console are
stored and remembered thanks to the Preference API. There are a few result visualizations built-in: if the script
returns a java.awt.Image, a javax.swing.Icon, Or a java.awt.Component with no parent, the object is
displayed instead of its toString() representation. Otherwise, everything else is still just represented as text.
Now, create the following Groovy scriptin ~/.groovy/OutputTransforms.groovy:

import javax.swing.*

transforms << { result ->
if (result instanceof Map) {
def table = new JTable(
result.collect{ k, v -<
[k, v?.inspect()] as Object[]
} as Object[][],
[' Key', 'Value'] as Object][])
table.preferredViewportSize =
table.preferredSize
return new JScrollPane(table)

}
}

The Groovy Swing console will execute that script on startup, injecting a transforms list in the binding of the
script, so that you can add your own script results representations. In our case, we transform the Map into a
nice-looking Swing JTable. And we're now able to visualize maps in a friendly and attractive fashion, as the

ann GroowyConsole

ElETHEIEHF R EROIET LA s
def jazz = |[trumpet: "Louis Armstrong", saxophene: "Charlie Parker"||
*
Ky Value
trumpet "Louis Armstrong”
sanophone "Charlie Parker”
Execution complete. 1:69

screenshot below shows:

The Swing console is obviously not to be confused with a real full-blown IDE, but for daily scripting tasks, the
console is a handy tool in your toolbox.

Metaprogramming enhancements

What makes Groovy a dynamic language is its Meta-Object Protocol and its concept of metaclasses which
represent the runtime behavior of your classes and instances. In Groovy 1.6, we continue improving this dynamic
runtime system, bringing several new capabilities into the mix.

Per instance metaclass even for POJOs

So far, Groovy POGOs (Plain Old Groovy Objects) could have a per-instance metaclass, but POJOs could only
have one metaclass for all instances (ie. a per-class metaclass). This is now not the case anymore, as POJOs can
have a per-instance metaclass too. Also, setting the metaclass property to null will restore the default metaclass.

ExpandoMetaClass DSL

Initially developed under the Grails umbrella and integrated back into Groovy 1.5, ExpandoMetaClass is a very
handy way for changing the runtime behavior of your objects and classes, instead of writing full-blow MetaClass cl
asses. Each time, we want to add / change several properties or methods of an existing type, there is too much of a
repetition of Type .metaClass.xxx. Take for example this extract of a Unit manipulation DSL dealing with operator
overloading:

http://grails.org/
http://groovy.dzone.com/news/domain-specific-language-unit-

Number.metaClass.multiply = { Amount amount ->
amount.times (delegate) }

Number.metaClass.div = { Amount amount ->
amount.inverse() .times (delegate) }

Amount.metaClass.div = Number factor ->
delegate.divide(factor) }
Amount.metaClass.div =
delegate.divide(factor) }
Amount .metaClass.multiply
delegate.times (factor) }
Amount .metaClass.power =
delegate.pow(factor) }
Amount.metaClass.negative

delegate.opposite() }

Amount factor ->

Number factor ->

Number factor ->

I
.

->

The repetition, here, looks obvious. But with the ExpandoMetaClass DSL, we can streamline the code by regrouping
the operators per type:

Number .metaClass {

multiply { Amount amount ->
amount.times (delegate) }

div { Amount amount ->
amount.inverse () .times (delegate) }

}

Amount .metaClass {

div << { Number factor ->
delegate.divide(factor) }

div << { Amount factor ->
delegate.divide(factor) }

multiply { Number factor ->
delegate.times (factor) }

power { Number factor ->
delegate.pow(factor) }

negative { -> delegate.opposite() }

}

A metaClass () method takes a closure as single argument, containing the various definitions of the methods and
properties, instead of repeating the Type.metaClass on each line. When there is just one method of a given
name, use the pattern methodName { /* closure */ }, but when there are several, you should use the
append operator and follow the patten methodName << { /* closure */ }. Static methods can also be added
through this mechanism, so instead of the classical approach:

// add a fqn() method to Class to get the fully
// qualified name of the class (ie. simply
ClassigetName)

Class.metaClass.static.fqn = { delegate.name }

assert String.fqn() == "java.lang.String"

You can now do:

Class.metaClass {
"'static’' ({
fgqn { delegate.name }

}

Note here that you have to quote the static keyword, to avoid this construct to look like a static initializer. For one
off method addition, the classical approach is obviously more concise, but when you have several methods to add,
the EMC DSL makes sense.

The usual approach for adding properties to existing classes through ExpandoMetaClass is to add a getter and a
setter as methods. For instance, say you want to add a method that counts the number of words in a text file, you
could try this:

File.metaClass.getWordCount = {
delegate.text.split(/\w/).size()

}

new File('myFile.txt').wordCount

When there is some logic inside the getter, this is certainly the best approach, but when you just want to have new
properties holding simple values, through the ExpandoMetaClass DSL, it is possible to define them. In the following
example, a lastAccessed property is added to a Car class — each instance will have its property. Whenever a
method is called on that car, this property is updated with a newer timestamp.

class Car {
void turnOn() {}
void drive() {}
void turnOff() {}

Car.metaClass {
lastAccessed = null
invokeMethod = { String name, args ->
def metaMethod =
delegate.metaClass.getMetaMethod (name, args)
if (metaMethod) {
delegate.lastAccessed = new Date()

metaMethod.doMethodInvoke (delegate,
args)
} else {
throw new MissingMethodException(na
me, delegate.class, args)

}
}

def car = new Car ()
println "Last accessed: ${car.lastAccessed ?:
'Never'}"

car.turnOn ()
println "Last accessed: ${car.lastAccessed ?:
'Never'}"

car.drive ()

sleep 1000

println "Last accessed: ${car.lastAccessed ?:
'Never'}"

sleep 1000
car.turnOff ()

println "Last accessed: ${car.lastAccessed ?:
'Never'}"

In our example, in the DSL, we access that property through the delegate of the closure, with delegate.lastAc
cessed = new Date(). And we intercept any method call thanks to invokeMethod (), delegating to the original

method for the call, and throwing an exception in case the method doesn't exist. Later on, you can see by executing
this script that 1astAccessed is updated as soon as we call a method on our instance.

Runtime mixins

Last metaprogramming feature we'll cover today: runtime mixins. @Mixin allowed you to mixin new behavior to
classes you owned and were designing. But you could not mixin anything to types you didn't own. Runtime mixins
propose to fill that gap by letting you add a mixin on any type at runtime. If we think again about our example of
vehicles with some mixed-in capabilities, if we didn't own James Bond's vehicle and give it some diving ability, we
could use this mechanism:

// provided by a third-party
interface Vehicle {
String getName ()

}

// provided by a third-party
class JamesBondVehicle implements Vehicle {
String getName() { "James Bond's vehicle" }

}

JamesBondVehicle.mixin DivingAbility,
FlyingAbility

assert new JamesBondVehicle().fly() ==
"I'm the James Bond's vehicle and I

fly!"

assert new JamesBondVehicle().dive()
"I'm the James Bond's vehicle and I

dive!"

One or more mixins can be passed as argument to the static mixin () method added by Groovy on Class.

JSR-223 Groovy Scripting Engine

Before Groovy 1.6, if you wanted to integrate Groovy in your Java projects through JSR-223 / javax.script. *,
you had to download a Groovy script engine implementation from java.net, and put the JAR in your classpath. This
additional step wasn't very developer friendly, requiring some additional work — the JAR wasn't even provided in the
Groovy distribution. Thankfully, 1.6 comes with an implementation of the javax.script.* APlIs.

Below, you'll find an example evaluating Groovy expressions (the code is in Groovy, but it's straightforward to
convert it back to Java):

import javax.script.*

def manager = new ScriptEngineManager ()
def engine = manager.getEngineByName ("groovy")

assert engine.evaluate("2 + 3") == 5

Please note that the javax.script.* APIs are available only on Java 6.

JMX Builder

Originiating as an external Open-Source project hosted on Google Code, JMX Builder has been integrated in
Groovy 1.6, to simplify the life of developers needing to interact or expose JMX services. JMX Builder features:

Domain Specific Language (DSL) for JMX API using Builder pattern
Simplified JMX API's programmability

Declaratively expose Java/Groovy objects as JMX managed MBeans
Support class-embedded or explicit descriptors

Inherent support for JMX's event model

Seamlessly create JMX event broadcasters

Attach event listeners as inline closures

Use Groovy's dynamic nature to easily react to JMX events notifications
Provides a flexible registration policy for MBean

No special interfaces or class path restrictions

Shields developer from complexity of JMX API

Exposes attribute, constructors, operations, parameters, and notifications
Simplifies the creation of connector servers and connector clients
Support for exporting JMX timers

You can find more information on JMX Builder and its very extensive coverage of the JMX system. Lots of examples
will show you how to create a JMX connector server or client, how to easily export POGOs as JMX managed beans,
how to listen to JMX events, and much more.

Improved OSGi support

The Groovy jar files are released with correct OSGi metadata, so they can be loaded as a bundle into any OSGi
compliant container, such as Eclipse Equinox or Apache Felix. You can find more information on how to use Groovy
and OSGi on the Groovy project website. This tutorial will explain how to:

http://code.google.com/p/groovy-jmx-builder/
http://groovy.codehaus.org/Groovy+JmxBuilder

Load Groovy as an OSGi service

Write a Groovy OSGi service

Incude the Groovy JAR within a bundle

Plublish a service written in Groovy

Consume a service from Groovy

Troubleshoot in case you're encountering any problem along the way

You may also be interested in, for instance, how you can use different versions of Groovy in your application, thanks
to OSGi.

Summary

Groovy continues its march towards the goal of simplifying the life of developers, providing various new features
and improvements in this new release: AST transformations reducing dramatically the number of lines of code to
express certain concerns and patterns and opening the language to developers for further extension, several metap
rogramming enhancements to streamline your code and let you write more expressive business rules, and su
pport for common enterprise APIs such as Java 6's scripting APIs, JMX management system, or OSGi's
programming model. All of this is done obviously without compromising on the seamless integration with Java,
and furthermore, with a level of performance way higher than previous releases.

Groovy 1.7 release notes
© Coverage of these notes

The below release notes cover the new features of the Groovy 1.7 final release.

IDE Support

Before diving directly into the new features in Groovy 1.7, please let me mention the great progress made in terms
of IDE support for Groovy (and also for Griffon, Gradle, Gant or Grails). All the major IDEs (Eclipse, IntelliJ IDEA, Ne
tBeans) provide an excellent level of support for the language. Initially, the Eclipse support was the one lacking the
most, but thanks to the hard work of the SpringSource Eclipse team, we now have a great environment for
developing mixed Java / Groovy applications with features like cross-language refactoring, Groovy-specific code
completion, and more.

New and Improved Eclipse plugin

For more information on the Eclipse support, please have a look at the Groovy Eclipse plugin
home page, as well as the notes for the M1 release and M2 release.

New features

Anonymous Inner Classes and Nested Classes

Although oftentimes closures and maps coercion suffice, there are still areas where the lack of Anonymous Inner
Classes (AIC) and Nested Classes (NC) can be problematic. That's why we decided to eventually implement AIC
and NC in Groovy 1.7.

http://hamletdarcy.blogspot.com/2008/12/beginners-guide-to-osgi-on-desktop.html
http://griffon.codehaus.org/
http://gradle.org/
http://gant.codehaus.org/
http://grails.org/
http://www.jetbrains.com/idea/features/groovy_grails.html
http://wiki.netbeans.org/Groovy
http://wiki.netbeans.org/Groovy
http://groovy.codehaus.org/Eclipse+Plugin
http://groovy.codehaus.org/Eclipse+Plugin
http://groovy.codehaus.org/Groovy-Eclipse+2.0.0M1+New+and+Noteworthy
http://groovy.codehaus.org/Groovy-Eclipse+2.0.0M2+New+and+Noteworthy

Be Careful

The implementation of AIC and NC follows the Java lead, but you should not take out the Java
Language Spec and keep shaking the head about things that are different. The implementation
done looks much like what we do for groovy.lang.Closure, with some benefits and some
differences. Accessing private fields and methods for example can become a problem, but on the
other hand local variables don't have to be final.

Nested Static Classes

Here's an example of Nested Static Classes:

class A {
static class B {}

new A.B()

The usage of static nested classes is the best supported one. If you absolutely need an inner class, you should
make it a static one.

Anonymous Inner Classes

Some other examples, this time for Anonymous Inner Classes:
boolean called = false

Timer timer = new Timer ()
timer.schedule (new TimerTask() {
void run() {
called = true

}
}, 0)
sleep 100

assert called

© WMore information

If you want to learn a bit more about the cases which are currently supported in 1.7, you can
have a look at one of our unit tests covering this new feature.

Accessing the Outer Context from a Nested Class

If you are in a nested class Y and the surrounding class is X, then you can access the variable v of X in Java by
X.this.v. Groovy does not support this syntax.

Creating Instances of Non-Static Inner Classes

In Java you can do this:

public class Y {
public class X {}
public X foo() {
return new X();
}
public static X createX(Y y) {
return y.new X();

It should be noted that the nested class X needs a reference to the outer class instance of Y. For this Java will
create a constructor that takes Y as first parameter in X. This constructor is synthetic, so it won't appear in any code
completion.

In case of new X(), like you have it in method foo(), then compiler will then create new X(this) instead. In case of
createX the compiler will create new X(y). Groovy does not support this.

Instead Groovy supports giving the instance in like the compiler would do it. That means the code above has to be
rewritten as

http://fisheye.codehaus.org/browse/groovy/trunk/groovy/groovy-core/src/test/gls/innerClass/InnerClassTest.groovy?r=17151

public class Y {
public class X {}
public X foo() {
return new X(this);

}
public static X createX(Y y) {

return new X(vy);

Caution

Caution though, Groovy supports calling methods with one parameter without giving an
argument. The parameter will then have the value null. Basically the same rules apply to calling a
constructor. There is a danger that you will write new X() instead of new X(this) for example.
Since this might also be the regular way we have not yet found a good way to prevent this
problem.

Annotations

Groovy's support of annotations is identical to Java 5 annotations, but we felt that in some cases it would be
interesting to be able to add annotations in other places than the usual places (types, fields, methods, parameters,
etc.). For instance, in Java, it is impossible to add annotations on imports or packages. Groovy does go beyond and
adds support for annotation on imports, packages and variable declarations. We'll take a look at the usage of those
extended annotations on Grape.

Grape

The Grape dependency system lets you request dependencies in your scripts, without having to deal with
downloading, packaging, or specifying the classpath yourself. To use Grape, we had to use the @Grab annotation
to "grab" a dependency from a repository (Maven's central repository, for example). The problem was that
annotation had to be attached to some allowed elements, ie. the places where annotations can be put in Java. Now,
we can put annotations on imports:

@Grab (group='net.sf.json-1lib’',
module='json-1lib', version='2.3',
classifier='jdkl5"')

import net.sf.json.groovy.*

assert new JsonSlurper () .parseText (
new JsonGroovyBuilder().json {
book(title: "Groovy in Action”,
author:"Dierk Konig et al'")
}.toString()
) .book.title == 'Groovy in Action'

Another example with @Grab on variable declarations:

@Grab('net.sf.json-lib:json-1ib:2.3:jdkl5")
def builder = new
net.sf.json.groovy.JsonGroovyBuilder ()

def books = builder.books {
book(title: "Groovy in Action", author:
"Dierk Koenig")

}

assert books.toString() ==
"'"'"{"books":{"book":{"title" :"Groovy in
Action", "author":"Dierk Koenig"}}}'''

©® Remark

Please note on this one an improvement in the @Grab annotation: we provide a shorter version
taking just a String as value parameter representing the dependency, in addition to the more
verbose example in the previous example. You simply append the group, module, version and
classifier together, joined by colons.

A Grape resolver was added, so you can specify a remote location where grapes are downloaded from:

@GrabResolver (name='restlet.org',
root="http://maven.restlet.org’)

@Grab (group='org.restlet',
module='org.restlet', version='1.1.6")
import org.restlet.Restlet

// ...

Power Asserts

Groovy's "assert" keyword has sometimes been criticized as it's, in a way, limited, as it just checks that the
expression it's being passed is true or false. Unlike with testing frameworks such as JUnit/TestNG and the various
additional assertion utilities, where you get nicer and more descriptive messages, Groovy's assert would just tell you
the expression was false, and would give the value of variables used in the expression, but nothing more. With
Power Asserts, initially developed in the Spock Framework, the output of the assert is now much nicer and provides
a visual representation of the value of each sub-expressions of the expression being asserted. For example:

assert new File('foo.bar') == new
File('example.txt')

Will yield:

http://spockframework.org/

Caught: Assertion failed:

; assert new File('foo.bar') new ;
E File('example.txt') E

foo.bar | example.txt
false

AST

With Groovy 1.6, we introduced AST Transformations, for letting developers do compile-time metaprogramming, by
modifying the Abstract Syntax Tree before it is transformed into bytecode. In Groovy 1.6, several such
transformations were added, especially "local" transformations triggered by annotations (such as @Delegate,
@Singleton, @Bindable and friends). However powerful this feature is, writing AST transformation has always been
a bit tedious. Groovy 1.7 features two new features which should help simplify the work of AST transformation
writers: an AST viewer and an AST builder.

AST Viewer

The following screenshot shows a new window that can be launched from the Groovy Swing Console. You can
visualize the AST of a script you're working on in the console: for instance, writing the code you'd like to create in
your AST transformation. The AST viewer greatly help with figuring out how Groovy builds its AST when compiling
your Groovy code.

_lg]x
Show Script Help
&t end of Phase: ISemantic Analysis vl Refresh |
T T TS e T
@ Parameter - recard ' LI Mame Value S
B[] BlockStatement - (4) accessedVariable org.codehaus.groovy.a... [Variable
=] ExpressionStatement - MethodCallExpres annotations {1 List
B 1 MethodZall - history. addirecord) class class org.codehaus.gro... [Class
Wariable - history @ java.util List -= closureSharedvariable [false boolean
 Constant - add ;@ javalang. String columniumber 13 int
-] Argumentlist - (record) declaringClass null ClassMode
=[] variable - record : java.lang.O dynamicTyped false boolean
=] IfStatement inStaticContext false boolzan
E_| Boalean - thistary.size) = maxHistar, initialExpression null Expression
E-_1Binary - (history.size() > maxHistc |astColumniumber 20 int
MethodCall - history, size) lastLineMumber 273 int
o Variable - history : javauti |lineMumber 273 int
» Constant - size © java.lang. narmne history String
o ArgumentList - () originType java.lang Object ClassMode
o Variable - maxHistary © int superExpression false boolean
=[] BlockStaterment - (1) synthetic false boolean
B[] ExpressionStaterment - MethodCal text history String
B MethodCall - history remove(. |thisExpression false boolean
: riahle - history ; it type java.util.List -> java.util.,. [ClassMode
Constant - remove © java.lz useReferenceDirectly false boolean
Bl Argumentlist - (0)
Lem Constant - O java.lang
- @ EmptyStatement
E-] ExpressiDnSi;atement - BinaryExpressiilll
4 »

AST Builder

Visualizing the AST is one thing, but we also need a mechanism to create and modify ASTs more easily. The
introduction of the AST builder simplifies the authoring of AST transformations, by giving you three different

approaches for working on the AST:

® building from string
® building from code
® building from specification

Before the AST builder, one had to create and instantiate manually all the various AST nodes. Let's see how those
three forms help with this, for instance for creating a node representing a constant string.

Building from string

List<ASTNode> nodes = new
AstBuilder () .buildFromString(''' "Hello"

)

Building from code

List<ASTNode> nodes = new
AstBuilder () .buildFromCode { "Hello" }

Building from specification

List<ASTNode> nodes = new
AstBuilder () .buildFromSpec {

block {
returnStatement {
constant "Hello"

© For more information

Please have a look at the documentation on the AST Builder. You'll discover the advantages and
inconveniences of the various forms, and why all three are needed depending on what you want
to achieve with the AST.

Other minor enhancements

Ability to customize the Groovy Truth

In Groovy, booleans aren't the sole things which can be evaluated to true or false, but for instance, null, empty
strings or collections are evaluated to false or true if of length > 0 or non-empty. This notion of "truth" was coined
"Groovy Truth" in the Groovy in Action book. With Groovy Truth, instead of doing frequent null checks, you could
simply write:

def string = "more than one character"”
if (string) { println "the String is neither
null nor empty" }

Up until Groovy 1.7, only a small set of classes had a certain meaning with regards to how they were coerced to a
boolean value, but now it is possible to provide a method for coercion to boolean in your own classes. For example,
the following Predicate class offers the ability to coerce Predicate instances to true or false, thanks to the
implementation of the boolean asBoolean() method:

class Predicate {
boolean value
boolean asBoolean() { value }

assert new Predicate(value: true)
assert !new Predicate(value: false)

Is is also possible to use categories or ExpandoMetaClass to inject an asBoolean() method, or to override an
existing one (even one on the small set of classes with special Groovy truth behavior).

Dependency upgrades
Some of the dependencies of Groovy have been upgraded to newer versions.

For instance, Groovy now uses the latest ASM version, which is "invokedynamic"-ready. So as we progress towards

http://www.manning.com/koenig/

the inclusion of JSR-292 / invokedynamic, we'll be ready and be using the latest version of ASM. We also use the
latest version of Ivy which is used by the Grape dependency module.

Rewrite of the GroovyScriptEngine

The GroovyScriptEngine (which is also used by Groovlets) has been rewritten to solve various dependency issues it
was suffering from, and the outcome of this is that it should also now be much faster overall.

The new logic uses additional phase operations to track dependencies. As a result the error-prone class loader
technique to track them is gone now. These operations ensure that every script file will be tracked, its dependencies
recorded during compilation and all transitive dependencies will be calculated. And only scripts will be recorded as
dependency, no classes. The new GroovyScriptEngine also uses only one compilation "process" for script
compilation which solves the problem of circular or mutual dependencies, that caused stack overflows in the past.
As a result the new engine can reliably handle dependencies and should be much faster.

Groovy console preferences

A small annoyance, especially for developers using big LCD screens: the Groovy Console didn't remember
preferences of position of the separator between the coding area and output view, or the font size being used. This
is now fixed, as the console remembers such settings. You won't need anymore to adjust the console to your liking
each time you run it, it should now have some more brain cells to remember your preferences.

New output window for the Groovy console

There is a new visualization option for the results of the execution of your scripts in your Groovy Console. Instead of
displaying the results in the bottom output pane, it's now possible to use an external window for viewing those
results. Run your script with CTRL-R or CMD-R, you will see something like the following screenshot. You can then
dismiss the window by hitting Escape, CTRL-W (CMD-W on Macs) or Enter.

=

% €8 =]

BIEHE] [a]e][4 DD
class Drug {

String name
String toString() { name }

}

class DrugQuantity {
int number
String toString() {
number == 1 7 "1 pill" : "Snumber pills"”

[T =« < T B« SR B PY R L I e

[

def take(Map m, DrugQuantity dg) {
println "Take $5dg of Sm.of in $m.in.number $
}

def chloroguinine = new Drug(name: "Chloroguinin

take 2.pills, of: chloroquinine, in: 6.hours

. . . . A A

Execution complete. Result was null.

You will also notice the addition of line numbers in the gutter of the editor area.
SQL batch updates and transactions
Batch updates

The Groovy Sql class now features batch updates, thanks to its new withBatch() method, taking a closure and a
statement instance:

sql.withBatch { stmt ->
["Paul"”, "Jochen", "Guillaume"].each {

name ->
stmt.addBatch "insert into PERSON

(name) values ($name)"

}

Transactions

Similarly, there's a withTransaction() method added to Sql, which works also with datasets:

def persons = sql.dataSet("person")

sql.withTransaction {
persons.add name: "Paul"
persons.add name: "Jochen"
persons.add name: "Guillaume’

Groovy 1.8 release notes

Table of Contents

® Groovy 1.8 release notes
® Command chains for nicer Domain-Specific Languages
® Performance improvements
® GPars bundled within the Groovy distribution
® Closure enhancements
® (Closure annotation parameters
® (Closure functional flavors
® Closure composition
® (Closure trampoline
® Closure memoization

® Currying improvements

Native JSON support

¢ Reading JSON
® JSON builder

® Pretty printing JSON content

® New AST Transformations
@Llog
@Field
@PackageScope enhancements
@AutoClone
@AutoExternalizable
Controlling the execution of your code
® @ThreadlInterrupt
* @TimedInterrupt
®* @Conditionallnterrupt

@ToString
@EqualsAndHashCode

@TupleConstructor

@Canonical

@InheritConstructors

@WithReadlLock and @WithWritel ock
@ListenerList

® Alignments with JDK 7
® Diamond operator

® New DGM methods
® Miscellaneous
Slashy strings
Dollar slashy strings
Compilation customizers
(G)String to Enum coercion
Maps support isCase()
Grape/Grab Improvements
® Shorter notation for @ GrabResolver
® Compact form for optional Grab attributes

® Sql improvements
® Storing AST node metadata
® Ability to customize the GroovyDoc templates

Groovy 1.8 release notes

The 1.8 release of Groovy comes with many new features that greatly enhance

the dynamic expressiveness of Groovy, specifically for defining DSLs
runtime performance

concurrent and parallel execution

design by contract

functional programming style

first-class JSON support

compile-time meta programming

and more helpers and library additions

These features have undergone the Groovy developer process with formal descriptions, discussion, and voting
(GEP - Groovy Enhancement Proposal) for core parts and less formal developer discussions and JIRA voting for
additional parts.

Our goal has stayed the same, though: to give the Java developer a tool that makes him more productive, allows

him to achieve his goals faster and with a smaller margin of error, and extend the scalability of the Java platform
from full-blown enterprise projects to everyday "getting things done" tasks.

Command chains for nicer Domain-Specific Languages

Thanks to its flexible syntax and its compile-time and runtime metaprogramming capabilities, Groovy is well known
for its Domain-Specific Language capabilities. However, we felt that we could improve upon the syntax further by
removing additional punctuation symbols when users chain method calls. This allows DSL implementors to develop
command descriptions that read almost like natural sentences.

Before Groovy 1.8, we could omit parentheses around the arguments of a method call for top-level statements. But
we couldn't chain method calls. The new "command chain" feature allows us to chain such parentheses-free method
calls, requiring neither parentheses around arguments, nor dots between the chained calls. The general idea is that
acalllike a b c d will actually be equivalentto a(b) .c(d). This also works with multiple arguments, closure
arguments, and even named arguments. Furthermore, such command chains can also appear on the right-hand
side of assignments. Let's have a look at some examples supported by this new syntax:

turn left then right

// equivalent to: turn(left).then(right)
take 2.pills of chloroquinine after 6.hours
// equivalent to:
take(2.pills) .of (chloroquinine) .after (6.hour
S)

paint wall with red, green and yellow

// equivalent to: paint(wall).with(red,
green) .and(yellow)

// with named parameters too
check that: margarita tastes good
// equivalent to: check(that:
margarita).tastes (good)

// with closures as parameters
given { } when { } then { }
// equivalent to:

given({}) .when({}).then({})

It is also possible to use methods in the chain which take no arguments, but in that case, the parentheses are
needed:

select all unique() from names
// equivalent to:
select(all) .unique () . from(names)

If your command chain contains an odd number of elements, the chain will be composed of method / arguments,
and will finish by a final property access:

take 3 cookies
// equivalent to: take(3).cookies

// and also this: take(3).getCookies ()

This new command chain approach opens up interesting possibilities in terms of the much wider range of DSLs
which can now be written in Groovy. This new feature has been developed thanks to the Google Summer of Code
program, where our student, Lidia, helped us modify the Groovy Antlr grammar to extend top-level statements to
accept that command chain syntax.

The above examples illustrate using a command chain based DSL but not how to create one. You will be able to find
some further examples of "command chains" on the Groovy Web Console but to illustrate creating such a DSL, we
will show just a couple of examples - first using maps and Closures:

http://groovyconsole.appspot.com/tag/gep3

show = { println it }
square _root = { Math.sqrt(it) }

def please(action) {
[the: { what ->
[of: { n -> action(what(n)) }]

}]

please show the square root of 100

// equivalent to:

please(show) .the(square_ root) .of (100)
// ==> 10.0

Or if you prefer Japanese and a metaprogramming style (see here for more details):

// Japanese DSL using GEP3 rules
Object.metaClass. =
Object.metaClass. =

{ clos -> clos(delegate) }

{ it }
= { println it }
{ Math.sqgrt(it) }

100 // First, show the square root of
100
// => 10.0

As a second example, consider how you might write a DSL for simplifying one of your existing APls. Maybe you

http://d.hatena.ne.jp/uehaj/20100919/1284906117

need to put this code in front of customers, business analysts or testers who might be not hard-core Java
developers. We'll use the splitter from the Google Guava libraries project as it already has a nice Fluent API.
Here is how we might use it out of the box:

@Grab('com.google.guava:guava:r09')

import com.google.common.base.*

def result =

Splitter.on(',').trimResults (CharMatcher.is(
' ' as char)).split(" a ,_b_
,C__").iterator().toList ()

assert result == ['a ', 'b ', '¢']

It reads fairly well for a Java developer but if that is not your target audience or you have many such statements to
write, it could be considered a little verbose. Again, there are many options for writing a DSL. We'll keep it simple
with Maps and Closures. We'll first write a helper method:

def split(string) {
[on: { sep ->
[trimming: { trimChar ->

Splitter.on(sep).trimResults (CharMatcher.is(
trimChar as
char)) .split(string).iterator().toList ()

}
}

now instead of this line from our original example:

http://code.google.com/p/guava-libraries/

def result =
Splitter.on(',').trimResults(CharMatcher.is(
' ' as char)).split(" a , b _
,C_").iterator().toList ()

we can write this:

def result = split " a , b ,¢ " on ','
trimming ' ‘'

Performance improvements

Groovy's flexible metaprogramming model involves numerous decision points when making method calls or
accessing properties to determine whether any metaprogamming hooks are being utilized. During complex
expression calculations, such decision points involved identical checks being executed numerous times. Recent
performance improvements allow some of these checks to be bypassed during an expression calculation once
certain initial assumptions have been checked. Basically if certain preconditions hold, some streamlining can take
place.

Groovy 1.8.0 contains two main streams of optimization work:

® There are several optimizations for basic operations on integers like plus, minus, multiply, increment,
decrement and comparisons. This version doesn't support the mixed usage of different types. If an
expression contains different types, then it falls back to the classical way of performing the operation, i.e. no
streamlining occurs.

® There is also an optimization for direct method calls. Such a method call is done directly if it is done on "this"
and if the argument types are a direct match with the parameter types of the method we may call. Since this
is an operation that does not behave too well with a method call logic based on runtime types we select only
methods where the primitive types match, the parameter types are final or for methods that take no
arguments. Currently methods with a variable parameter list are not matched in general, unless a fitting array
is used for the method call.

Those two areas of optimization are only the beginning of further similar improvements. Upcoming versions of the
Groovy 1.8.x branch will see more optimizations coming. In particular, primitive types other than integers should be
expected to be supported shortly.

GPars bundled within the Groovy distribution

The GPars project offers developers new intuitive and safe ways to handle Java or Groovy tasks concurrently,
asynchronously, and distributed by utilizing the power of the Java platform and the flexibility of the Groovy language.
Groovy 1.8 now bundles GPars 0.11 in the libraries of the Groovy installation, so that you can leverage all the
features of the library for

Fork/Join, Map/Filter/Reduce, DataFlow, Actors, Agents, and more with all the Groovy goodness.

http://gpars.codehaus.org

To learn more about GPars, head over to the GPars website, read the detailed online user guide, or check out
chapter 17 of Groovy in Action, 2nd Edition (MEAP).

Closure enhancements

Closures are a central and essential piece of the Groovy programming language and are used in various ways
throughout the Groovy APls. In Groovy 1.8, we introduce the ability to use closures as annotation parameters.
Closures are also a key part of what gives Groovy its functional flavor.

Closure annotation parameters

In Java, there's a limited set of types you can use as annotation parameters (String, primitives, annotations, classes,
and arrays of these). But in Groovy 1.8, we're going further and let you use closures as annotation parameters —
which are actually transformed into a class parameter for compatibility reasons.

import java.lang.annotation.*

@Retention(RetentionPolicy.RUNTIME)
@Qinterface Invariant {

Class value() // will hold a closure
class

}

@Invariant ({ number >= 0 })
class Distance {

float number

String unit

def d = new Distance(number: 10, unit:
"meters")

def anno = Distance.getAnnotation(Invariant)
def check = anno.value().newInstance(d, d)

assert check(d)

http://gpars.codehaus.org/
http://gpars.org/guide/index.html
http://www.manning.com/koenig2

Closure annotation parameters open up some interesting possibilities for framework authors! As an example, the G
Contracts project, which brings the "Design by Contract" paradigm to Groovy makes heavy use of annotation
parameters to allow preconditions, postconditions and invariants to be declared.

Closure functional flavors

Closure composition

If you recall your math lessons, function composition may be a concept you're familiar with. And in turn, Closure
composition is about that: the ability to compose Closures together to form a new Closure which chains the call of
those Closures. Here's an example of composition in action:

def plus2 = { it + 2 }
def times3

I
-
::a'-.
*
w
—~

def times3plus2 = plus2 << times3
assert times3plus2(3) == 11
assert times3plus2(4) plus2(times3(4))

def plus2times3 = times3 << plus2

assert plus2times3(3) == 15

assert plus2times3(5) == times3(plus2(5))
// reverse composition

assert times3plus2(3) == (times3 >>

plus2) (3)

To see more examples of Closure composition and reverse composition, please have a look at our test case.

Closure trampoline

When writing recursive algorithms, you may be getting the infamous stack overflow exceptions, as the stack starts to
have a too high depth of recursive calls. An approach that helps in those situations is by using Closures and their

new trampoline capability.

Closures are wrapped in a TrampolineClosure. Upon calling, a trampolined Closure will call the original Closure
waiting for its result. If the outcome of the call is another instance of a TrampolineClosure, created perhaps as a
result to a call to the trampoline () method, the Closure will again be invoked. This repetitive invocation of
returned trampolined Closures instances will continue until a value other than a trampolined Closure is returned.
That value will become the final result of the trampoline. That way, calls are made serially, rather than filling the
stack.

https://github.com/andresteingress/gcontracts/wiki/
https://github.com/andresteingress/gcontracts/wiki/
http://svn.codehaus.org/groovy/trunk/groovy/groovy-core/src/test/groovy/ClosureComposeTest.groovy
http://en.wikipedia.org/wiki/Tail_call#Through_trampolining

Here's an example of the use of trampoline () to implement the factorial function:

def factorial

factorial = { int n, def accu = 1G ->
if (n < 2) return accu
factorial.trampoline(n - 1, n * accu)

}

factorial = factorial.trampoline()

1
1 * 2 * 3
402387260... //

assert factorial(1l)
assert factorial(3)
assert factorial(1000)
plus another 2560 digits

Closure memoization

Another improvement to Closures is the ability to memoize the outcome of previous (ideally side-effect free)
invocations of your Closures. The return values for a given set of Closure parameter values are kept in a cache, for
those memoized Closures. That way, if you have an expensive computation to make that takes seconds, you can
put the return value in cache, so that the next execution with the same parameter will return the same result — again,
we assume results of an invocation are the same given the same set of parameter values.

There are three forms of memoize functions:

the standard memoize () which caches all the invocations

memoizeAtMost (max) call which caches a maximum number of invocations

memoizeAtLeast (min) call which keeps at least a certain number of invocation results

and memoizeBetween (min, max) which keeps a range results (between a minimum and a maximum)

Let's illustrate that:

http://en.wikipedia.org/wiki/Memoization

def plus = { a, b -> sleep 1000; a + b
} .memoize()

assert plus(l, 2) =
assert plus(l, 2) =
assert plus(2, 2) =
assert plus(2, 2) =

3 // after 1000ms
3 // return immediately
4 // after 1000ms
4 // return immediately

// other forms:

// at least 10 invocations cached
def plusAtlLeast = { ... }.memoizeAtLeast (10)

// at most 10 invocations cached
def plusAtMost = { ... }.memoizeAtMost(1l0)

// between 10 and 20 invocations cached
def plusAtLeast = { ... }.memoizeBetween(10,
20)

Currying improvements

Currying improvements have also been backported to recent releases of Groovy 1.7, but it's worth outlining here for
reference. Currying used to be done only from left to right, but it's also possible to do it from right to left, or from a
given index, as the following examples demonstrate:

// right currying

def divide = { a, b ->a / b }
def halver = divide.rcurry(2)
assert halver(8) == 4

// currying n-th parameter

def joinWithSeparator = { one, sep, two ->
one + sep + two

}

def joinWithComma =
joinWithSeparator.ncurry(l, ', ')

assert joinWithComma('a', 'b') == 'a, b’

Native JSON support

With the ubiquity of JSON as an interchange format for our applications, it is natural that Groovy added support for
JSON, in a similar fashion as the support Groovy's always had with XML. So Groovy 1.8 introduces a JSON builder
and parser.

Reading JSON

A JsonSlurper class allows you to parse JSON payloads, and access the nested Map and List data structures
representing that content. JSON objects and arrays are indeed simply represented as Maps and Lists, giving you
access to all the GPath expression benefits (subscript/property notation, find/findAll/each/inject/groupBy/etc.). Here's
an example showing how to find all the recent commit messages on the Grails project:

import groovy.json.*

def payload = new
URL("http://github.com/api/v2/json/commits/1
ist/grails/grails-core/master").text

def slurper = new JsonSlurper()
def doc = slurper.parseText (payload)

doc.commits.message.each { println it }

If you want to see some more examples of the usage of the JSON parser, you can have a look at the JsonSlurper
tests in our code base.

JSON builder

Parsing JSON data structures is one thing, but we should also be able to produce JSON content just like we create
markup with the MarkupBuilder. The following example:

import groovy.json. *
def json = new JsonBuilder ()
json.person {

name "Guillaume"

age 33
pets "Hector", "Felix"

println json.toString()

Will create the JSON output:

http://svn.codehaus.org/groovy/branches/GROOVY_1_8_X/src/test/groovy/json/JsonSlurperTest.groovy
http://svn.codehaus.org/groovy/branches/GROOVY_1_8_X/src/test/groovy/json/JsonSlurperTest.groovy

{"person":{"name":"Guillaume", "age":33, "pets
":["Hector","Felix"]1}}

You can find some more usages of the JSON builder in our JsonBuilder tests.

Pretty printing JSON content

When given a JSON data structure, you may wish to pretty-print it, so that you can more easily inspect it, with a
more friendly layout. So for instance, if you want to pretty print the result of the previous example, you could do:

import groovy.json.*

println
JsonOutput.prettyPrint ({"person":{"name":
"Guillaume", "age":33, "pets":["Hector", "Felix

1Y)

Which would result in the following pretty-printed output:

"person": {
"name": "Guillaume",
"age": 33,
"pets": [
"Hector",
"Felix"

New AST Transformations

http://svn.codehaus.org/groovy/branches/GROOVY_1_8_X/src/test/groovy/json/JsonBuilderTest.groovy

The Groovy compiler reads the source code, builds an Abstract Syntax Tree (AST) from it, and then puts the AST
into bytecode. With AST transformations, the programmer can hook into this process. A general description of this
process, an exhaustive description of all available transformations, and a guide of how to write you own ones can be
found for example in Groovy in Action, 2nd Edition (MEAP), chapter 9.

Below is a list of all new transformations that come with Groovy 1.8. They save you from writing repetitive code and
help avoiding common errors.

@Log

You can annotate your classes with the @Log transformation to automatically inject a logger in your Groovy classes,
under the log property. Four kind of loggers are actually available:

® QLog for java.util.logging

¢ @commons for Commons-Logging
® @Log4j for Log4d

® @slf4 for SLF4J

Here's a sample usage of the @Log transformation:
import groovy.util.logging. *

@QLog
class Car {
Car() {
log.info 'Car constructed'’

def ¢ = new Car()

You can change the name of the logger by specifying a different name, for instance with @Log('myLoggerName').

Another particularity of these logger AST transformations is that they take care of wrapping and safe-guarding
logger calls with the usual isSomeLevelEnabled() calls. So when you write log.info 'Car constructed',
the generated code is actually equivalent to:

if (log.isLoggable(Level.INFO)) {
log.info 'Car constructed'’

http://www.manning.com/koenig2

@Field

When defining variables in a script, those variables are actually local to the script's run method, so they are not
accessible from other methods of the script. A usual approach to that problem has been to store variables in the
binding, by not def'ining those variables and by just assigning them a value. Fortunately, the @Field transformation
provides a better alternative: by annotating your variables in your script with this annotation, the annotated variable
will become a private field of the script class.

More concretely, you'll be able to do as follows:

@QField List awe = [1, 2, 3]
def awesum() { awe.sum() }
assert awesum() == 6

@PackageScope enhancements

The @PackageScope annotation can be placed on classes, methods or fields and is used for turning off Groovy's
visibility conventions and reverting back to Java conventions. This ability is usually only needed when using 3rd
party libraries which rely on the package scope visibility. When adding the @PackageScope annotation to a field,
Groovy will assign package scope access to the field rather than automatically treating it as a property (and adding
setters/getters). Annotating a class or method with @PackageScope will cause Groovy to revert to Java's
convention of leaving the class/method as package scoped rather than automatically promoting it to public scope.
The class variant can also take one or more parameters to allow nested setting of visibility of attributes within the
class - see the Javadoc for more details. Recent releases of Groovy 1.7 have had a more limited version of this
annotation.

@AutoClone

The @AautoClone annotation is placed on classes which you want to be Cloneable. The annotation instructs the
compiler to execute an AST transformation which adds a public clone () method and adds Cloneable to the
classes implements list of interfaces. Because the JVM doesn't have a one-size-fits-all cloning strategy, several
customizations exist for the cloning implementation:

® By default, the clone () method will call super.clone () before calling clone() on each Cloneable pro
perty of the class. Example usage:

import groovy.transform.AutoClone

@AutoClone

class Person {
String first, last
List favItems
Date since

Which will create a class of the following form:

class Person implements Cloneable {

public Object clone() throws CloneNotSupportedException {
Object result = super.clone()
result.favitems = favItems.clone()
result.since = since.clone()
return result

® Another popular cloning strategy is known as the copy constructor pattern. If any of your fields are £inal and
Cloneable you should set style=COPY_ CONSTRUCTOR which will then use the copy constructor pattern.

* As afinal alternative, if your class already implements the Serializable or Externalizable interface,
you might like to set style=SERIALIZATION which will then use serialization to do the cloning.

See the Javadoc for AutoClone for further details.
@AutoExternalizable

The @AutoExternalizable class annotation is used to assist in the creation of Externalizable classes. The
annotation instructs the compiler to execute an AST transformation which adds writeExternal() and readExte
rnal () methods to a class and adds Externalizable to the interfaces which the class implements. The writeE
xternal () method writes each property (or field) for the class while the readExternal () method will read each
one back in the same order. Properties or fields marked as transient are ignored. Example usage:

import groovy.transform. *

@QAutoExternalize

class Person {
String first, last
List favItems
Date since

Which will create a class of the following form:

class Person implements Externalizable {
void writeExternal (ObjectOutput out)
throws IOException {
out.writeObject (first)
out.writeObject(last)
out.writeObject (favItems)
out.writeObject(since)

void readExternal (ObjectInput oin) {
first = oin.readObject ()
last = oin.readObject ()
favitems = oin.readObject ()
since = oin.readObject ()

Controlling the execution of your code

When integrating user-provided Groovy scripts and classes in your Java application, you may be worried about code
that would eat all your CPU with infinite loops, or that call methods like System.exit (0) (for the latter, check the
section on compiler customizers, and particularly the SecureASTCustomizer). It would be interesting to have a
wait to control the execution of that Groovy code, to be able to interrupt its execution when the thread is interrupted,
when a certain duration has elapsed, or when a certain condition is met (lack of resources, etc).

Groovy 1.8 introduces three transformations for those purposes, as we shall see in the following sections. By
default, the three transformations add some checks in at the beginning of each method body, and each closure
body, to check whether a condition of interruption is met or not.

Note that those transformations are local (triggered by an annotation). If you want to apply them transparently, so
that the annotation doesn't show up, | encourage you to have a look at the ASTTransformationCustomizer expl
ained at the end of this article.

Cédric Champeau, our most recent Groovy committer, who implemented those features, has a very nice blog post ¢
overing those code interruption transformations.

http://www.jroller.com/melix/entry/upcoming_groovy_goodness_automatic_thread

@Threadinterrupt

You don't need to write checks in your scripts for whether the current thread of execution has been interrupted or
not, by default, the transformation will add those checks for you for scripts and classes, at the beginning of each
method body and closure body:

@ThreadInterrupt
import groovy.transform.ThreadInterrupt

while (true) {
// eat lots of CPU

You can specify a checkOnMethodStart annotation parameter (defaults to true) to customize where checks are
added by the transformation (adds an interrupt check by default as the first statement of a method body). And you
can also specify the applyToAllClasses annotation parameter (default to true) if you want to specify whether
only the current class or script should have this interruption logic applied or not.

@Timedinterrupt

With @TimedInterrupt, you can interrupt the script after a certain amount of time:

@TimedInterrupt (10)
import groovy.transform.TimedInterrupt

while (true) {
// eat lots of CPU

In addition to the previous annotation parameters we mentioned for @ThreadInterrupt, you should specify valu
e, the amount of time to wait, and unit (defaulting to TimeUnit.SECONDS) to specify the unit of time to be used.

@Conditionalinterrupt

An example of @ConditionalInterrupt which leverages the closure annotation parameter feature, and the @Fi
eld transformation as well:

@ConditionalInterrupt({ counter++ > 2 })
import groovy.transform.ConditionalInterrupt
import groovy.transform.Field

@QField int counter = 0

100.times {
println 'executing script method...'’

You can imagine defining any kind of condition: on counters, on resource availability, on resource usage, and more.

@ToString

Provides your classes with a default toString() method which prints out the values of the class' properties (and
optionally the property names and optionally fields). A basic example is here:

import groovy.transform.ToString

@ToString

class Person {
String name
int age

println new Person(name: 'Pete', age: 15)
// => Person(Pete, 15)

And here's another example using a few more options:

@ToString(includeNames = true, includeFields
= true)
class Coord {
int x, y
private z = 0
}
println new Coord(x:20, y:5)
// => Coord(x:20, y:5, z:0)

@EqualsAndHashCode

Provides your classes with equals () and hashCode () methods based on the values of the class' properties (and
optionally fields and optionally super class values for equals () and hashCode()).

import groovy.transform.EqualsAndHashCode
@EqualsAndHashCode

class Coord {
int x, y

def cl = new Coord(x:20, y:5)

def c2 = new Coord(x:20, y:5)

assert cl == c2

assert cl.hashCode() == c2.hashCode()
@TupleConstructor

Provides a tuple (ordered) constructor. For POGOs (plain old Groovy objects), this will be in addition to Groovy's
default "named-arg" constructor.

import groovy.transform.TupleConstructor

@TupleConstructor

class Person {
String name
int age

def pl = new Person(name: 'Pete’', age: 15)
// map-based

def p2 = new Person('Pete’', 15)

// tuple-based

assert pl.name == p2.name
assert pl.age == p2.age
@Canonical

Allows you to combine @ToString, @EqualsAndHashCode and @TupleConstructor. For those familiar with
Groovy's @Immutable transform, this provides similar features but for mutable objects.

import groovy.transform.Canonical

@Canonical

class Person {
String name
int age

def pl = new Person(name: 'Pete’', age: 15)
def p2 = new Person('Paul’', 15)

p2.name = 'Pete’
println "${pl.equals(p2)} Spl S$p2"
// => true Person(Pete, 15) Person(Pete, 15)

By default, @Canonical gives you vanilla versions for each of the combined annotations. If you want to use any of
the special features that the individual annotations give you, simply include the individual annotation as well.

import groovy.transform. *

@Canonical
@ToString(includeNames = true)
class Person {

String name

int age

def p = new Person(name: 'Pete’', age: 15)
println p
// => Person(name:Pete, age:15)

You will find a great write-up on @Canonical, @ToString, @EqualsAndHashCode and @TupleConstructor on John
Prystash's weblog.

@InheritConstructors

Sometimes, when you want to subclass certain classes, you also need to override all the constructors of the parent,
even if only to call the super constructor. Such a case happens for instance when you define your own exceptions,
you want your exceptions to also have the constructors taking messages and throwable as parameters. But instead
of writing this kind of boilerplate code each time for your exceptions:

class CustomException extends Exception {
CustomException() { super() }
CustomException(String msg) { super(msgqg)

CustomException(String msg, Throwable t)

{ super(msg, t) }
CustomException(Throwable t) { super(t)

http://prystash.blogspot.com/2011/04/groovy-18-playing-with-new-canonical.html

Simply use the @InheritConstructors transformation which takes care of overriding the base constructors for you:
import groovy.transform. *

@InheritConstructors
class CustomException extends Exception {}

@WithReadLock and @WithWriteLock

Those two transformations, combined together, simplify the usage of java.util.concurrent.locks.Reentra
ntReadWriteLock, are safer to use than the synchronized keyword, and improve upon the @Synchronized tr
ansformation with a more granular locking.

More concretely, with an example, the following:
import groovy.transform. *

class ResourceProvider {

private final Map<String, String> data =
new HashMap<>()

@wWithReadLock
String getResource(String key) {
return data.get (key)

@WithWriteLock
void refresh() {
//reload the resources into memory

Will generate code as follows:

import
java.util.concurrent.locks.ReentrantReadWrit
eLock

import
java.util.concurrent.locks.ReadWriteLock

class ResourceProvider ({

private final ReadWriteLock
Sreentrantlock = new
ReentrantReadWriteLock ()

private final Map<String, String> data =
new HashMap<String, String>()

String getResource(String key) {
Sreentrantlock.readLock () .lock()

try {
return data.get (key)

} finally {

Sreentrantlock.readLock () .unlock ()

}

void refresh() throws Exception {
Sreentrantlock.writeLock () .lock()

try {
//reload the resources into

memory
} finally {

Sreentrantlock.writeLock () .unlock()

@ListenerList

If you annotate a Collection type field with @ListenerList, it generates everything that is needed to follow the bean
event pattern. This is kind of an EventType independent version of what @Bindable is for PropertyChangeEvents.

This example shows the most basic usage of the @ListenerList annotation. The easiest way to use this annotation is
to annotate a field of type List and give the List a generic type. In this example we use a List of type MyListener.
MyListener is a one method interface that takes a MyEvent as a parameter. The following code is some sample

source code showing the simplest scenario.

interface MyListener {
void eventOccurred(MyEvent event)

class MyEvent {
def source
String message

MyEvent (def source, String message) {
this.source = source
this.message = message

}

class MyBeanClass {
@ListenerList
List<MyListener> listeners

® + addMyListener(MyListener) : void - This method is created based on the generic type of your annotated List
field. The name and parameter type is are based on the List field's generic parameter.

* + removeMyListener(MyListener) : void- This method is created based on the generic type of your annotated
List field. The name and parameter type is are based on the List field's generic parameter.

* + getMyListeners() : MyListener[] - This method is created based on the generic type of your annotated List
field. The name is the plural form of the List field's generic parameter, and the return type is an array of the
generic parameter.

¢ + fireEventOccurred(MyEvent) : void - This method is created based on the type that the List's generic type
points to. In this case, MyListener is a one method interface with an eventOccurred(MyEvent) method. The
method name is fire[MethodName of the interface] and the parameter is the parameter list from the interface.
A fireX method will be generated for each public method in the target class, including overloaded methods.

Alignments with JDK 7

Groovy 1.9 will be the version which will align as much as possible with the upcoming JDK 7, so beyond those
aspects already covered in Groovy (like strings in switch and others), most of those "Project Coin" proposals will be
in 1.9, except the "diamond operator" which was added in 1.8, as explained in the following paragraph.

Diamond operator

Java 7 will introduce the "diamond" operator in generics type information, so that you can avoid the usual repetition
of the parameterized types. Groovy decided to adopt the notation before JDK 7 is actually released. So instead of
writing:

List<List<String>> listl = new
ArrayList<List<String>>()

You can "omit" the parameterized types and just use the pointy brackets, which now look like a diamond:

List<List<String>> listl = new ArrayList<>()

New DGM methods
® count Closure variants

def isEven = { it & 2 == 0 }
assert [2,4,2,1,3,5,2,4,3].count(isEven) == 5
® countBy
assert [0:2, 1:3] == [1,2,3,4,5].countBy{ it % 2 }
assert [(true):2, (false):4] == 'Groovy'.toList().countBy{ it == 'o' }

® plus variants specifying a starting index

assert [10, 20].plus(l, 'a', 'b') == [10, 'a', 'b', 20]

assert [1lL, 2.0] as Set == [1l, 2] as Set
assert [a:2, b:3] == [a:2L, b:3.0]
® toSet for primitive arrays, Strings and Collections
assert [1, 2, 2, 2, 3].toSet() == [1, 2, 3] as Set
assert 'groovy'.toSet() = ['v', 'g', 'r', 'o', 'y'] as Set
®* min / max methods for maps taking closures
(also available in Groovy 1.7)

def map = [a: 1, bbb: 4, cc: 5, dddd: 2]

assert map.max { it.key.size() }.key == 'dddd'
assert map.min { it.value }.value == 1

* map withDefault{}
Oftentimes, when using a map, for example for counting the frequency of words in a document, you need to
check that a certain key exists, before doing something with the associating value (like incrementing it).
Nothing really complex, but we could improve upon that with a new method, called withDefault. So
instead of writing code like below:

...

def words = "one two two three three three".split()
def freq = [:]
words.each {
if (it in freq)
freq[it] += 1
else
freq[it] =1

¢ def words = "one two two three three three".split() :

i def freq = [:].withDefault { k -=> 0 } ;

i words.each { i

: freq[it] += 1 :

! |
Miscellaneous

Slashy strings

Slashy strings are now multi-line:

def poem = /
to be

or

not to be

/

assert poem.readLines().size() == 4

This is particularly useful for multi-line regexs when using the regex free-spacing comment style (though you would
still need to escape slashes):

// match yyyy-mm-dd from this or previous

century

def dateRegex = /(?x) # enable
whitespace and comments

((?2:19]|20)\d\d) # year (group 1)

(non-capture alternation for century)

- # seperator
(0[1-9]1|1[012]) # month (group 2)
- # seperator
(0[1-9]1]|[12][0-9]1[3[01]) # day (group 3)

/

assert '04/04/1988' ==
'1988-04-04"'.find (dateRegex) { all, y, m, d
-> [d, m, y].join('/") }

Dollar slashy strings

A new string notation has been introduced: the "dollar slashy" string. This is a multi-line GString similar to the slashy
string, but with slightly different escaping rules. You are no longer required to escape slash (with a preceding

backslash) but you can use '$$' to escape a '$' or '$/' to escape a slash if needed. Here's an example of its usage:

def name = "Guillaume"
def date = "April, 21st"”

def dollarSlashy = $/
Hello S$name,
today we're ${date}
S dollar-sign
$$ dollar-sign
\ backslash
/ slash
$/ slash
/$

println dollarSlashy

This form of string is typically used when you wish to embed content that may naturally contains slashes or
backslashes and you don't want to have to rework the content to include all of the necessary escaping. Some
examples are shown below:

* Embedded XML fragments with backslashes:

def tic = 'tic'
def xml = $/
<xml>
$tic\tac
</xml>
/$
assert "\n<xml>\ntic\\tac\n</xml>\n" == xml

Better than a normal (now multi-line) slashy string where you would have to escape the slashes or a triple
quote (") GString where you would have to escape the backslashes.

¢ Or windows pathnames containing a slash at the end:

def dir = $/C:\temp\/$

Previously, triple quote (") GString required extra escaping, and the above sequence was illegal for a
normal slashy string. Now, ugly workarounds are not needed.

* Embedding multi-line regexs when using the regex free-spacing comment style (particularly ones which
contain slashes):

// match yyyy-mm-dd from current or previous century

def dateRegex = $/(?x) # enable whitespace and comments
((2:19]20)\d\d) # year (group 1) (non-capture alternation for
century)

- /.1 # seperator

(0[1-971]1[012]) # month (group 2)

[- /.1 # seperator

(0[1-91][12][0-91]3[01]) # day (group 3)

/$

assert '04/04/1988'
m, y]l.join('/") }
assert '10-08-1989' =
m, yl.join('-") }

'1988-04-04"'.find(dateRegex) { all, y, m, d -> [d,

'1989/08/10'.find(dateRegex) { all, y, m, d -> [d,

So, you can cut and paste most PERL regex examples without further escaping.

¢ Or Strings which are themselves Groovy code fragments containing slashes:

def alphabet = ('a'..'z').join('")
def code = $/
def normal "\b\t\n\r'
def slashy /\b\t\n\r/
assert 'S$alphabet'.size() == 26
assert normal.size() ==
assert slashy.size() == 8
/$
println code
Eval.me(code)

Again allowing you to cut and paste many slashy string Groovy examples and have them embedded within
dollar slashy strings without further escaping.

Compilation customizers

The compilation of Groovy code can be configured through the CompilerConfiguration class, for example for
setting the encoding of your sources, the base script class, the recompilation parameters, etc). CompilerConfigu
ration now has a new option for setting compilation customizers (belonging to the org.codehaus.groovy.con
trol.customizers package). Those customizers allow to customize the compilation process in three ways:

® adding default imports with the ImportCustomizer: so you don't have to always add the same imports all
over again

® securing your scripts and classes with the SecureASTCustomizer: by allowing/disallowing certain classes,
or special AST nodes (Abstract Syntax Tree), filtering imports, you can secure your scripts to avoid malicious
code or code that would go beyond the limits of what the code should be allowed to do.

® applying AST transformations with the ASTTransformationCustomizer: lets you apply transformations to

all the class nodes of your compilation unit.

For example, if you want to apply the @Log transformation to all the classes and scripts, you could do:

import
org.codehaus.groovy.control.CompilerConfigur
ation

import
org.codehaus.groovy.control.customizers. *
import groovy.util.logging.Log

def configuration = new
CompilerConfiguration()
configuration.addCompilationCustomizers (new
ASTTransformationCustomizer (Log))

def shell = new GroovyShell(configuration)
shell.evaluate("""
class Car {
car() {
log.info 'Car constructed'’

log.info 'Constructing a car'
def ¢ = new Car()

")

This will log the two messages, the one from the script, and the one from the Car class constructor, through
java.util.logging. No need to apply the @Log transformation manually to both the script and the class: the

transformation is applied to all class nodes transparently. This mechanism can also be used for adding global
transformations, just for the classes and scripts that you compile, instead of those global transformations being
applied to all scripts and classes globally.

If you want to add some default imports (single import, static import, star import, star static imports, and also aliased
imports and static imports), you can use the import customizer as follows:

import
org.codehaus.groovy.control.CompilerConfigur
ation

import
org.codehaus.groovy.control.customizers. *

def configuration = new
CompilerConfiguration()

def custo = new ImportCustomizer|()
custo.addStaticStar (Math.name)
configuration.addCompilationCustomizers (cust
o)

def shell = new GroovyShell (configuration)
shell.evaluate("""
cos PI/3

")

When you want to evaluate Math expressions, you don't need anymore to use the import static
java.lang.Math. * star static import to import all the Math constants and static functions.

(G)String to Enum coercion

Given a String or a GString, you can coerce it to Enum values bearing the same name, as the sample below
presents:

enum Color {
red, green, blue

// coercion with as
def r = "red" as Color

// implicit coercion
Color b = "blue"

// with GStrings too
def g = "S${'green'}" as Color

Maps support isCase()

Maps now support isCase(), SO you can use maps in your switch/case statements, for instance:

def m = [a: 1, b: 2]
def val = 'a'

switch (val) {
case m: "key in map"; break
// equivalent to // case { val in m }:

default: "not in map"”

Grape/Grab Improvements
Shorter notation for @GrabResolver

When you need to specify a special grab resolver, for when the artifacts you need are not stored in Maven central,
you could use:

@GrabResolver (name = 'restlet.org', root
"http://maven.restlet.org')
@Grab('org.restlet:org.restlet:2.0.6"')
import org.restlet.Restlet

Groovy 1.8 adds a shorter syntax as well:

@GrabResolver ('http://maven.restlet.org')
@Grab('org.restlet:org.restlet:2.0.6"')
import org.restlet.Restlet

Compact form for optional Grab attributes

The @Grab annotation has numerous options. For example, to download the Apache commons-io library (where you
wanted to set the transitive and force attributes - not strictly needed for this example but see the Grab or Ivy
documentation for details on what those attributes do) you could use a grab statement similar to below:

@Grab (group='commons-io',
module='commons-io', version='2.0.1",
transitive=false, force=true)

The compact form for grab which allows the artifact information to be represented as a string now supports
specifying additional attributes. As an example, the following script will download the commons-io jar and the

corresponding javadoc jar before using one of the commons-io methods.

@Grab ('commons-io:commons-io:2.0.1;transitiv
e=false; force=true')

@Grab (' 'commons-io:commons-io:2.0.1;classifie
r=javadoc')

import static
org.apache.commons.io.FileSystemUtils. *
assert freeSpaceKb() > 0

Sql improvements

The eachRow and rows methods in the groovy.sgl.Sql class now support paging. Here's an example:

sgl.eachRow('select * from PROJECT', 2, 2) {
row ->

println "${row.name.padRight(10)}
(Srow.url)"

}

Which will start at the second row and return a maximum of 2 rows. Here's an example result from a database
containing numerous projects with their URLSs:

Grails (http://grails.orq)
Griffon (http://griffon.codehaus.orq)

Storing AST node metadata

When developing AST transformations, and particularly when using a visitor to navigate the AST nodes, it is
sometimes tricky to keep track of information as you visit the tree, or if a combination of transforms need to be
sharing some context. The ASTNode base class features 4 methods to store node metadata:

® public Object getNodeMetaData(Object key)

® public void copyNodeMetaData(ASTNode other)

® public void setNodeMetaData(Object key, Object value)
® public void removeNodeMetaData(Object key)

Ability to customize the GroovyDoc templates

GroovyDoc uses hard-coded templates to create the JavaDoc for your Groovy classes. Three templates are used:
top-level templates, a package-level template, a class template. If you want to customize these templates, you can
subclass the Groovydoc Ant task and override the getDocTemplates (), getPackageTemplates (), and getC
lassTemplates () methods pointing at your own templates. Then you can use your custom GroovyDoc Ant task in
lieu of Groovy's original one.

Groovy 1.8.1 release notes

Table of Contents

® This is a DRAFT PAGE for an unreleased version of Groovy and is incomplete and subject to change
® Groovy 1.8.1 release notes
® Support for begin() / end() methods when processing files line by line with the groovy command
® Sql batch support that allows PreparedStatements to be used as shown in these examples:

This is a DRAFT PAGE for an unreleased version of Groovy and is incomplete and subject
to change

Groovy 1.8.1 release notes

The 1.8.1 release of Groovy is primarily a bug fix release but also comes with the new features outlined below.

Support for begin() / end() methods when processing files line by line with the groovy command

A feature found in other scripting languages like Perl or Awk is to be able to have a begin / end method when
processing a file line by line. The groovy command supports this mode of operation, but didn't support the begin /
end methods. (this feature is actually going to be available in 1.7.11 and 1.8.1, but time ran short for inclusion in the
1.8 final release)

More concretely, if you have a text file named dummy.ixt, and you want to count the number of lines it contains, you
could do this on the command-line:

groovy -a -ne 'def begin() { nb = 0 }; def
end() { System.err.println nb }; nb++'
dummy . txt

Sql batch support that allows PreparedStatements to be used as shown in these examples:

Shown for a batch size of 20:

def updateCounts = sql.withBatch(20, 'insert
into TABLENAME(a, b, c) values (?, 2?2, ?)') {

b 4

ps ->

ps.addBatch (10, 12, 5) // varargs
style

ps.addBatch([7, 3, 98]) // list

ps.addBatch([22, 67, 11])

Named parameters (into maps or domain objects) are also supported:

def updateCounts = sql.withBatch(20, 'insert
into TABLENAME(a, b, c¢) values (?.foo, :bar,
tbaz)') { ps ->

ps.addBatch([foo0:10, bar:12, baz:5]) //
map

ps.addBatch(foo:7, bar:3, baz:98) //
Groovy named args allow outer brackets to be
dropped

Named ordinal parameters (into maps or domain objects) are also supported:

def updateCounts = sql.withBatch(20, 'insert
into TABLENAME(a, b, c¢) values (?1l.foo,
?2.bar, ?2.baz)') { ps ->

ps.addBatch([[fo0:22], [bar:67,
baz:11]]) // list of maps or domain objects

ps.addBatch([foo0:10], [bar:12, baz:5])
// varargs allows outer brackets to be
dropped

ps.addBatch([foo:7], [bar:3, baz:98])

}
def updateCounts2 = sql.withBatch(5, 'insert

into TABLENAME(a, b, c¢) values (?1, ?2.bar,
?2.baz)’') { ps ->
ps.addBatch (10, [bar:12, baz:5])
ps.addBatch(7, [bar:3, baz:98])

Groovy 2.0 release notes

Groovy 2.0 release notes

© The content of this page was originally featured in the What's new in Groovy 2.0 article from
InfoQ.

The newly released Groovy 2.0 brings key static features to the language with static type checking and static
compilation, adopts JDK 7 related improvements with Project Coin syntax enhancements and the support of the new
“‘invoke dynamic” JVM instruction, and becomes more modular than before. In this article, we’re going to look into
those new features in more detail.

® Groovy 2.0 release notes
* A “static theme” for a dynamic language
® Static type checking
® Spotting obvious typos

http://www.infoq.com/articles/new-groovy-20
http://www.infoq.com/articles/new-groovy-20

Check your assignments and return values

More on type inference

Common type conversions still allowed

Mixing dynamic features and statically typed methods
Type inference and instanceof checks

Lowest Upper Bound

Flow typing

® Static compilation

® The Java 7 and JDK 7 theme
® Project Coin syntax enhancements
® Binary literals
® Underscore in number literals
® Multicatch block

® |nvoke Dynamic support
® Fnabling invoke dynamic support

®* Promising performance improvements

® A more modular Groovy
® Groovy modules

® FExtension modules

® Contributing an instance method
® Contributing a static method
¢ Extension module descriptor
® Grabbing an extension
® Summary

A “static theme” for a dynamic language

Static type checking

Groovy, by nature, is and will always be a dynamic language. However, Groovy is often used as a "Java scripting
language", or as a "better Java" (ie. a Java with less boilerplate and more power features). A lot of Java developers
actually use and embed Groovy in their Java applications as an extension language, to author more expressive
business rules, to further customize the application for different customers, etc. For such Java-oriented use cases,
developers don't need all the dynamic capabilities offered by the language, and they usually expect the same kind of
feedback from the Groovy compiler as the one given by javac. In particular, they want to get compilation errors
(rather than runtime errors) for things like typos on variable or method names, incorrect type assignments and the
like. That's why Groovy 2 features static type checking support.

Spotting obvious typos

The static type checker is built using Groovy’s existing powerful AST (Abstract Syntax Tree) transformation
mechanisms but for those not familiar with these mechanisms you can think of it as an optional compiler plugin
triggered through an annotation. Being an optional feature, you are not forced to use it if you don’t need it. To trigger
static type checking, just use the @TypeChecked annotation on a method or on a class to turn on checking at your
desired level of granularity. Let’s see that in action with a first example:

import groovy.transform.TypeChecked
void someMethod () {}

@TypeChecked
void test () {

// compilation error:

// cannot find matching method
sommeeMethod ()

sommeeMethod ()

def name = "Marion"

// compilation error:

// the variable naaammme is undeclared
println naaammme

We annotated the test() method with the @TypeChecked annotation, which instructs the Groovy compiler to run the
static type checking for that particular method at compilation time. We’re trying to call someMethod() with some
obvious typos, and to print the name variable again with another typo, and the compiler will throw two compilation
errors because respectively, the method and variable are not found or declared.

Check your assignments and return values

The static type checker also verifies that the return types and values of your assignments are coherent:

import groovy.transform.TypeChecked

@TypeChecked
Date test() {
// compilation error:
// cannot assign value of Date
// to variable of type int
int object = new Date()

String[] letters = ['a', 'b', 'c']

// compilation error:

// cannot assign value of type String
// to variable of type Date

Date aDateVariable = letters[O0]

// compilation error:

// cannot return value of type String
// on method returning type Date
return "today"

In this example, the compiler will complain about the fact you cannot assign a Date in an int variable, nor can you
return a String instead of a Date value specified in the method signature. The compilation error from the middle of
the script is also interesting, as not only does it complain of the wrong assignment, but also because it shows type
inference at play, because the type checker, of course, knows that letters[0] is of type String, because we’re dealing
with an array of Strings.

More on type inference

Since we’re mentioning type inference, let’s have a look at some other occurrences of it. We mentioned the type
checker tracks the return types and values:

import groovy.transform.TypeChecked

@TypeChecked
int method() {
if (true) {
// compilation error:
// cannot return value of type String
// on method returning type int

'String’
} else {
42

Given a method returning a value of primitive type int, the type checker is able to also check the values returned
from different constructs like if / else branches, try / catch blocks or switch / case blocks. Here, in our example, one
branch of the if / else blocks tries to return a String value instead of a primitive int, and the compiler complains about
it.

Common type conversions still allowed
The static type checker, however, won’t complain for certain automatic type conversions that Groovy supports. For

instance, for method signatures returning String, boolean or Class, Groovy converts return values to these types
automatically:

import groovy.transform.TypeChecked

@TypeChecked
boolean booleanMethod () ({
"non empty strings are evaluated to true”

assert booleanMethod() == true

@TypeChecked
String stringMethod () {

// StringBuilder converted to String
calling toString()

new StringBuilder() << "non empty string’

assert stringMethod() instanceof String

@TypeChecked
Class classMethod () {

// the java.util.List class will be
returned

"java.util.List"

assert classMethod() == List

The static type checker is also clever enough to do type inference:

import groovy.transform.TypeChecked

@TypeChecked
void method () {

def name = Guillaume "
// String type inferred (even inside
GString)

println "NAME = ${name.toUpperCase()}"

// Groovy GDK method support
// (GDK operator overloading too)
println name.trim()

int[] numbers = [1, 2, 3]

// Element n is an int

for (int n in numbers) {
println n

Although the name variable was defined with def, the type checker understands it is of type String. Then, when this
variable is used in the interpolated string, it knows it can call String’s toUpperCase() method, or the trim() method
later one, which is a method added by the Groovy Development Kit decorating the String class. Last, when iterating
over the elements of an array of primitive ints, it also understands that an element of that array is obviously an int.

Mixing dynamic features and statically typed methods

An important aspect to have in mind is that using the static type checking facility restricts what you are allowed to
use in Groovy. Most runtime dynamic features are not allowed, as they can’t be statically type checked at
compilation time. So adding a new method at runtime through the type’s metaclasses is not allowed. But when you
need to use some particular dynamic feature, like Groovy’s builders, you can opt out of static type checking should
you wish to.

The @TypeChecked annotation can be put at the class level or at the method level. So if you want to have a whole
class type checked, put the annotation on the class, and if you want only a few methods type checked, put the

annotation on just those methods. Also, if you want to have everything type checked, except a specific method, you
can annotate the latter with @ TypeChecked(TypeCheckingMode.SKIP) — or @TypeChecked(SKIP) for short, if you
statically import the associated enum. Let’s illustrate the situation with the following script, where the greeting()
method is type checked, whereas the generateMarkup() method is not:

import groovy.transform.TypeChecked
import groovy.xml.MarkupBuilder

// this method and its code are type checked

@TypeChecked

String greeting(String name) {
generateMarkup (name.toUpperCase())

// this method isn't type checked
// and you can use dynamic features like the
markup builder
String generateMarkup (String name) {
def sw = new StringWriter ()
new MarkupBuilder(sw).html {

body {
div name
}
}
sw.toString()

assert greeting("Cédric").contains ("CEDRIC")

Type inference and instanceof checks

Current production releases of Java don’t support general type inference; hence we find today many places where
code is often quite verbose and cluttered with boilerplate constructs. This obscures the intent of the code and
without the support of powerful IDEs is also harder to write. This is the case with instanceof checks: You often check

the class of a value with instanceof inside an if condition, and afterwards in the if block, you must still use casts to be
able to use methods of the value at hand. In plain Groovy, as well as in the new static type checking mode, you can
completely get rid of those casts.

import groovy.transform.TypeChecked
import groovy.xml.MarkupBuilder

@TypeChecked
String test(Object val) {
if (val instanceof String) {
// unlike Java:
// return ((String)val).toUpperCase()
val.toUpperCase()
} else if (val instanceof Number) {
// unlike Java:
// return
((Number)val) .intValue() .multiply(2)
val.intValue() * 2

}
}
assert test('abc') == 'ABC'
assert test(123) == '246'

In the above example, the static type checker knows that the val parameter is of type String inside the if block, and
of type Number in the else if block, without requiring any cast.

Lowest Upper Bound

The static type checker goes a bit further in terms of type inference in the sense that it has a more granular
understanding of the type of your objects. Consider the following code:

import groovy.transform.TypeChecked

// inferred return type:
// a list of numbers which are comparable
and serializable
@TypeChecked test() {
// an integer and a BigDecimal
return [1234, 3.14]

In this example, we return, intuitively, a list of numbers: an Integer and a BigDecimal. But the static type checker
computes what we call a “lowest upper bound”, which is actually a list of numbers which are also serializable and
comparable. It’s not possible to denote that type with the standard Java type notation, but if we had some kind of
intersection operator like an ampersand, it could look like List<Number & Serializable & Comparable>.

Flow typing

Although this is not really recommended as a good practice, sometimes developers use the same untyped variable
to store values of different types. Look at this method body:

import groovy.transform.TypeChecked

@TypeChecked test() {

def var = 123 // inferred
type is int
var = "123" // assign var

with a String

println var.toInteger() // no problen,
no need to cast

var = 123
println var.toUpperCase() // error, var
is int!

}

The var variable is initialized with an int. Then, a String is assigned. The “flow typing” algorithm follows the flow of
assignment and understands that the variable now holds a String, so the static type checker will be happy with the
tolnteger() method added by Groovy on top of String. Next, a number is put back in the var variable, but then, when
calling toUpperCase(), the type checker will throw a compilation error, as there’s no toUpperCase() method on
Integer.

There are some special cases for the flow typing algorithm when a variable is shared with a closure which are
interesting. What happens when a local variable is referenced in a closure inside a method where that variable is
defined? Let’s have a look at this example:

import groovy.transform.TypeChecked

@TypeChecked test() {

def var = "abc"

def cl = {

if (new Random() .nextBoolean()) var =

new Date ()

}

cl()

var.toUpperCase() // compilation error!

The var local variable is assigned a String, but then, var might be assigned a Date if some random value is true.
Typically, it’s only at runtime that we really know if the condition in the if statement of the closure is made or not.
Hence, at compile-time, there’s no chance the compiler can know if var now contains a String or a Date. That’s why
the compiler will actually complain about the toUpperCase() call, as it is not able to infer that the variable contains a
String or not. This example is certainly a bit contrived, but there are some more interesting cases:

import groovy.transform.TypeChecked

class A { void foo() {} }
class B extends A { void bar() {} }

@TypeChecked test() {
def var = new A()
def cl = { var = new B() }
cl()
// var is at least an instance of A
// so we are allowed to call method foo()
var.foo()

In the test() method above, var is assigned an instance of A, and then an instance of B in the closure which is call
afterwards, so we can at least infer that var is of type A.

All those checks added to the Groovy compiler are done at compile-time, but the generated bytecode is still the
same dynamic code as usual — no changes in behavior at all.

Since the compiler now knows a lot more about your program in terms of types, it opens up some interesting
possibilities: what about compiling that type checked code statically? The obvious advantage will be that the
generated bytecode will more closely resemble the bytecode created by the javac compiler itself, making statically
compiled Groovy code as fast as plain Java, among other advantages. In the next section, we’ll learn more about
Groovy’s static compilation.

Static compilation

As we shall see in the following chapter about the JDK 7 alignments, Groovy 2.0 supports the new “invoke dynamic”
instruction of the JVM and its related APls, facilitating the development of dynamic languages on the Java platform
and bringing some additional performance to Groovy’s dynamic calls. However, unfortunately shall | say, JDK 7 is
not widely deployed in production at the time of this writing, so not everybody has the chance to run on the latest
version. So developers looking for performance improvements would not see much changes in Groovy 2.0, if they
aren’t able to run on JDK 7. Luckily, the Groovy development team thought those developers could get interesting
performance boost, among other advantages, by allowing type checked code to be compiled statically.

Without further ado, let’s dive in and use the new @CompileStatic transform:

import groovy.transform.CompileStatic

@CompileStatic
int squarePlusOne(int num) {
num * num + 1

assert squarePlusOne(3) == 10

This time, instead of using @TypeChecked, use @CompileStatic, and your code will be statically compiled, and the
bytecode generated here will look like javac’s bytecode, running just as fast. Like the @TypeChecked annotation,
@CompileStatic can annotate classes and methods, and @CompileStatic(SKIP) can bypass static compilation for a
specific method, when its class is marked with @ CompileStatic.

Another advantage of the javac-like bytecode generation is that the size of the bytecode for those annotated
methods will be smaller than the usual bytecode generated by Groovy for dynamic methods, since to support
Groovy’s dynamic features, the bytecode in the dynamic case contains additional instructions to call into Groovy’s
runtime system.

Last but not least, static compilation can be used by framework or library code writers to help avoid adverse
interactions when dynamic metaprogramming is in use in several parts of the codebase. The dynamic features
available in languages like Groovy are what give developers incredible power and flexibility but if care is not taken,
different assumptions can exist in different parts of the system with regards to what metaprogramming features are
in play and this can have unintended consequences. As a slightly contrived example, consider what happens if you
are using two different libraries, both of which add a similarly named but differently implemented method to one of
your core classes. What behaviour is expected? Experienced users of dynamic languages will have seen this
problem before and probably heard it referred to as “monkey patching”. Being able to statically compile parts of your
code base — those parts that don’t need dynamic features — shields you from the effects of monkey patching, as
the statically compiled code doesn’t go through Groovy’s dynamic runtime system. Although dynamic runtime
aspects of the language are not allowed in a static compilation context, all the usual AST transformation
mechanisms work just as well as before, since most AST transforms perform their magic at compilation time.

In terms of performance, Groovy’s statically compiled code is usually more or less as fast as javac’s. In the few
micro-benchmarks the development team used, performance is identical in several cases, and sometimes it's
slightly slower.

Historically, thanks to the transparent and seamless integration of Java and Groovy, we used to advise developers

to optimize some hotspot routines in Java for further performance gains, but now, with this static compilation option,
this is no longer the case, and people wishing to develop their projects in full Groovy can do so.

The Java 7 and JDK 7 theme

The grammar of the Groovy programming language actually derives from the Java grammar itself, but obviously,
Groovy provides additional nice shortcuts to make developers more productive. This familiarity of syntax for Java

developers has always been a key selling point for the project and its wide adoption, thanks to a flat learning curve.
And of course, we expect Groovy users and newcomers to also want to benefit from the few syntax refinements
offered by Java 7 with its “Project Coin” additions.

Beyond the syntax aspects, JDK 7 also brings interesting novelties to its APIs, and for a first time in a long time,
even a new bytecode instruction called “invoke dynamic”, which is geared towards helping implementors develop
their dynamic languages more easily and benefit from more performance.

Project Coin syntax enhancements

Since day 1 (that was back in 2003 already!) Groovy has had several syntax enhancements and features on top of
Java. One can think of closures, for example, but also the ability to put more than just discrete values in switch /
case statements, where Java 7 only allows Strings in addition. So some of the Project Coin syntax enhancements,
like Strings in switch, were already present in Groovy. However, some of the enhancements are new, such as binary
literals, underscore in number literals, or the multi catch block, and Groovy 2 supports them. The sole omission from
the Project Coin enhancements is the “try with resources” construct, for which Groovy already provides various
alternatives through the rich API of the Groovy Development Kit.

Binary literals

In Java 6 and before, as well as in Groovy, numbers could be represented in decimal, octal and hexadecimal bases,
and with Java 7 and Groovy 2, you can use a binary notation with the “Ob” prefix:

int x = 0b10101111
assert x == 175

byte aByte = 0b00100001
assert aByte == 33

int anInt = 0b1010000101000101
assert anInt == 41285

Underscore in number literals

When writing long literal numbers, it’s harder on the eye to figure out how some numbers are grouped together, for
example with groups of thousands, of words, etc. By allowing you to place underscore in number literals, it's easier
to spot those groups:

long creditCardNumber = 1234 5678 9012 3456L
long socialSecurityNumbers = 999 99 9999L
double monetaryAmount = 12 345 132.12

long hexBytes = OxFF_EC_DE 5E

long hexWords = OXFFEC_DES5E

long maxLong = Ox7fff ffff ffff ffffL

long alsoMaxLong =

9 223 372 _036_854_775_807L

long bytes =
0b11010010_01101001_10010100_10010010

Multicatch block

When catching exceptions, we often replicate the catch block for two or more exceptions as we want to handle them
in the same way. A workaround is either to factor out the commonalities in its own method, or in a more ugly fashion
to have a catch-all approach by catching Exception, or worse, Throwable. With the multi catch block, we’re able to
define several exceptions to be catch and treated by the same catch block:

try {

/* .. */
} catch(IOException | NullPointerException
e) {

/* one block to handle 2 exceptions */

Invoke Dynamic support

As we mentioned earlier in this article, JDK 7 came with a new bytecode instruction called “invoke dynamic”, as well
as with its associated APIs. Their goal is to help dynamic language implementors in their job of crafting their
languages on top of the Java platform, by simplifying the wiring of dynamic method calls, by defining “call sites”
where dynamic method call section can be cached, “method handles” as method pointers, “class values” to store
any kind of metadata along class objects, and a few other things. One caveat though, despite promising
performance improvements, “invoke dynamic” hasn'’t yet fully been optimized inside the JVM, and doesn’t yet always
deliver the best performance possible, but update after update, the optimizations are coming.

Groovy brought its own implementation techniques, to speed up method selection and invocation with “call site

caching”, to store metaclasses (the dynamic runtime equivalent of classes) with its metaclass registry, to perform
native primitive calculations as fast as Java, and much more. But with the advent of “invoke dynamic”, we can
rebase the implementation of Groovy on top of these APIs and this JVM bytecode instruction, to gain performance
improvements and to simplify our code base.

If you’re lucky to run on JDK 7, you'll be able to use a new version of the Groovy JARs which has been compiled
with the “invoke dynamic” support. Those JARs are easily recognizable as they use the “-indy” classifier in their
names.

Enabling invoke dynamic support

Using the “indy” JARs is not enough, however, to compile your Groovy code so that it leverages the “invoke
dynamic” support. For that, you’ll have to use the --indy flag when using the “groovyc” compiler or the “groovy”
command. This also means that even if you’re using the indy JARs, you can still target JDK 5 or 6 for compilation.

Similarly, if you’re using the groovyc Ant task for compiling your projects, you can also specify the indy attribute:

<taskdef name="groovyc"

classname="org.codehaus.groovy.ant.Groovyc"
classpathref="cp"/>
<groovyc srcdir="${srcDir}"
destdir="${destDir}" indy="true">
<classpath>
</classpath>
</groovyc>

The Groovy Eclipse Maven compiler plugin hasn’t yet been updated with the support of Groovy 2.0 but this will be
the case shortly. For GMaven plugin users, although it’s possible to configure the plugin to use Groovy 2.0 already,
there’s currently no flag to enable the invoke dynamic support. Again, GMaven will also be updated soon in that
regard.

When integrating Groovy in your Java applications, with GroovyShell, for example, you can also enable the invoke
dynamic support by passing a CompilerConfiguration instance to the GroovyShell constructor on which you access
and set the optimization options:

CompilerConfiguration config = new
CompilerConfiguration();
config.getOptimizationOptions () .put("indy",
true);
config.getOptimizationOptions () .put("int",
false);

GroovyShell shell = new

GroovyShell (config);

As invokedynamic is supposed to be a full replacement to dynamic method dispatch, it is also necessary to disable
the primitive optimizations which generate extra bytecode that is here to optimize edge cases. Even if it is in some
cases slower than with primitive optimizations activated, future versions of the JVM will feature an improved JIT
which will be capable of inlining most of the calls and remove unnecessary boxings.

Promising performance improvements

In our testing, we noticed some interesting performance gains in some areas, whereas other programs could run
slower than when not using the invoke dynamic support. The Groovy team has further performance improvements in
the pipeline for Groovy 2.1 however, but we noticed the JVM isn’t yet finely tuned and still has a long way to go to be
fully optimized. But fortunately, upcoming JDK 7 updates (in particular update 8) should already contain such
improvements, so the situation can only improve. Furthermore, as invoke dynamic is used for the implementation of
JDK 8 Lambdas, we can be sure more improvements are forthcoming.

A more modular Groovy

We'll finish our journey through the new features of Groovy 2.0 by speaking about modularity. Just like Java, Groovy
is not just a language, but it’s also a set of APIs serving various purposes: templating, Swing Ul building, Ant
scripting, JMX integration, SQL access, servlet serving, and more. The Groovy deliverables were bundling all these
features and APIs inside a single big JAR. However, not everybody needs everything at all times in their own
applications: you might be interested in the template engine and the servlets if you’re writing some web application,
but you might only need the Swing builder when working on a rich desktop client program.

Groovy modules

So the first goal of the modularity aspect of this release is to actually split the original Groovy JAR into smaller
modules, smaller JARs. The core Groovy JAR is now twice as small, and we have the following feature modules
available:

Ant: for scripting Ant tasks for automating administration tasks

BSF: for integrating Groovy in your Java applications with the old Apache Bean Scripting Framework
Console: module containing the Groovy Swing console

GroovyDoc: for documenting your Groovy and Java classes

Groovysh: module corresponding to the Groovysh command-line shell

JMX: for exposing and consuming JMX beans

JSON: for producing and consuming JSON payloads

JSR-223: for integrating Groovy in your Java applications with the JDK 6+ javax.scripting APls
Servlet: for writing and serving Groovy script servlets and templates

SQL: for querying relational databases

Swing: for building Swing Uls

Templates: for using the template engine

Test: for some test support, like the GroovyTestCase, mocking, and more

TestNG: for writing TestNG tests in Groovy

XML: for producing and consuming XML documents

With Groovy 2, you're now able to just pick up the modules you're interested in, rather than bringing everything on
your classpath. However, we still provide the “all” JAR which contains everything, if you don’t want to complicate
your dependencies for just a few megabytes of saved space. We also provide those JARs compiled with the “invoke
dynamic” support as well, for those running on JDK 7.

Extension modules

The work on making Groovy more modular also yielded an interesting new feature: extension modules. By splitting
Groovy into smaller modules, a mechanism for modules to contribute extension methods has been created. That
way, extension modules can provide instance and static methods to other classes, including the ones from the JDK
or third-party libraries. Groovy uses this mechanism to decorate classes from the JDK, to add new useful methods to
classes like String, File, streams, and many more — for example, a getText() method on URL allows you to retrieve
the content of a remote URL through an HTTP get. Notice also that those extension methods in your modules are
also understood by the static type checker and compiler. But let’s now have a look at how you can add new methods
to existing types.

Contributing an instance method

To add new methods to an existing type, you'll have to create a helper class that will contain those methods. Inside
that helper class, all the extension methods will actually be public (the default for Groovy but required if
implementing in Java) and static (although they will be available on instances of that class). They will always take a
first parameter which is actually the instance on which this method will be called. And then following parameters will
be the parameters passed when calling the method. This is the same convention use for Groovy categories.

Say we want to add a greets() method on String, that would greet the name of the person passed in parameters, so
that you could that method as follow:

assert "Guillaume".greets("Paul") == "Hi
Paul, I'm Guillaume"

To accomplish that, you will create a helper class with an extension method like so:

package com.acme

class MyExtension {

static String greets(String self, String
name) {

"Hi ${name}, I'm ${self}"”

Contributing a static method
Static extension methods are defined using the same mechanism, but have to be declared in a separate class. The

extension module descriptor then determines whether the class provides instance or static methods. Let’s add a
new static method to Random to get a random integer between two values, you could proceed as in this class:

package com.acme

class MyStaticExtension {

static String between(Random selfType,
int start, int end) {

new Random() .nextInt(end - start + 1)
+ start

}

That way, you are able to use that extension method as follows:
Random.between (3, 4)

Extension module descriptor

Once you’ve coded your helper classes (in Groovy or even in Java) containing the extension methods, you need to
create a descriptor for your module. You must create a file called org.codehaus.groovy.runtime.ExtensionModule in
the META-INF/services directory of your module archive. Four essential fields can be defined, to tell the Groovy
runtime about the name and version of your module, as well as to point at your helper classes for extension
methods with a comma-separated list of class names. Here is what our final module descriptor looks like:

moduleName = MyExtension

moduleVersion = 1.0

extensionClasses = com.acme.MyExtension
staticExtensionClasses =
com.acme.MyStaticExtension

With this extension module descriptor on the classpath, you are now able to use those extension methods in your
code, without needing an import or anything else, as those extension methods are automatically registered.

Grabbing an extension

With the @Grab annotation in your scripts, you can fetch dependencies from Maven repositories like Maven Central.
With the addition of the @GrabResolver annotation, you can specify your own location for your dependencies as
well. If you are “grabbing” an extension module dependency through this mechanism, the extension method will also
be installed automatically. Ideally, for consistency, your module name and version should be coherent with the
artifact id and version of your artifact.

Summary

Groovy is very popular among Java developers and offers them a mature platform and ecosystem for their
application needs. But without resting still, the Groovy development team continues to further improve the language
and its APIs to help its users increase their productivity on the Java platform.

Groovy 2.0 responds to three key themes:

® More performance: with the support of JDK 7 Invoke Dynamic to speed up Groovy for those lucky to have
JDK 7 already in production, but also with static compilation for JDK 5 and beyond for everyone, and
particularly those ready to abandon some aspects of dynamicity to shield themselves from the reach of
"monkey patching" and to gain the same speed as Java.

® More Java friendliness: with the support of the Java 7 Project Coin enhancements to keep Groovy and Java
as close syntax cousins as ever, and with the static type checker to have the same level of feedback and
type safety as provided by the javac compiler for developers using Groovy as a Java scripting language

®* More modularity: with a new level of modularity, Groovy opens the doors for smaller deliverables, for example
for integration in mobile applications on Android, and allowing the Groovy APIs to grow and evolve with newer
versions and newer extension modules, as well as allowing users to contribute extension methods to existing

types.
Groovy 2.1 release notes

With this new 2.1 release, Groovy:

® has full support for the JDK 7 “invoke dynamic” instruction and API,
® goes beyond conventional static type checking capabilities with a special annotation for closure delegate

based Domain-Specific Languages and static type checker extensions,
® provides additional compilation customization options,
® and features a meta-annotation facility for combining annotations elegantly.

Table of Content

® Full invoke dynamic support
® GPars1.0
® @DelegatesTo annotation
Type checker extensions
Compile-time Meta-annotations
® Alternate notation
® Passing parameters
® Custom processor

Compilation customization
® Custom base script class flag
® Compiler configuration script
® Source-aware customizer
® Compiler customization builder

® Other Minor Enhancements

® Additional DGM methods
GroovyDoc
Command-line
XML Processing

ConfigSlurper
@Delegate

@ToString
@EqualsAndHashCode

@|mmutable
@AutoClone

Full invoke dynamic support

With Groovy 2.0, we introduced support for JDK 7’s “invoke dynamic” bytecode instruction and API to benefit from
the dedicated support and performance improvements for dynamic languages starting with JDK 7. Groovy 2.1
brings full support for “invoke dynamic” (aka “indy”), completing the work introduced in 2.0.

In Groovy 2.0, most method calls were using the “invoke dynamic” instruction, but there have been exceptions:
constructor calls or “spread calls” (where you pass arguments with the “spread operator”). Groovy 2.1 completes the
implementation started in 2.0. Now, code compiled with the “invoke dynamic” JAR on JDK 7 will not be using the old
“call site caching” code which served us well for getting good performance for Groovy prior to JDK 7. If you are lucky
enough to be using JDK 7 in production, be sure to use the Groovy 2.1 “indy” JAR to benefit from the full “invoke
dynamic” support. The “indy” version is bundled with the binary download package and can be obtained via Maven
(all JARs with “invoke dynamic” support are postfixed with “-indy”).

You can learn more about the invoke dynamic support.

GPars 1.0

Groovy 2.1’s distribution bundles the recently released GPars 1.0, the one-stop shop for all your concurrency
needs. This new version comes with various enhancements in the asynchronous functions, promises, parallel
collections, actors, dataflow support, Google App Engine support, etc.

http://www.jroller.com/vaclav/entry/broken_promises
http://www.jroller.com/vaclav/entry/gpars_actors_and_dataflow_for

Be sure to check the release announcement and read the “what’s new section” of the GPars user guide. You can
also have a look at the detailed JIRA release notes.

@DelegatesTo annotation

Authoring Domain-Specific Languages (DSLs) has always been a sweet spot for Groovy, and the availability of
closures and the malleable syntax of the language has allowed DSL implementors to build nice mini-languages like
“builders”, to represent configuration or hierarchical data.

Thanks to the various delegation strategies of the groovy.lang.Closure class, a range of very powerful
techniques can be used when building DSLs. Due to different implementation techniques, inferring type information
within the DSL has not been straightforward. This is especially an issue when DSLs should have proper IDE support
(e.g. code completion).

The very popular and powerful Gradle build automation system uses its own DSL for build script specifications. On
the DSL implementation layer are various methods taking closures as arguments, and with special delegation
strategies delegating to some other parameter passed to them. Providing good IDE support for Groovy DSLs — like
the one in Gradle — has presented a few challenges. Hence the need for the @DelegatesTo annotation.

Groovy 2.1 introduces the @groovy.lang.DelegatesTo annotation as a documentation mechanism for DSL
users and maintainers, as an IDE hint for providing better coding assistance, and as additional information that
can be taken into account by the static type checker and static compilation introduced in Groovy 2.0. Let’s see
that in action with some examples.

A closure delegate based method usage might look like the following:

exec {
launch ()

The exec () method takes a closure as parameter, and the actual 1aunch () call inside that closure is delegated to
some particular object (the closure delegate), instead of being dispatched to the enclosing class. The above code
would only fail at runtime (not at compile-time!), as the 1launch () method can not be found in the closure context. In
order to delegate method calls within the closure’s code block to another object instance, we need to set the closure
delegate.

Setting a closure delegate is as easy as invoking Closure#setDelegate (Object):

void exec(Closure c) {
c.delegate = new Executor()

c()

The delegate can be set to an arbitrary object instance (here, an instance of an Executor class that has a 1aunch

http://www.jroller.com/vaclav/entry/i_like_the_smell_of
http://jira.codehaus.org/secure/ReleaseNote.jspa?projectId=12030&version=17007
http://www.gradle.org/

() method). When the delegate is set accordingly, we can execute the closure code.
Note that usually, to avoid odd behavior if the closure is used in multiple threads, we tend to clone that closure.

The problem with delegate objects are IDEs not knowing about them. Given our example, most IDEs will underline
the launch () method as being an unknown method in this context.

This is where @DelegatesTo comes into play. By adding the @DelegatesTo annotation to DSL methods like exe
c(Closure), IDEs get the actual delegate type and other meta-data.

A future update might let GroovyDoc show the details about the annotation usage to help users know what methods
they can call, what properties they can access, etc.

Here’s what your exec () method will look like with the annotation:

void exec(@DelegatesTo(Executor) Closure c)

{

c.delegate = new Executor()

c()

Besides specifying the actual delegate type, @DelegatesTo can be used to hint at the actual resolve strategy. The
resolve strategy determines the order in which non-closure method / property calls are looked up. In our example, C
losure.DELEGATE_ FIRST will be used. This indicates the closure will attempt to resolve against the given
delegate object in first place, followed by the owner object:

import static groovy.lang.Closure. *

/l ...

void exec(@DelegatesTo(strategy =
DELEGATE_FIRST, value = Executor) Closure c)

{

c.delegate = new Executor()
c.resolveStrategy = DELEGATE_ FIRST

c()

IDE support is not the only reason to use @DelegatesTo. The static type checker and static compiler take the
additional meta-data specified by the @DelegatesTo annotation into account. If there is a typo in the closure
code block, the type checker will complain. And if you use the static compilation capability introduced in Groovy 2.0,

the calls will be compiled statically.

Let’s say we wouldn’t call launch () but launchr () in the closure code block, we would get a message like:

[Static type checking] - Cannot find
matching method
DelegatesToSamplesi#launchr ().

Please check if the declared type is right
and if the method exists.

Static type checks for custom Domain-Specific Languages is a very convenient feature in Groovy 2.1!

In addition, Groovy 2.1 features other abilities for even further type checking your DSLs, as you shall see in the
following section.

Before moving on, let’s mention a few closing details about @DelegatesTo.

@DelegatesTo allows to specify the receiver calls are delegated to. For instance, when a delegate calls a method

or property on another method parameter. Imagine our exec () method taking the Executor argument instance as
delegate:

void exec(Executor ex,
@DelegatesTo (Executor) Closure c) {
c.delegate = ex

c()

In this example, the information is lost that the call is delegated to the ex parameter. Thanks to the @DelegatesTo
. Target annotation we can specify ex as target for being the delegate object:

void exec(@DelegatesTo.Target Executor ex,
@DelegatesTo Closure c) {
c.delegate = ex

c()

What if we had several Executor parameters, how would we differentiate which one we’re targeting?

void exec(

@DelegatesTo.Target ('paraml’') Executor
ex,

@DelegatesTo(target = 'paraml') Closure
c) { ... }

The delegation “target” can be specified with an arbitrary id. In the example above it is param1.

One last very nice little feature: if you are using static type checking, you can omit the type of the parameter and @De
legatesTo combined with “flow typing” (the ability of following the current type of an untyped variable) would still
know if method calls are valid:

void exec(@DelegatesTo.Target ex,
@DelegatesTo Closure c) {
c.delegate = ex

c()

class Executor {
void launch() {}

def ex = new Executor()

exec(ex) {
launch ()

We've seen that the @DelegatesTo helps documenting, tooling, and checking Domain-Specific Languages in the
specific context of closure delegate based methods, but we hinted at the fact we can go beyond, in terms of static
type checking for your DSLs.

For more details take a look at the @DelegatesTo documentation.

Type checker extensions

Static type checking was introduced in Groovy 2.0, but Groovy 2.1 goes beyond built-in type checks and offers a
way to create type checker extensions. This is great news for Groovy scripts, configuration files, or
Domain-Specific Languages implementations as they can can be “type checked” with more advanced,
domain-specific rules. As an example, it would be possible to create a custom DSL type checker that throws
compilation errors when certain verbs of the DSL are not recognized, or tells this other noun is allowed even if it’s a
dynamic name bound at runtime, or type checks literal strings containing SQL code to see if the syntax is correct,
and more.

Imagine a script, where we define a small robot class and instantiate it:

class Robot {

void move(String dist) { println "Moved
Sdist" }
}

robot = new Robot ()
And we want to operate our robot in the operate () method, but we want this method to be type checked:

@Qgroovy.transform.TypeChecked
void operate() {
robot.move "left"

operate ()

The static type checker will complain as it doesn’t understand where the robot variable is coming from, as it’s going
through the binding of the script — note that we could teach the type checker to figure out binding-bound variables.
It will throw an error telling us that the robot variable was undeclared.

But by utilizing type checker extensions, we can hook into the type checking process to teach it how to handle
unresolved variables! In order to do that, we’ll specify an extension script through the newly introduced extension
s annotation parameter of the @TypeChecked annotation:

@TypeChecked (extensions =

'RobotMove.groovy')

void operate() {
robot.move "left"

Now it’s time to define the type checker extension script called RobotMove . groovy. The type checker extension
script is written by applying a new DSL — the “type checking DSL”. The DSL provides various hooks for type
checker extensions to register to. Going back to the example above, we register for unresolved variables using the u
nresolvedVariable hook:

unresolvedVariable { VariableExpression var
->
if ('robot' == var.name) {

def robotClass =
context.source.AST.classes.find { it.name ==
'"Robot' }

storeType(var, robotClass)

handled = true

The type checker extension script needs to be on the classpath. If this is the case, the script gets notified during
compile-time when the static type checker encounters an unresolved variable. The unresolved variable closure is
handed over a VariableExpression.

The VvariableExpression is an object directly from Groovy’s AST (Abstract Syntax Tree). It is a representation of
the unresolved variable expression. The script checks if the variable is named robot, if this is the case, we lookup
a ClassNode representing the Robot class, and store the type of that variable back in the AST. At the end, the han
dled property is set to true, to indicate the type checker already managed that variable. As a consequence, you
won'’t get the compilation error about that undeclared variable.

To continue the journey, let’s consider the case where the user enters a wrong direction string. We could of course
use an enum or some other class containing direction constants, but for the sake of the example, we’ll have a look
at how we can teach the type checker to inspect strings and how you can actually throw your own compilation
errors.

For that purpose, let’s say a robot can only move left, right, forward and backward. And now, let’s change our robot
move instruction to:

robot.move "sideways"

The robot is not allowed to move sideways, so we should instruct the type checker to throw a compilation error if it
encounters a direction the robot will not be able to understand. Here’s how we can achieve our goal, by adding a
new event handler to our RobotMove . groovy script:

afterMethodCall { MethodCall mc ->
def method = getTargetMethod (mc)
if (mc.objectExpression.name == 'robot'
&& method.name == 'move') {
def args = getArguments (mc)
if (args &&
isConstantExpression(args[0]) &&
args[0] .value instanceof String) {
def content = args[0].text
if (!(content in ['left’',
'right', 'backward', 'forward'])) {

addstaticTypeError (" '${content}’' is not a
valid direction"”, args[0])

}

This handler receives a MethodCall expression. We are using the getTargetMethod () utility method to retrieve
the corresponding MethodNode. We check that the method call is a call to our robot, and that the name of the
method corresponds to themove method. Then, we fetch the arguments passed to that method call, and if we’re
passed a direction in the form of a string constant, we are checking that the direction is an actual allowed direction. If
this is not the case, we are adding a new static typing compilation error into the mix, so that the compiler will yell at
the poor user because he used a direction which is forbidden and not understood by our robot.

This second example is also interesting in a way that it shows how you can even add compilation checks on things
like literal strings on a domain-specific level, paving the way for possible checks on sprintf strings, on SQL or HQL
code in strings, etc, allowing you to go even further that what the Java compiler actually checks.

The extension script can make use of various event oriented extension points and utility methods coming from the T
ypeCheckingExtension class from Groovy, such as:

unresolvedVariable
unresolvedProperty
unresolvedAttribute
methodNotFound
incompatibleAssignment
beforeVisitMethod
afterVisitMethod
beforeVisitClass
afterVisitClass
beforeMethodCall
afterMethodCall
onMethodSelection
setup

finish

The two examples are just the tip of the iceberg, but we will work out more complete documentation of the various
extension points and utility methods going forward.

For more details take a look at the type checking extensions documentation.

Compile-time Meta-annotations

Annotations are a great way to add supplementary meta-data to classes, methods, fields, and other source code
elements, thus frameworks, libraries, and even Groovy’s homegrown AST transformations can take advantage of
them to do some special treatments to the corresponding AST nodes. Every now and then the use case arises to
reuse a combination of annotations, potentially at the expense of a galore of at-signs that obscure the general intent
of that particular combination.

To group annotations together, to make the intent clearer or to streamline your code, Groovy 2.1 offers a meta-anno
tation system, which allows to combine other annotations into one “alias” annotation.

Imagine we are using some annotations defining constraints on properties of your class, like @NotNull, @Length,
or @Pattern, which could be defined as follows:

@Qinterface NotNull {}

@Qinterface Length {
int value() default O

@Qinterface Pattern {
String value() default ".*"

An example of how to annotate an ISBN property with those annotations could look like this:

class Book {
@NotNull
@Length(10)
@Pattern(/\d{9}(\d|Xx)/)
String isbnlO

For a single property, that’s quite a bit of annotation overload! And it could be the case of other domain classes with
properties having the same validation rules as the ISBN property, where we would need to duplicate that pattern.

As of Groovy 2.1, @groovy.transform.AnnotationCollector can be used to solve code duplication for this
use case. @AnnotationCollector can be specified on annotation types and acts as meta-annotation. Whenever

an annotation marked with it is found, it is replaced with its own annotations. Let’s illustrate this with our ISBN
example.

We will create a new annotation combination for the 13-digit ISBN standard, but this time, using the @AnnotationC
ollector meta-annotation:

@NotNull

@Length(13)

@Pattern(/\d{12}(\d|X)/)
@Qgroovy.transform.AnnotationCollector
@Qinterface ISBN13 {}

@ISBN13 as a single annotation can now be applied on code elements, instead of applying the entire annotation
gang::

class Book {
// ...
@QISBN13
String isbnl3

What is particularly interesting with such meta-annotations is that they are actually replaced at compilation time
with the real annotations. So if you counted the number of annotations on the isbn13 property, you would count 3
(@NotNull, @Length and @Pattern). Thus, your underlying framework doesn’t need to know about that
meta-annotation solution and act accordingly.

Alternate notation

In our example above, we annotated our meta-annotation with the annotations that are then combined together. But
for annotations for which you don’t need to specify arguments, you could have also passed the names of the
annotations to combine as parameters to the annotation collector:

import groovy.transform. *
@Qgroovy.transform.AnnotationCollector ([ToStr
ing, Singleton])

@interface ChattySingleton {}

In the above case, we combine the @Singleton and @ToString transformation into a meta-annotation called @ch
attySingleton.

Passing parameters

If you need to pass some specific parameter to one of the underlying annotations which are combined, you can still
do so by passing the parameter to the meta-annotation.

Let’s assume we need to combine the following annotations:
@Qinterface Service {}

@Qinterface Transactional {
String propagation() default "required"

We define the meta-annotation combining both the above annotations:

@Qgroovy.transform.AnnotationCollector([Servi
ce, Transactional])
@Qinterface TransactionalService {}

But we want to change the propagation strategy for the underlying @Transactional annotation, we do so by
passing the parameter to the meta-annotation:

@TransactionalService (propagation =
"mandatory")
class BankingService { }

Note that if two combined annotations share the same parameter name, the last annotation declared wins and gets
the parameter passed to the meta-annotation.

Custom processor

If you need even more flexibility, meta-annotations allow you to define custom processors. The role of the custom
processor is to go beyond the simple exchange of the meta-annotation with the combined annotations, to further
customize the logic of that transformation.

Custom processors must be precompiled to take action, so we’ll create our processor, and then evaluate our final
example with GroovyShell, but first, let’s talk about the use case.

We have two validation annotations for defining a minimum and maximum value for an integer property:

@Qinterface Min {
int value() default O

@Qinterface Max {
int value() default 100

If we want to define a range of values, with a lower and an upper bound, we could define a new annotation and

implement the associated validation logic, or we could use custom meta-annotation processors to replace a range
annotation with a minimum and a maximum one.

So instead of writing:

class Room {
@Min (1)
@Max (4)
int numberOfPersons

We could write:

class Room {
@Range(from = 1, to = 4)
int numberOfPersons

With the normal replacement logic, there’s no way we can map the lower and upper bound values to the minimum
and maximum annotation element default values. That is where custom processors come into play.

Our meta-annotation definition will look like this:

@Min @Max

@AnnotationCollector (processor =
'RangeAnnotationProcessor’)
@Qinterface Range {}

Notice how we specify that the @Range annotation is a combination of @Min and @Max, and more importantly, how
we pass a processor parameter to the @AnnotationCollector to instruct it about our custom meta-annotation
processing logic.

In order to create a custom processor, you have to extend the AnnotationCollectorTransform class and
override the visit () method:

import
org.codehaus.groovy.transform.AnnotationColl
ectorTransform

import org.codehaus.groovy.ast.*

import
org.codehaus.groovy.control.SourceUnit

class RangeAnnotationProcessor extends

AnnotationCollectorTransform {
List<AnnotationNode>

visit (AnnotationNode collector,

AnnotationNode usage,
AnnotatedNode

annotated,
SourceUnit

src) {

def minExpr =
usage.getMember (' from')

def maxExpr = usage.getMember('to')

def (minAnno, maxAnno) =

getTargetAnnotationList (collector, usage,
src)

minAnno.addMember ('value', minExpr)
maxAnno.addMember ('value', maxExXpr)

usage.members.remove (' from')
usage.members.remove('to')

return [minAnno, maxAnno]

A few words about the parameters : the collector corresponds to the @Range annotation definition, usage to the
actual usage of the @Range annotation, annotated is the annotated class, and src is script being compiled.

We start our implementation of the processor by retrieving the numeric expressions of the bounds defined as the fro
m and to annotation parameters, because we’ll pass those values back to the underlying @Min and @Max combined
annotations. In order to do that, we retrieve the @Min and @Max combined annotations thanks to the getTargetaAn
notationList () method. We then set the values of the @Min and @Max annotations to the expressions we've
retrieved before. We remove the from and to bounds from the @Range meta-annotation since those parameters
aren'’t really defined on a real annotation but on a meta-annotation. And last, we return the two @Min and @Max anno
tations. If you wanted the Groovy compiler to do its usual replacement logic, you could have also called super.vis
it(...),butinour case it wasn’t needed.

The full example can be found in this Gist on Github: https:/gist.github.com/4563430

Additional details can be found in the meta-annotations documentation.

Compilation customization

Custom base script class flag

When integrating and evaluating Groovy scripts in an application for business rules or Domain-Specific Languages,
it is often valuable to define a base script class, in order to add various utility methods, properties, or interception
mechanisms for missing methods or properties.

The compilerConfiguration object, that you can pass to GroovyShell and other integration mechanisms,
allows you to specify a base script class with the setScriptBaseClass () method.

As of Groovy 2.1, we introduce the ability to define a base script class reference for your scripts via an additional
command-line option -b/ --basescript for the groovyc command, as well as for the groovy command.

Here’s an example using a script called businessRule.groovy:

assert lookupRate(EUR, USD) == 1.33

In the above script, we notice two things: the usage of a 1lookupRate () method, and two undeclared variables: EU
R and UsD. Neither the method, nor the variables have been defined in our script. Instead, they are provided by a
base script class, which can look like the following ExchangeRateBaseScript.groovy class:

https://gist.github.com/4563430

abstract class ExchangeRateBaseScript
extends Script {
def lookupRate(String currencyl, String

currency2) {

if (currencyl == 'EUR' && currency2
== 'USD')

return 1.33
else return 1

def getProperty(String name) { name }

The lookupRate () method used in our script is declared in the the base class, and the two currencies are
retrieved via the getProperty () method.

Now it’s time to wire them together, by instructing the groovyc compiler or the groovy command line launcher to
use our base script class for all groovy.lang.Script descendants:

groovy --basescript
ExchangeRateBaseScript.groovy
businessRule.groovy

Compiler configuration script

Similarly to the —--basescript flag, there’s another new option for the groovy and groovyc commands: the —--co
nfigscript flag. Its purpose is to let you further configure the compiler, in a configuration script, by parameterizing
the CompilerConfiguration object used for the compilation.

With a CompilerConfiguration, you can customize the various aspects of the Groovy compilation process. For
example, you can specify various compilation customizers introduced in Groovy 1.8. Imagine you want to add a new
default import to your classes, like importing all java.lang.Math functions and constants, so that your scripts and
classes don’t have to prefix those functions and constants all the time, and to avoid having to do that import
wherever needed. Here’s how you can proceed.

At first, your script, mathFormula.groovy, contains the following lines:

import static java.lang.Math.*

assert sin(PI/2) == 1

For evaluating such math expressions, you wish to make the static import implicit, so that the final script will actually
look like this:

assert sin(PI/2) == 1
If you'd run it as is, you’d get an error message saying:

No such property: PI for class: mathFormula

We need to use CompilerConfiguration to do add an ImportCustomizer. We’ll create ai mportConfigure
r.groovy script with the content below:

import
org.codehaus.groovy.control.customizers.Impo
rtCustomizer

def importCustomizer = new
ImportCustomizer ()
importCustomizer.addStaticStar('java.lang.Ma
th')

configuration.addCompilationCustomizers (impo
rtCustomizer)

We import and then instantiate an ImportCustomizer, on which we ask for a static star import of the methods and
constants of the java.lang.Math class. Eventually, we pass that customizer to the configuration variable,
which is an instance of CompilerConfiguration that will be used for the compilation of your math formula.

Now, we are able to execute your formula with the following command-line:

groovy --configscript
importConfigurer.groovy mathFormula.groovy

Source-aware customizer

If you use the groovy compiler to compile all your classes, one drawback of the approach above is that the
customization applies globally to all classes that are going to be compiled. You may want to add certain default
imports only in certain classes (ie. scripts containing math), but you might want to do something different for other
classes, like adding a @ToString transformation to all the domain classes of your application. For that purpose, a
new customizer was created, the SourceAwareCustomizer, to let you filter which classes should be impacted by
particular compilation customizations, such as filtering by class name, by file extension, or by a custom logic.

Coming back to our previous example, let’s add the default import to our mathFormula.groovy script, but add a @
ToString transformation to the MyDomain.groovy class:

import
org.codehaus.groovy.control.customizers. *
import groovy.transform.ToString

def importCustomizer = new
ImportCustomizer ()
importCustomizer.addStaticStar('java.lang.Ma
th')

configuration.addCompilationCustomizers (
new SourceAwareCustomizer (new
ASTTransformationCustomizer (ToString)) {
boolean acceptBaseName (baseName) {
baseName ==~ 'MyDomain’' }
},
new
SourceAwareCustomizer (importCustomizer) {
boolean acceptBaseName (baseName) {
baseName ==~ 'mathFormula’' }

})

Compiler customization builder

The more complex the customization becomes, the more cumbersome the above configuration becomes to write
too, that’s why Groovy 2.1 also provides a builder for building these types of configurations.

The builder allows you to use a familiar declarative syntax and saves you from adding manually various imports.
Let’s adapt our example above with the builder:

withConfig(configuration) {
source (basenameValidator: {
it.endsWith('MyDomain') }) {
ast (ToString)
}
source (basenameValidator: {
it.endsWith('mathFormula') }) {
imports {
staticStar 'java.lang.Math'

The configuration code is easier to read and maintain, thanks to the clarity brought by the builder approach. But
we’ve only seen a couple examples of customization, and you should have a look at the other customizations
available in the org.codehaus.groovy.control.customizers.builder package to learn more about them.

More details can be found in the advanced compiler configuration documentation.

Other Minor Enhancements

Additional DGM methods

There are now leftShift and withFormatter methods for Appendable objects.

There are now methods for creating temporary directories and determining the total size of all files in a directory.
There is now a collectMany for maps (has been backported to earlier versions of Groovy too).

There is now a closeStreams () method for Process objects.

GroovyDoc

You ca now explicitly set a file encoding.

Command-line

There is support for using a "jar:" prefix when running a script from a URL, in addition to the "file:" and "http:".
XML Processing

There is a method for escaping / encoding XML entities in Strings.

There is a convenience method for serializing Elements objects.

You can now clone Node and NodeList objects.

The name() method now works for all Node objects, not just Element objects.

ConfigSlurper

Multiple environments blocks are now supported and merged.

@Delegate

Can now carry over annotations if desired for methods and method parameters.
@ToString

You can now cache the toString value. This is useful forimmutable objects.
@EqualsAndHashCode

You can now cache the calculated hashCode value. This is useful for immutable objects.
@Immutable

You can now specify knownImmutables. This is useful when you know you are using an immutable object, but its
type isn't one of the known immutable types.

@AutoClone

There is now a SIMPLE AutoCloneStyle which avoids some annoyances with Java's cloning behavior from Obje
ct. Those who need to clone Grails domain objects might find this useful.

News and Further Information

Books
Groovy 1.0 parties
Groovy Series
latest posts from our mailing-lists
News
® Release candidate of Groovy 2.0 available
® PLEAC Examples

¢ GroovyBlogs: A JavaBlog-like news aggregator for the Groovy and Grails mailing-lists feeds, and many feeds
from famous bloggers spreading the Groovy and Grails love.

Books

Groovy in Action, Second Edition
The Manning book page leads to all the online resources about the book like

® the table of contents
® free chapters

® reader's forum

® errata

The Amazon page
allows for quickly buying the book.

http://www.groovyblogs.org/
http://www.manning.com/koenig2/
http://www.amazon.com/gp/product/1932394842?ie=UTF8&tag=httpgroovycan-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1932394842

There also is a German edition of the book called "Groovy im Einsatz".
You can find it at Amazon DE and on the Hanser publishing site where you can also get the PDF/ebook version.

The Japanese edition is available at Amazon JP and on the publisher site.

MANNING

Dierk Konig
Guillaume Laforge
Paul King anp Jon Skeet

http://www.amazon.de/Groovy-im-Einsatz-Dierk-K%C3%B6nig/dp/3446412387/
http://www.hanser.de/buch.asp?isbn=978-3-446-41238-5
http://www.amazon.co.jp/dp/4839927278/
http://book.mycom.co.jp/book/978-4-8399-2727-1/978-4-8399-2727-1.shtml

Groovy for Domain-Specific Languages

Groovy for
Domain-Specific Languages

with Domain-Specific

Fergal Dearle's book helps users to extend and enhance your Java applications with Domain Specific Languages i
Groovy.

What you will learn from this book :

Learn Groovy scripting designed to get Java programmers using Groovy quickly

Use the meta-programming features in Groovy to build your own DSLs

Learn everything you need to know about Groovy markup and build your own Groovy builders to simplify yo
application development

Build effective DSLs using operator overloading and Groovy categories

Work with Groovy closures

Get to grips with the working of Groovy on the JVM and integrate Groovy with your Java applications

https://www.packtpub.com/groovy-for-domain-specific-languages-dsl/book

Programming Groovy

® Authors' book page
®* Amazon

Enrnlﬂ'

FROGRA AN

Groovy and Grails Recipes

Groovy and
Grails Recipes

A Problém-Solution Appraach

EBxcanar Ao s

Apins

® Author's Book Page
® Publisher's Page

® Amazon Page

Groovy and Grails Recipesis the busy developers' guide for developing applications in Groovy and Grails. Rather
than boring you with theoretical knowledge of "yet another language/framework," this book delves straight into
solving real-life problems in Groovy and Grails using easy-to-understand, well-explained code snippets. Through
learning by example, you will be able to pick up on Groovy and Grails quickly and use the book as an essential
reference when developing applications.

What you'll learn

® Discover elegant and efficient solutions to common programming problems and web development tasks.

® Get and reuse practical examples for both Groovy language and Grails framework, using the latest stable
versions of each.

® Perform a wide range of development tasks that cover all of the web development tiers, from View Layer to
Service Layer to Domain Layer.

® Access the wide range of available Grails framework plug-ins.

¢ Obtain the recipes to integrate Spring, Hibernate, SiteMesh, and more with the Grails web framework.

Who is this book for?

This book is for Java and web developers who are interested to learn more about Groovy and/or Grails and are
looking for real-life, working examples of how to achieve common programming tasks in Groovy and Grails.

http://www.dcs.napier.ac.uk/~cs05/groovy/groovy.html
http://www.amazon.co.uk/Groovy-Programming-Introduction-Java-Developers/dp/0123725070/sr=11-1/qid=1166697489/ref=sr_11_1/026-5524576-4308452
http://groovygrailsrecipes.com
http://www.apress.com/book/view/9781430216001
http://www.amazon.com/Groovy-Grails-Recipes-Problem-Solution-Approach/dp/143021600X

Groovy Series

The Groovy Series is an audio lecture on Groovy and is part of the Grails Podcast. The episodes are produced by
Dierk Kdnig (Lead author of the book Groovy in Action) and Sven Haiges. You will find complementary information
about the topics below in Dierk's Book and we mention the page numbers at the beginning of each series to help
you find the right chapters.

Code Examples at snipplr.com

The code examples that we discuss in the podcasts are posted to snipplr.com, you can find all code snippets here.
Please note that we cannot change the code snippets once they are published (we would run into problems with
mentioned line numbers in the podcast), but you are invited to post comments. Simply log in to snipplr and leave us
some feedback.

Current Groovy Series Planning

This is a rough plan and we might switch topics, add or delete at any time. The Groovy Series Episodes will be part
of the Grails Podcast and published between regular episodes. You can subscribe to the podcast feed via: http://han
samann.podspot.de/rss. Once the podcast episodes are released, you can click the title links to download the mp3
files manually, too.

1. Strings & GStrings (direct mp3)
a. Snippet 1/2: http://snipplr.com/view/2047/groovy-series-string--gstring-12/
b. Snippet 2/2: http://snipplr.com/view/2089/groovy-series-string--gstring-22/
2. Regular Expressions (direct mp3)
a. Snippet 1/3: http://snipplr.com/view/2090/groovy-series-regular-expressions-13/
b. Snippet 2/3: http://snipplr.com/view/2091/groovy-series-regular-expressions-23/
c. Snippet 3/3: http://snipplr.com/view/2092/groovy-series-regular-expressions-33/
3. Numbers (direct mp3)
a. Snippet 1/1: http://snipplr.com/view/2093/groovy-series-numbers/

4. Ranges (direct mp3)
a. Snippet 1/1: http://snipplr.com/view/2197/groovy-series-ranges/

5. Lists (direct mp3)
a. Snippet 1/1: http://snipplr.com/view/2198/groovy-series-lists/

6. Maps (direct mp3)
a. Snippet 1/1: http://snipplr.com/view/2199/groovy-series-maps/
7. Background on Groovy Typing (direct mp3) (no code for this part)
8. Groovy Control Structures (direct mp3)
a. Snippet 1/2: http://snipplr.com/view/2498/groovy-series-groovy-control-structuresgroovy-truth/
b. Snippet 2/2: http://snipplr.com/view/2499/groovy-series-groovy-control-structures/
9. Closures (direct mp3)
a. Snippet 1/1: http://snipplr.com/view/2866/groovy-series-closures/
10. GroovyBeans (incl. Expando) (direct mp3)
a. Snippet 1/1: http://snipplr.com/view/2945/groovy-series-groovybeans--expando/
11. GPath & Co
12. MOP
13. Builders
14. GDK - Working with Objects, Files & /O, Threads and Processes)
15. Java Integration
16. DB Programming with Groovy
17. XML (Standalone & "Distributed" - eg- RSS, ATOM, REST)

http://groovy.canoo.com/gina
http://www.svenhaiges.de
http://www.snipplr.com
http://snipplr.com/all/language/groovy/tags/groovyseries/
http://www.grails.org/Grails+Podcast
http://hansamann.podspot.de/rss
http://hansamann.podspot.de/rss
http://hansamann.podspot.de/rss
http://hansamann.podspot.de/files/grails_podcast_episode_29.mp3
http://snipplr.com/view/2047/groovy-series-string--gstring-12/
http://snipplr.com/view/2089/groovy-series-string--gstring-22/
http://hansamann.podspot.de/files/grails_podcast_episode_32_1036.mp3
http://snipplr.com/view/2090/groovy-series-regular-expressions-13/
http://snipplr.com/view/2091/groovy-series-regular-expressions-23/
http://snipplr.com/view/2092/groovy-series-regular-expressions-33/
http://hansamann.podspot.de/files/grails_podcast_episode_33_1041.mp3
http://snipplr.com/view/2093/groovy-series-numbers/
http://hansamann.podspot.de/files/grails_podcast_episode_35.mp3
http://snipplr.com/view/2197/groovy-series-ranges/
http://hansamann.podspot.de/files/grails_podcast_episode_36.mp3
http://snipplr.com/view/2198/groovy-series-lists/
http://hansamann.podspot.de/files/grails_podcast_episode_37.mp3
http://snipplr.com/view/2199/groovy-series-maps/
http://hansamann.podspot.de/files/grails_podcast_episode_39.mp3
http://hansamann.podspot.de/files/grails_podcast_episode_40.mp3
http://snipplr.com/view/2498/groovy-series-groovy-control-structuresgroovy-truth/
http://snipplr.com/view/2499/groovy-series-groovy-control-structures/
http://hansamann.podspot.de/files/grails_podcast_episode_41.mp3
http://snipplr.com/view/2866/groovy-series-closures/
http://hansamann.podspot.de/files/grails_podcast_episode_42.mp3
http://snipplr.com/view/2945/groovy-series-groovybeans--expando/

PLEAC Examples

PLEAC presents a suite of common programming problems from the Perl Cookbook in various programming

languages. Groovy contains a complete set of examples. Here are links to the these examples:

FAQ

Manipulating Strings, Numbers, Dates, Arrays, and Maps
Pattern matching and text substitutions

File Access

File Contents

Directories

Subroutines

References and Records

Packages, Libraries, and Modules

Classes and Objects

Database Access

User Interfaces including screen addressing, menus, and graphical applications
Process Management and Communication

Sockets

Internet Services including mail, news, ftp, and telnet
CGl Programming

Web Automation

Class Loading
FAQ - Classes and Object Orientation

FAQ - Closures

FAQ - Collections, Lists, etc.

FAQ - GSQL

FAQ - RegEx

General
® How can | edit the documentation

Language questions
® Can | break a Groovy statement into multiple lines anyway | want?
® How can | dynamically add a library to the classpath
® Why does == differ from Java

Learning about Groovy FAQ

License Information

Runtime vs Compile time, Static vs Dynamic

Class Loading

I'm getting an "unable to resolve class My Class" error when | try to use a class contained in
external .groovy file.

If the problem goes away when you apply groovyc to the .groovy file (compiling it), and you're running on windows,
the problem is probably spaces in the current directory structure. Move your files to a path without spaces (e.g.,
c:\source rather than c:\documents and settings\Administrator\My Documents\source).

How do | load jars and classes dynamically at runtime?

Use the groovy script's classLoader to add the jar file at runtime.

this.class.classLoader.rootLoader.addURL(new URL("file:///path to file"))

http://pleac.sourceforge.net
http://www.oreilly.com/catalog/cookbook
http://pleac.sourceforge.net/pleac_groovy/strings.html
http://pleac.sourceforge.net/pleac_groovy/numbers.html
http://pleac.sourceforge.net/pleac_groovy/datesandtimes.html
http://pleac.sourceforge.net/pleac_groovy/arrays.html
http://pleac.sourceforge.net/pleac_groovy/hashes.html
http://pleac.sourceforge.net/pleac_groovy/patternmatching.html
http://pleac.sourceforge.net/pleac_groovy/fileaccess.html
http://pleac.sourceforge.net/pleac_groovy/filecontents.html
http://pleac.sourceforge.net/pleac_groovy/directories.html
http://pleac.sourceforge.net/pleac_groovy/subroutines.html
http://pleac.sourceforge.net/pleac_groovy/referencesandrecords.html
http://pleac.sourceforge.net/pleac_groovy/packagesetc.html
http://pleac.sourceforge.net/pleac_groovy/classesetc.html
http://pleac.sourceforge.net/pleac_groovy/dbaccess.html
http://pleac.sourceforge.net/pleac_groovy/userinterfaces.html
http://pleac.sourceforge.net/pleac_groovy/processmanagementetc.html
http://pleac.sourceforge.net/pleac_groovy/sockets.html
http://pleac.sourceforge.net/pleac_groovy/internetservices.html
http://pleac.sourceforge.net/pleac_groovy/cgiprogramming.html
http://pleac.sourceforge.net/pleac_groovy/webautomation.html

Then, use Class.forName to load the class.

def cls = Class.forName("com.mysql.jdbc.Driver").newlnstance();

FAQ - Classes and Object Orientation

Classes and Object Orientation

How do you include groovy classes within other classes?

Groovy classes work exactly like java classes. For example, to include the class "TestClass" in your program,
ensure that it is in a file called "TestClass.groovy," and in a path seen by your CLASSPATH environment variable (or
command line). Remember that JAR files need to be included explicitly by name.

FAQ - Closures

Closures

What problem do closures solve? Why have closures?

At one level they just allow internal iterators instead of external ones. This alone is really nice because looping is a
lot cleaner. With lterators for example you do all the work, because if you want to execute the loop of the body, you
have to take responsibility for hasNext() and next().

So its basically providing the body of a loop or a callback etc which
will execute within the original scope.

Anonymous classes can seem like they are in fact closures, but they have limitations that cause annoying things like
having to declare all your variables as final. The compiler just creates a synthetic constructor that takes any
variables you are going to reference.

For me the main benefit of closures is that they allow you to write code for collections with a lot less boilerplate.

accounts.findAll { it.overdrawn &&
!it.customer.vip }.each { account ->
account.customer.sendEmail ("Pay us now!!")

FAQ - Collections, Lists, etc.

Collections, Lists, etc.

Why don't return statements work when iterating through an object?

The {...} in an each statement is not a normal Java block of code, but a closure. Closures are like classes/methods,
so returning from one simply exits out of the closure, not the enclosing method.

How do I declare and initialize a list at the same time?

Syntax:
def x = [llall, "bll]

How do I declare and initialize a traditional array at the same time?

Syntax:

String[] x = ["a", "qrs"]

or

String[] x = ["a", "qrs"] as String[]

or
def x = ["a", "qrs"] as String[]

Why does myMap.size or myMap.class return null?

In Groovy, maps override the dot operator to behave the same as the index[] operator:

myMap|["size"]="ONE MILLION!!!";
println myMap.size // outputs
MILLION!!!'

//use the following:

println myMap.@size // ‘1’
println myMap.size() // ‘1’
println myMap.getClass() // 'class
java.util.HashMap'

'ONE

Why is my map returning null values?

Chances are, you tried to use a variable as a key in a map literal definition.

Remember, keys are interpreted as literal strings:

myMap = [myVar:'"one"]
assert myMap["myVar"] ==

Try this (note the parentheses around the key):

myMap = [(myVar):"one"]

FAQ - GSQL

GSQL

Show me a simple GSQL application?

Here you are:

one

import groovy.sql.Sql

sql = Sql.newInstance("jdbc:hsqldb:mem",
"sa","", "org.hsqldb.jdbcDriver")
sgl.execute('create table TableA (FirstName
varchar (40) , LastName varchar(40))')
sgl.execute (' INSERT INTO TableA
(FirstName,LastName) values

(?,?)',\['Stan', 'Juka'\])

sql.eachRow('select * from TableA') {

println "TableA row: ${it.firstName},
${it.lastName}"

}

The output should be:
TableA row: Stan, Juka

Why does my statement doesn't work? (GString Special Treatment)

Why the INSERT in this code fails?

values = "'Stan', 'Juka'”
insertSQL = "INSERT INTO TableA
(FirstName,LastName) values (S$values)"

sql.execute(insertSQL)
Because the insertSQL is a GString. if you make it a String like this

String insertSQL = "INSERT INTO TableA
(FirstName,LastName) values (S$values)"

it will work. Or you can do it like this:

firstName = 'Stan'’
lastName = 'Juka'
insertSQL = "INSERT INTO TableA

(FirstName,LastName) values
($firstName, $lastName) "

In the last code snippet, GSQL will automatically create a prepared statement for you and run it.

Can you make this work with an Oracle Database?

I modified the code to get it to work with Oracle and for readability.
The Sqgl.newlInstance will connect to an Oracle database SID called XE installed on localhost
at port 1521. The database user is "username" and the password is "password".

In order to get this to work you will have to install the the latest jdbc.jar file from Oracle's website. You need to install
the .jar file into the

lib directory in your GROOVY_HOME directory:

import groovy.sql.Sql

sql = Sql.newInstance(
"jdbc:oracle:thin:@localhost:1521:XE",
"username"”, "password",
"oracle.jdbc.OracleDriver")

createTable = 'CREATE TABLE TableA (

FirstName varchar2(40), LastName varchar2(
40))'

insertIntoTable = 'INSERT INTO TableA (
FirstName, LastName) values (2, ?)'
selectStatement = 'SELECT * FROM TableA'

sql .execute(createTable)
sgl.execute(insertIntoTable, ['Bill’,
'Lyons'])

// the eachRow method is an Iterator
sql.eachRow(selectStatement) {

println "TableA row: ${ it.firstName }, ${
it.lastName }" }

}

The code does the following:

1. Creates TableA in username's schema
2. Inserts a row into TableA

3. Performs a SELECT * FROM TableA;
4. Returns "TableA row: Bill Lyons"

FAQ - RegExp

RegExp
matcher.matches() returns false

Why does this code fail?

def matcher = "/home/me/script/test.groovy"
=~ /\.groovy/
assert matcher.matches ()

Because you think you do something like "Oh dear it contains the word!", but you're confusing matches with find

From Javadoc: http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Matcher.html#matches()

public boolean matches()
Attempts to match the entire region against the pattern.

So "A.groovy/' is just a subsequence.
You must use

def matcher = "/home/me/script/test.groovy”
=~ /.*\.groovy/

What is the difference between =~ and ==~ ?

® ~ s the Pattern symbol.

® —~ means matcher.find()

® ——- means matcher.matches()

Pattern, Matcher ?

A pattern is not very useful alone. He's just waiting input to process through a matcher.

def pattern = ~/groovy/
def matcher = pattern.matcher('my groovy
buddy')

Matcher can say a lot of thing to you:

* if the entire input sequence matches the pattern, with matcher.matches() ;
® f just a subsequence of the input sequence matches the pattern, with matcher.find().

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Matcher.html#matches()
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Matcher.html#find()
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Matcher.html#matches()
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Matcher.html#matches()
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Matcher.html#find()

A matcher with /groovy/ pattern finds a matching subsequence in the 'my groovy buddy' sequence.
On the contrary the whole sequence doesn't match the pattern.

def m = c.matcher('my groovy buddy')
assert m.find()
assert m.matches() == false

Application: to filter a list of names.

def list = ['groovy', '/a/b/c.groovy'’,
'myscript.groovy', 'groovy.rc', 'potatoes',
'groovy. ']

// find all items whom a subsequence matches
/groovy/

println list.findAll{ it =~ /groovy/ } //
=> ["groovy", "/a/b/c.groovy",
"myscript.groovy"”", "groovy.rc", "groovy."]

// find all items who match exactly /groovy/
println list.findAll{ it ==~ /groovy/ } //
=> ["groovy"]

// find all items who match fully
/groovy\..*/ ('groovy' with a dot and zero
or more char trailing)

println list.findAll{ it ==~ /groovy\..*/ }
// => ["groovy.rc", "groovy."]

A little tilde headache ? Remember like this

~

the pattern

=~ roughly as the pattern (easy to write)

==~ more than roughly, exactly as the pattern (think hard...)

General
® How can | edit the documentation

How can | edit the documentation
The entire Groovy website is stored in this wiki

The home page is called Home then the navigation links on the left are on a magic page called Navigation and the
top right navigation links are on a magic page called QuickLinks.

Hopefully now anyone can contribute to the documentation.

If you ever edit a page and wonder why its not yet been updated on the http://groovy.codehaus.org/ site well it could
be cached. To view a latest greatest page just add the 'refresh=1'to your URL. e.g.

http://groovy.codehaus.org/?refresh=1

wiki
Language questions

® Can | break a Groovy statement into multiple lines anyway | want?
® How can | dynamically add a library to the classpath
®* Why does == differ from Java

Can | break a Groovy statement into multiple lines anyway | want?

The simple answer is no. For example, a code

aaa = 7
-1
assert aaa == 6

will fail. See more details about new lines in the Groovy Language Specification (section 3.11.1 Significant
Newlines).

How can | dynamically add a library to the classpath
Use getRootLoader().addUrl([Some URI))

See How to get a RootlLoader
See Rootloader javadoc

Sample: Dynamic JDBC Driver Loading

http://docs.codehaus.org/pages/listpages.action?key=GROOVY
http://groovy.codehaus.org/
http://groovy.codehaus.org/?refresh=1
http://groovy.codehaus.org/jsr/spec/Chapter03Lexical.html
http://groovy.codehaus.org/groovy-jdk.html#meth166
http://groovy.codehaus.org/api/org/codehaus/groovy/tools/RootLoader.html

import Groovy.sql.Sql
this.class.classLoader.rootLoader.addURL(
new URL("file:///d:/drivers/ojdbcl4.jar"))
def
driver="oracle.jdbc.driver.OracleDriver";
def sql =
Sql.newInstance("jdbc:oracle:thin:@hostname:
port:schema"”, "scott", "tiger", driver);

Why does == differ from Java
This is described here.
Basically in Java == with primitive types means use equality. For object types == means test identity.

We found when working with Groovy that if we kept those semantics and folks used dynamic typing as follows

def x = 2 * 2
if (x == 4) {

}

They would get surprising results, as they often mean equality based on value, such as in the above, rather than
identity. Indeed folks rarely ever use identity comparisions.

So to avoid many common gotchas and confusions, we've made == mean equals, the meaning most developers
use, and we use this for both primitive types and for object types and across both static and dynamic typing to
simplify things.

Currently if you really want to compare identities of the objects, use the method is(), which is provided by every
object.

if (x.is(4)) {
... // never true

}

http://groovy.codehaus.org/Differences+from+Java

The above condition is never true, since the Integer object in x (which is the result of the computation above) is not
identical to the Integer object with value 4 that has been created for the comparison.

Learning about Groovy FAQ

This FAQ hopes to answer common questions for users of Groovy

What is Groovy?

® Groovy is trying to provide a high level language (like Ruby, Python or Dylan) that maps cleanly to Java
bytecode.

® |t needs to work with Java objects, and the root of all the object trees is java.lang.Object.
® The syntax will be Java friendly, but doesn't have to be backwards compatible.
® Groovy will sit on top of J2SE.

Where can I get more information on Groovy?

The current user documentation for Groovy is available from http://groovy.codehaus.org

What if the documentation is wrong?

Anybody can change these pages, just click on the little Edit link on the right of each page (you then have to
signup/login if you haven't already).

How can I get a binary version of Groovy?

Download latest distribution as a zip or tgz file and then follow the installation instructions

How do | embed Groovy in my own programs?

Download latest groovy-all.jar and place it in your classpath.

How can I grab the sources?

See Building Groovy from Source.

License Information
Groovy is licensed under the Apache 2 license:

http://www.apache.org/licenses/LICENSE-2.0.html

Runtime vs Compile time, Static vs Dynamic

Runtime vs Compile time, Static vs Dynamic
I misspelled a method call, but it sill compiled. What gives?

Take this simple script as an example:

http://groovy.codehaus.org
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://java.sun.com/j2se
http://groovy.codehaus.org
http://dist.codehaus.org/groovy/distributions/groovy-1.0-beta-7.zip
http://dist.codehaus.org/groovy/distributions/groovy-1.0-beta-7.tar.gz
http://groovy.codehaus.org/Installing+Groovy
http://dist.codehaus.org/groovy/jars/groovy-all-1.0-beta-7.jar
http://www.apache.org/licenses/LICENSE-2.0.html

Greet.groovy

class Greet {

def salute(person) { println "Hello
S{person.name}!" }

def welcome(Place location) { println
"Welcome to ${location.state}!" }

}

g = new Greet()

g.salude() //misspelling
g.welcome(123) //wrong argument
type

Note that running groovyc Greet.groovy does not produce any errors. Instead, a MissingMethodException
is thrown at runtime.

This is because Groovy is a dynamic language. Several other things could be happening to make this code valid at
runtime. Using the MetaClass, you could add a salude () method to the Greet class at runtime. You could also add
a state property to Number, which would make the welcome (..) call valid. See ExpandoMetaClass and TMPGro

ovy Categories.

Type checking to the rescue

If all you need is a scripting language and that you don't rely on the dynamic behaviour, since Groovy 2.0.0, you can
add an annotation that will activate type checking:

Greet.groovy

@Qgroovy.transform.TypeChecked
class Greet {

def salute(person) { println "Hello
S{person.name}!" }

def welcome(Place location) { println
"Welcome to ${location.state}!" }

}

The compiler will report errors at compile time instead of runtime. See GEP 8 - Static type checking for details.

Will I get a performance boost if | statically type all of my fields and methods?

Actually, no. The way Groovy method selection is done, it actually takes longer if you provide lots of static type
information. This could possibly change in the future, but as of Groovy 1.1 this is not the case. See this thread for
more info.

But can't you add warnings so | can see missing methods at compile time?

In theory, we could. It would only work for methods available at compile time, and only for fields and parameters that
you have strongly typed. But as we mentioned above, that hurts performance! Plus, there are a number of
frameworks that rely heavily on dynamic methods (i.e. GORM). In this case, you would get gobs of warnings, and
likely just start ignoring them because it is just noise.

It might be scary to do away with all of your static typing and compile time checking at first. &' But many Groovy
veterans will attest that it makes the code cleaner, easier to refactor, and, well, more dynamic. You should make all
efforts to use unit tests to verify your intended behavior. Also keep in mind that Groovy also offers a slew of features
to make unit testing easier as well.

Can't we provide some sort of "NotDynamic" flag to speed up method invocation?

Since Groovy 2.0.0, you can annotate your code with @ CompileStatic. Be warned that while this will improve
performance, it changes the semantics of your code. See GEP 10 - Static compilation for details.

Roadmap, Discussions and Proposals

Groovy has an active community from which many ideas and discussions arise. Initial discussions or clarifications
occur within the Mailing Lists. Very specific suggestions can often be included in the Groovy Issue Tracker. Ideas
which require wider or on-going discussion or greater formalism are documented here.

® Discussions are ideas or potential changes in their early formation.

® Proposals are ideas that have reached a greater level of maturity but still require discussion or wider
communication.

®* The Roadmap outlines things we have committed to do or hope to do soon.

http://www.nabble.com/forum/ViewPost.jtp?post=5988760&framed=y
http://grails.codehaus.org/GORM
http://groovy.codehaus.org/Testing+Guide
http://jira.codehaus.org/secure/BrowseProject.jspa?id=10242

® Discussions

® Feature Wish List

®* New Groovy Console Wish List
® Proposals
Annotation usage with properties
AST Macros and Annotations
C Sharp Groovinator
GJIT - Groovy Just-In-Time Compiler
Grapes and grab()
Groovy realtime archive internet lookup
JSR-295 Binding Builder
Macro Use Cases
MetaClass Redesign (by blackdrag)
MetaClass Redesign (by blackdrag) part 2
MOP 2.0 ideas
Multiple Assignment Proposal

® Multiple Assignment

Multiproject builds
Proposed Website Revamp
Web based GroovyShell
Miscellaneous Feature Requests and Enhancements

® Groovy 2.0 modularization
® Roadmap

® notes on JDK 7 and JDK 8 future

®* Not Yet Documented

® Gldapwrap - Usage

GEP

Current formal proposals:

Could not access the content at the URL because it is not from an allowed source.

http://jjira.codehaus.org/sr/jira.issueviews:searchrequest-rss/temp/SearchRequest.xml?component=12771&pid=
10242

You may contact your site administrator and request that this URL be added to the list of allowed sources.

Discussions

Current Discussions

® Feature Wish List
® New Groovy Console Wish List

Feature Wish List

Please use this page to document all the ideas and wishes you'd like to see in Groovy.

Non-breaking Switch Enhancements

Obijective: get rid of a lot of if then else statements; eliminate unnecessary syntax; no impact on "java-like" groovy

code.

Multiple parameters/targets

// multiple parameter switch

// '?' == true/any

def x = { a, b -> switch(a,b) {
case (0, 0) : return O
case (0, 1), (1, 0O)
case (1, ?), (?, 1)
default : return 3

+}

return 1
return 2

Alternate '->' Syntax, Optional 'default', Assign Result

// in a switch '->' implies break,
// 'default' is optiomnal,
// and they can have a result
def x = { a ->

switch (a) {

case 0 -> println 'a’

case 1 -> println 'b’

-> println 'c

Q
0
Fh
o
il

switch(a) {

case 0 -> 'a
1 -> 'b'

Combine "Multiparameter" and "Alternate Syntax" with Abbreviated form in Closures

// a short form of the above for function
pattern matching
def x = { a, b
case (0, 0) -> O
case (0, 1),
(1, 0) -> 1
case (1, ?),
?2, 1) -> 2
default -> 3

Here the '->' form implies 'return’ instead of 'break’ (same result at this level)

Another example:

// case works as it does currently,
executing the closure or calling isCase()
def gsort = { 1s

case {ls.size() < 2} -> 1s

->

def (x, xs) = [ls.head(), 1ls.tail()]

def smaller, larger = []

xs.each { it<=x ? smaller<<it : larger<<it

gsort(smaller) + x + gsort(larger)

}

Here you can see the special "case" is executed when the list size is less than 2, otherwise it looks like a normal
closure.

The above proposal does not break any existing code, does not add any keywords, does not break compatibility with
java ("paste java in to groovy and it work", etc).

The multi-parameter switch statement and '->' in a switch so it has a result is where the core of the work would be.
The 'case' statement on a closure definition for pattern matching like capability is just syntactical sugar.

--krsmes (Apr 2010)

®* New function for integers to reverse bits.

¢ Concatenate string with null object. 'Test'+null will produce Test'".

® Function/Global method 'NVL'. This method avoid null/empty string value of object. E.g.
NVL(null," Test')="Test' and NVL(", Test')="Test'

® Joining of list without null elements.

e.g. [null,'Hello','world',null].join(") will produce 'Hello world'

* Simple and Robust way of executing external processes instead of using ProcessBuilder. Make the
convenient string.execute() handle blocked 10 streams / threading so users are not required know or
understand about ProcessBuilder

* More Enumerable methods for lists, arrays and maps (like map, pluck, invoke, ...)
* Make logical operators (ll, &&...) return the value instead of the boolean equivalent

eg.
def x = '' || 'test'
assert x == 'test'

def x = null || 15
assert x == 15

* Make map creation more versatile. Add constructors that allow creation of a map from 2 collections
"HashMap(keys, values)" or a list of entries "HashMap(itemlist)".
®* Make a list and create an auto mapping:

eg.

//Today:

def list = ["key":"value", 1:1, 2:2,
"noAuto":"noAuto"]

print(list[1]) // will print 1
//Would like to have:

def autoMapList = ["key":"value", 1, 2,
"auto"]
print (autoMapList[1l]) // will print 1

® would like methods to return more than one return value (a la ruby)

//Today:
def mytest { return [1,2] }

c
a
b

mytest ()
c[0]
cl[l]

wanted behavior:
def mytest { return 1,2 }

a,b = mytest()

Property reference operator

Groovy 1.0 already has the method reference operator:

class X {
def doSomething() { println "hello" }

def obj = new X()

def methRef = obj.&doSomething
methRef ()

However we do not have anything similar for properties. i.e. we should be able to get a reference to a wrapper
object for any object property, and be able to get and set the property via the reference, and get the original property
name and owning bean:

class X {
def someValue

def obj = new X()

def propRef = obj.&someValue // same syntax,
but runtime knows it is a property

println propRef.value

propRef.value = 999

println propRef.name // outputs "someValue"
assert propRef.object == obj

// static property equivalent

def propRef = X.&someValue

// Now you need to pass in an instance
propRef.setValue(new X(), 123)

This would be useful in Grails and other apps that need the user to specify in their code a reference to another
propery, for example in GORM declaring the list of "embedded" properties:

class AddressBookEntry

Property access in groovy is not problematic using GPath or subscript operator anyway, so this may not seem so
useful. However if we could get some compile-time checking of the validity of the property that would be a nice win.
Perhaps combining with the @ operator:

class AddressBookEntry {
Address home
Address work
String name

static embedded = [&@home, &Q@work]

Altho a tad heiroglyphic, this would allow the compiler to ensure that "home" and "work" do exist as declared
properties on the class or its ancestors, and hence fail fast.

named parameters everywhere

the proposal is that for functions defined inside groovy or where the debug information is availlable can be called
with the map construct to provide named parameter calling everywhere

void helloworld(name, title) {println "hello
Stitle $name"}

can be called as

helloworld(title:"mr.", name:"koen")

this feature would largely improve general readability of code and imho very often enough information should be
availlable to perform the matching (certainly for groovy functions, very often for java binaries with appropriate debug
information)

smarter nulls

def hello = "hello"
def test = null
println "ShelloStest”

should print "hello" iso "hellonull"

variable constraints

Keep dynamic typing while adding real type safety with constraints on variables that all must be true. Though not all
these constraints are actually useful they are there for illustrative purposes.

percent : as Integer, >= 0, <= 100
total : != 0

percent = num/total

Embedded XML

The programming language Scala has built-in support for XML. You can create something like this (taken from the
Scala overview document):

http://www.scala-lang.org

val labPhoneBook =
<phonebook>
<descr>Phone numbers ofXML
hackers.</descr>
<entry>
<name>Burak</name>
<phone where="work"> +41 21 693
68 67 </phone>
<phone where="mobile"> +41 78
601 54 36 </phone>
</entry>
</phonebook>;

Decoupling of static and instance methods

Also taken from the Scala programming language. It doesn't have static methods. All the static methods should be
placed in a singleton. Static members are not a part of instance variables, so you shouldn't have to declare them in
the same class.

New way of declaring Expando

Could be just like in annonymous types in C#. For example:

def foo = new (prop:"value')
foo.bar = "bar"

First Class Support for User-Defined Boolean Types

There is already quite good support for user-defined numeric data (e.g. classes that act like numeric data in
expressions) using the current support for operator overloading. But if one needs to define a class that operates in
expressions like a Boolean, it can't be done. The following changes would make this possible and these seem
consistent with the overall idea and design of Groovy:

1. Enable operator overloading for logical AND, logical OR, logical NOT. For logical AND and logical OR, the
deferred evaluation of the right operand can be maintained by passing a Closure to the method. The
signatures might be something like this:

http://www.scala-lang.org

Boolean land(Closure)
Boolean lor(Closure)
Boolean lnot()

2. Enable assignment operator overloading. This is needed to allow a semantic like

MyBooleanClass bool = true

Note that overriding the assignment operator makes it significantly easier to replace numeric types too since
one can handle cases like

MyNumericClass num = 10

which is not possible today.

3. Today due to "Groovy Truth" processing, any non-null object reference (that is not a Boolean) will evaluate to
true. To enable user-defined Boolean type data, Groovy Truth would need to be modified to optionally
"unbox" a non-null object reference into a Boolean value if it has a booleanValue() method. This would allow
one to do something like this

MyBooleanType bool = something(); if bool || somethingElse() { ... }

In such a case, the bool instance can be either false or true and can be directly used for control flow and
other operations that normally expect a Boolean.
With these changes, user-defined boolean replacement classes would get first-class support in the language.

Smallitalk-like syntax for methods

I've seen that in Groovy 1.5 it was possible to avoid using parenthesis when calling a method. It was made to
simplify the reading in a more natural way...

Nevertheless I'm not sure that the goal is today reached... The groovy syntax was primarly settled to make the step
from Java easier for java coders...Along the versions, some syntactic sugar was added to fulfill new needs...to reach
the point where going from jav to groovy is not so straightforward... Personnaly it is not an issue, but | would like to
point out that if we differ more and more from java, why not adopting a syntax which is more accurate and simpler?

Personnaly, | find the Smalltalk syntax simpler and more elegant... | think that we could add some syntactic
"tournures" of Smalltalk in Groovy 2.0, especially for defining new methods....

definition example :

def print: anObject on: aStream {

}

or

def print: Customer aCustomer on: FileStream
aStream {

}

or better

def print: aCustomer as Customer on:
aStream as FileStream {

}

use example :

def aCustomer = new Customer();
WriteStream aStream = new FileStream();
print:aCustomer on: aStream ;

Expect for Groovy

What is expect?

Expect has been already ported to other languages:

Expect for Perl

http://expect.nist.gov/
http://search.cpan.org/~rgiersig/Expect-1.15/Expect.pod

Why can't we have it built in?
My proposal:

Expect for Groovy

Automatic constructor for immutable Groovy Beans

Automatically create a constructor for all final properties of a Groovy Bean.

class Data {
final Integer id
final String name

And then:

def myDatal = new Data(5, "John")
def myData2 = new Data(8, "Jane")

There should be no setters generated, and not be possible to change the values of id or name after object creation.

It would be even better if you could use named parameters to the constructor as well:

def myDatal = new Data(id: 5, name:"John")
def myData2 new Data(name: "Jane", id:8)

New Groovy Console Wish List

This page is dedicated to the discussion of what the Groovy Shell (aka. groovysh) and Groovy Console (aka. groo
vyConsole) should be able to do in the future. So please go on and add suggestions.

Wishlist for the command-line Groovy Shell (aka. groovysh)

® keep imports (DONE see import and show imports commands)
® remove the requirement for the "go" command (DONE)
® proposal: read lines until one is entered WITHOUT a trailing semicolon or as long as there are open
parantheses; change prompt for continuation lines
® the value of last expression evaluated is made available in a variable. The name of the variable is short , e.g.

"res". It is also automatically printed to the console (including type?). (DONE The last result is saved as the
{_} variable)

® alternate name:"_"or"_r"

from Dierk

® code completion for known methods, DGM, and symbols used so far

¢ dump transcript to file (DONE see record).

® nice to have: dump classes and methods that were previously defined (DONE See show classes and sho
w variables, methods are wrapped in a closure and bound to variables)

® nice to have: run code in new jdb console

from Guillaume

¢ all the above, and...

® possibility to discard imports (since we can keep imports, let's flush them too) (DONE See purge imports).

® Crazy idea: I'm wondering whether we could leverage ANSI colours in the shell so that we can have some
text in colours (perhaps even syntax highlighting???) (DONE sans syntax highlighting right now)

from Jurgen:

® learn from Python and especially IPython (sys.displayhook etc.) (DONE There is a errorHook and result
Hook now).
® (GNU) readline support (DONE current trunk uses jline for rich buffer editing and history).

additionally: enhance ObjectBrowser to execute selected methods and change the "object under inspection" to the
result of that method call. Keep an expression of how to get to that object (e.g. GPath). Let ObjectBrowser return
this expression and make groovysh and groovyConsole arware of it such that groovysh user can use the inspect
command to interactively construct such expressions.

Wishlist for the Swing Console (aka. groovyConsole)

basic syntax highlighting in source code (DONE in 1.5%)*

line numbers (be able to turn on / off)

be able to specify some .jar files that will be included into the classpath (DONE in 1.6)
enable standard-de-facto ctrl+z for undo and ctrl+y for redo

tabs

code formatting

Debug features:

® step-by-step execution of statements
® improve variables insight for clarity

Proposals

All Proposals

®* Annotation usage with properties

AST Macros and Annotations

C Sharp Groovinator

GJIT - Groovy Just-In-Time Compiler
Grapes and grab()

Groovy realtime archive internet lookup
JSR-295 Binding Builder

Macro Use Cases

MetaClass Redesign (by blackdrag)
MetaClass Redesign (by blackdrag) part 2

MOP 2.0 ideas

Multiple Assignment Proposal

Multiproject builds

Proposed Website Revamp

Web based GroovyShell

Miscellaneous Feature Requests and Enhancements
Groovy 2.0 modularization

Proposals By State

Draft

Grapes and grab()

Accepted

No content found for label(s) gep-accepted.

Withdrawn

No content found for label(s) gep-withdrawn.

Proposals By Groovy Version
Groovy 1.6

No content found for label(s) gep-v1-6.

Groovy 1.7

Grapes and grab()

Groovy 2.0

No content found for label(s) gep-v2-0.
Annotation usage with properties

Background

Groovy's property mechanism provides a short-hand which simplifies defining typical JavaBean-style classes. You
simply define the property with no explicit visibility and it is replaced at the bytecode level by a private backing
variable, a public setter and a public getter. To the Java world, all three parts are visible. In the Groovy world,
conceptually it is OK to just think about the property - Groovy's property notation comes in to play so that using the
setter or getter looks like using the property as if it was a field.

This works well but introduces a slight complication with annotations. When using the non-property approach, there
are three places in the source code where an annotation may be added (the field, the setter and the getter). With the
property approach (idiomatic Groovy) there is just one place available in the source to place an annotation.

Current Behaviour

Currently if an annotation is applied to a property, the compiler will attempt to apply the annotation to the field, the
setter and the getter. If any of these fails (e.g. some annotations may apply only to methods or only to fields) the
code won't compile.

PROPOSAL: Smarter annotation assignment

Use the java.lang.annotation.Target of any annotations to determine where the annotation will be included in the
final class.

If the @Target of the used annotation marks the annotation as usable only on FIELD level, then the annotation will
be attached to the generated field.

If the @Target of the used annotation marks the annotation as usable on METHOD level, then the annotation will be
attached to the generated getter and setter.

If the @Target of the used annotation marks the annotation as usable on both FIELD and METHOD level, then the
annotation will be attached to all the generated class elements.

Obviously, if multiple annotations are used, there is the possibility of the annotations being split across the
generated class elements, e.g. | can use both a field and a method annotation. The field annotation will be attached
to the field (and ignored for the getters and setters) while the method annotation will be attached just to the methods.

PROPOSAL: Additional annotation classification mechanism

Sometimes it is desirable to be more selective with annotation than is possible even with smarter annotation
assignment, e.g. placing an annotation on just one of the setter or getter. Sometimes an annotation might be
possible on both fields and methods but in a particular example we want to apply it to just one. To achieve this we
need additional syntax to express how we want to classify an annotation.

One way to do this is to use a synthetic annotation as a prefix to the real annotation. A @Target annotation appears
in Groovy code at the source level, but it is only synthetic. It has no real definition. It will be like a compiler flag only,
and completely ignored in the output.

The @Target annotation allows the user to further refine where the compiler should attach an annotation. After it has
been used by the compiler, it is completely discarded. The Groovy @Target annotation will further specify if an
annotation will be attached to a FIELD, GETTER or SETTER, but will never contradict the Java @Target annotation.
In case such a contradiction occurs the Groovy compiler must emit an error.

Last, but not least | should mention that there will be no naming conflict between the Java
java.lang.annotation.Target annotation and the Groovy Target annotation (probably groovy.lang.annotation.Target),
because they will be living in completely different context.

An example:

@Target ([FIELD])

@QAutoPopulate (defaultvalue="bar")

@Target ([GETTER])

@ManagedAttribute (currencyTimeLimit=15)
@Target ([SETTER])

@ManagedAttribute (persistPolicy="OnUpdate")
int base = 10

As an alternative, we could come up with some other syntax to achieve the same result, e.g. here might be some

other ways to write the above:

@Q[FIELD]AutoPopulate(defaultvValue="bar")
@Q[GETTER]ManagedAttribute (currencyTimeLimit=
15)

@[SETTER]ManagedAttribute (persistPolicy="0nuU
pdate”)

int base = 10

Or this:

@QAutoPopulate[FIELD] (defaultValue="bar")
@ManagedAttribute[GETTER] (currencyTimeLimit=
15)

@ManagedAttribute[SETTER] (persistPolicy="0nU
pdate")

int base = 10

Or this (using a synthetic annotation parameter):

@QAutoPopulate (groovyTarget='field’,
defaultvValue="bar")

@ManagedAttribute (groovyTarget="'getter',
currencyTimeLimit=15)

@ManagedAttribute (groovyTarget='setter',
persistPolicy="OnUpdate")

int base = 10

AST Macros and Annotations

Work In Progress

Please post your comments on the Groovy developer list!

Introduction

This text here is based on ideas from Jochen Theodorou (see chitchat-with-groovy-compiler and ast-macros-and-mi
Xins)

Right now, there is no good macro preprocessor for Java. Annotations somehow come close but they don't really fit
the bill. In the Java VM, annotations are a runtime feature. You cannot enhance an existing class; only create new
ones. This means that you cannot add setters and getters to a class.

When you look at OR Mappers, they even do this at runtime, so there is no way to see what is actually happening:
When the error happens, the code which is executed can be completely different than what you see in the source.
Even decompiling the class file will not help anymore because the information isn't there, yet. It's only added when
the classloader reads the file.

So from a certain point of view, Sun's solution is the worst of all worlds: Your code is changed at a point in time
when you can't see it anymore and you cannot move the modification in the compile cycle because the API simple
doesn't allow it.

The Goal

To know where you want to go, you must have a goal. The goal here is to reduce the amount of code to write for a
certain feature. Specifically, the idea is to be able to move common, repeated code into a single place and be able
to reference it easily.

The code must be more flexible than a method call and easier to manage than cut&paste.
Example 1: Bound Properties

A bound property in a Java bean is a field which sends notifications to listeners when it is changed. This means it is
made up of these parts:

There is a list of listeners who are interested in changes

The field itself

Methods to add and remove listeners

Setter code which changes the value and notifies the listeners if the value has changed

Example 2: Merge Java and SQL

OR Mappers will only get you so far. While they will solve many or all problems, they also introduce new ones:

®* You have to learn to use the mapper

® You must still understand how a database works

® The mapper will try to connect the Java semantics to the Database semantics. This is not always
straightforward. For example, a table might define a non-unique primary key. There is no way to map this to a
Java map where primary keys must be unique or you will overwrite objects.

* When a mapper doesn't support a specific corner case, you're in trouble. Mappers are often quite monolithic

http://blackdragsview.blogspot.com/2006/11/chitchat-with-groovy-compiler.html
http://blackdragsview.blogspot.com/2007/01/ast-macros-and-mixins.html
http://blackdragsview.blogspot.com/2007/01/ast-macros-and-mixins.html

and they shove their tendrils in many places. Usually, you can't split it apart, injecting your own code in
certain places.

So what do we expect from AST Macros in this case?

® They shouldn't get in the way of the developer. If she choses to use an OR Mapper, she should be free to do
SO.

¢ |t should help to manage all the cases which the OR Mapper doesn't handle well.

® |t should give aid to interface the Groovy code with the OR Mapper.

® |t should allow to write code which directly interfaces the DB (for example, when you have to execute some
special SQL which the OR Mapper simply can't do).

Some simple examples:

® counting rows
® |oading objects from a DB

Examples
Before we look at solutions, let's look at what the code ought to do in the end.

Example 1: Bound Properties

class A {
@BoundProperty int x

should become

import javax.beans.*;

class A {
// the following is added only once per
class

PropertyChangeSupport
propertyChangeSupport

void
addPropertyChangeListener (PropertyChangeList

ner listner) {

propertyChangeSupport.addPropertyChangeListn
er (listener)

}

void addPropertyChangeListener (String
property, PropertyChangeListner listner) {

propertyChangeSupport.addPropertyChangeListn
er (property, listener)

}

void
removePropertyChangeListener (PropertyChangel
istner listner) {

propertyChangeSupport.removePropertyChangeLi
stner (listener)

}

void removePropertyChangelListener (String
property, PropertyChangeListner listner) {

propertyChangeSupport.removePropertyChangeLi
stner (property, listener)

}

PropertyChangeSupport]|]
getPropertyChangeListeners () {
return

propertyChangeSupport.getPropertyChangeListe
ners

}

// the following is added per each
annotated proeprty
private int x

void setX (int x) {

propertyChangeSupport.firePropertyChanged('x
', this.x, this.x = x)

}

int getX() {

return x;

specifically:

® When using code completion, the additional fields and methods should be visible.
¢ The added code should be lean and fast

This leads to a couple of demands which an AST Macro Processor (AMP) must met:

® |t must be able to see all fields and methods, no matter if the user supplied them or an AMP added them.

® |t must be able to add new methods and fields and static code to an existing class and presumably also to
classes created by an AMP

® |t must be able to reorder source code or at least AST Nodes.

In a perfect world, an AMP should be able to modify the code on a source level and pass it back to an IDE, for
example, so that | can see (and debug) what is actually compiled (instead of only seeing the Annotation).

Example 2: Merge Java and SQL

SQL enhanced code is pretty similar to bound properties but more code is generated. The first step is to define the
class which maps a database table to a Java object:

@Entity
class Foo

{

@Id
@Column (type:java.sql.Types.INTEGER)
int id

@Column (type:java.sql.Types.CHAR,
size:20)
String name

After this is compiled, | want to see a special field "SQL" which | can use to build database queries like so:

def columns = [Foo.SQL.value, Foo.SQL.name]
def cond = Sql.WHERE () { Foo.SQL.id >= 5 &&
Foo.SQL.name != null }

def list = Sql.SELECT (columns,
table:Foo.SQL.TABLE, where:cond,
class:Foo.class)

This gets converted by the compiler into:

def list = []
def sql = "SELECT id, name FROM foo WHERE
id >= ? AND name IS NOT NULL"
_sql = Sql.eachRow (_sql, [5]) {
Foo o = new Foo ()
o.id = it[0]
o.name = it[1]
list << o

The SQL object in Foo also gives access to the standard DAO methods like loading an object by its primary key:

def foo

Foo.SQL.load (5)

In addition to the simple bound property example, the AMP must also be able to note the usage of an annotated
object, so it can convert the Groovy code into SQL at compile time (and possibly check it for mistakes).

Open Issues

Java 1.4/5

Groovy 1.x must run on Java 1.4. We must decide what to do with non-macro annotations, whether we want to
support a switch to generate Java 5 classfiles (so Groovy can generate code for third party APTs like Hibernate)

It seems that it is possible to write annotations into Java 1.4 classfiles (see Commons Attributes). But the questions
is: Is this futile? There are only a few tools which support annotations and Java 1.4.

In this light, it makes more sense to add a switch to allow Groovy to write Java 5 classfiles, so users stuck to 1.4 can
still use it and Java 5 users can upgrade when they want to.

Expand or Pass On

The compiler needs a way to decide what to do with an official Java 5 annotation like javax.persistence.Enti
ty which is defined in EJB3: Expand it as a macro or pass it on into the class file so a third party library/tool can
process it later.

Here, the user might want to decide differently per class (i.e. handle most of these cases with Hibernate and some
corner cases with her own AST macro).

For Groovy-specific macros, the solution is to add a marker interface to the macro annotation.

Options

® Add a config file to the compiler
® Users have to use a different annotation which implements both Groovy's marker interface and javax.pers
istence.Entity

Links

Java 6 Annotations

Getting Started With APT (Java 6)

Annotation processing in Core Java (7th Edition)
OOPSLA paper on which Annotations are based

C Sharp Groovinator

One aspect of Groovy (and Ruby, Python , etc) I really like is the combination of closures and support for them in
the Groovy DK .

As an example, consider iterating through every line in a text file :

Groovy

http://jakarta.apache.org/commons/attributes/
http://java.sun.com/javase/6/docs/technotes/guides/language/annotations.html
http://java.sun.com/javase/6/docs/technotes/guides/apt/GettingStarted.html
http://www.horstmann.com/corejava/cj7v2ch13ex.pdf
http://www.bracha.org/mirrors.pdf

file = new File("c:/dynamic.ini");
file.eachLine{
println(it)

Very elegant and easy on the old eyes.

Java

BufferedReader input = null;
try {
input = new BufferedReader (new
FileReader("c:/dynamic.ini"));
String line;
while ((line = input.readLine()) !=
null) {
System.out.println(line);
}
} finally {
if (input != null){
input.close();

Oh dear.

Java with some help

Iteration.eachLine("c:/dynamic.ini", new

LineHandler () {

public void handlelLine(String line) {
System.out.println(line);

})i

and the supporting code :

public static void eachLine(String path,
LineHandler handler) throws IOException {

FileReader file = null;

try {

file = new FileReader (path); // Open the

file.

BufferedReader input = new
BufferedReader(file);

String line;

while ((line = input.readLine()) != null)
{
handler.handleLine(line);
}
} finally {

if (file != null) {
file.close();

}
}
}

C#

Apologies for my C#, | have not been writing it for very long...

string line;

using (StreamReader reader =

File.OpenText (@"c:\dynamic.ini")) {
while((line = reader.ReadLine()) !=

null) {

Console.WriteLine(line);

No need to escape path string is nice
C# 2.0 with some help

With C# 2.0 and the 2.0 .NET framework the addition of anonymous delegates we can produce a very concise and
readable solution

Iterators.EachLine(@"c:\dynamic.ini",
delegate(string it) {
Console.WriteLine(it);

})i

similar in elegance to the Groovy one.

This depends on the following utility class

public static class Iterators {
public delegate void Closure<T>(T it);

public static void EachLine(string
path, Closure<string> closure) {
string line = null;
using (StreamReader reader =

File.OpenText (path)) {
line = reader.ReadLine();

while (line != null) {
closure(line);
line =
reader.ReadLine();

}

Groovinating C#

You will notice that | have started implementing the Groovy DK set of collection iterators (each, findAll, find , etc) for
C# 2.0.

| do wish Microsoft and Sun would have built this kind of simplicity in....

There are 2 possible approaches to the Collections :

1. Subclass and add the grooviness
2. Add the grooviness as a set statci methods you plass the collection to

Here is some perlimenary code and tests of both types.
This subclasses List<T> and adds the groovination, and offers the same support ina static class

C# 2.0 Code

#region Using directives
using System;
using System.Collections.Generic;
using System.IO;
#endregion
namespace Groovinator {
#region Delegatros

public class Delegatros {
public delegate void Closure<T>(T

it);
public delegate T Functor<T>(T it);
public delegate bool Predicate<T>(T
it);
}
#endregion

#region Collection Iterators

public class List<T> :
System.Collections.Generic.List<T> {
public void
Each (Delegatros.Closure<T> closure) {
foreach (T it in this) {
closure(it);

public List<T>
FindAll (Delegatros.Predicate<T> predicate) {
//this is a bit poor
List<T> result = new List<T>();
foreach (T it in this) ({
if (predicate(it)) {
result.Add(it);

}
}
return result;
}
public T

Find (Delegatros.Predicate<T> predicate) {
foreach (T it in this) {
if (predicate(it)) {
return it;

}
return default(T);

public void
Map (Delegatros.Functor<T> functor) {
List<T> result = new List<T>();
for(int i = 0;i<
this.Count;++i){
this[1i]

functor (this[i]);

public static class Iterators {

// Collections
public static void
Each<T>(IEnumerable<T> enumerable,
Delegatros.Closure<T> closure) {
foreach (T it in enumerable) {
closure(it);

public static List<T>
FindAll<T>(IEnumerable<T> enumerable,
Delegatros.Predicate<T> predicate) {
//this is a bit poor
List<T> result = new List<T>();
foreach (T it in enumerable) {
if (predicate(it)) {
result.Add(it);

}

return result;

public static T
Find<T>(IEnumerable<T> enumerable,
Delegatros.Predicate<T> predicate) {

foreach (T it in enumerable) {
if (predicate(it)) {

return it;

}
return default(T);

public static List<T>
Map<T>(IEnumerable<T> enumerable,
Delegatros.Functor<T> functor) {
List<T> result = new List<T>();
foreach (T it in enumerable) {
result.Add (functor(it));

}
return result;
}
}
#endregion

#region File Iterators
public static class IOIterators({
// File related iterators
public static void EachLine(string
path, Delegatros.Closure<string> closure) {
string line = null;
using (StreamReader reader =
File.OpenText (path)) {
line = reader.ReadLine();
while (line != null) {

closure(line);
line =
reader.ReadLine();

}

}

#endregion

Some Usage Examples

// open, print all lines of a text file ,
close
IOIterators.EachLine(@"c:\dynamic.ini",
delegate(string it) {
Console.WriteLine(it);

})i

List<string> list = new List<string>();
// populate list

// print a list of string
list.Each(delegate(string it) {
Console.WriteLine(it);

});

System.Collections.Generic.IEnumerable<strin
g> res;

// find all items matching the predicate

item.Contaons("8")

res = list.FindAll (delegate(string it) {
return it.Contains("8");

})i

// find the first item where

Item.Equals("10")

string ten = list.Find(delegate(string it) {
return it.Equals("10");

}) i

List<int> nums = new List<int>();
for (int j = 1; j < 11; ++j) {
nums .Add (j);

// apply a functor (multiply by 2) to a
list of ints

nums .Map (delegate(int num) {
return num * 2;

})i

GJIT - Groovy Just-In-Time Compiler

Background

Groovy has a performance problem, compared with Java, due to its dynamic nature, while there are several
requests for performance improvement.

Proposed Solution

Implementing just-in-time compiler is a proper way to help boosting performance of Groovy. It would be great to
have a Groovy module (in this case a JVMTI agent) to help transform/redefine Groovy classes during runtime.

Primitive Operations

As of Groovy 1.6-beta series, its performance has been improved but there are still problems occurred from primitive
operations. All operand and results are heavily boxed and unboxed when primitive variables are used. The current
implementation of GJIT provides the algorithm to unwrap almost binary operations back to be primitive. Thus, it can
speed Groovy performance up when dealing with arithmetic calculation.

Implementation

This is the completely re-written version of GJIT. Basically, GJIT can be thought as a Hotspot-like compiler for
Groovy. However it is working outside JVM, and not a part of the virtual machine. GJIT uses JVMT], the virtual
machine tool interface, to:

1. Transform a class when it is being loaded, based on the assumption that the default metaclass provides the
default behaviour.
2. Redefine the class with the original one, when the metaclass of this class is modified.

Due to the use of JVMTI, GJIT supports Java 5 or later.

Usage

Add
-javaagent:gjit.jar

to your Java command line to use GJIT.

Missing Features and Known Bugs

® Primitive casts have not been processed properly.
¢ Class redefinition is not built in yet, it needs to tweak MetaClassimpl.

Grapes and grab()

Abstract

Grape (The Groovy Adaptable Packaging Engine or Groovy Advanced Packaging Engine) is the infrastructure
enabling the grab () calls in Groovy, a set of classes leveraging Ivy to allow for a repository driven module system
for Groovy. This allows a developer to write a script with an essentially arbitrary library requirement, and ship just the
script. Grape will, at runtime, download as needed and link the named libraries and all dependencies forming a
transitive closure when the script is run from existing repositories such as Ibiblio, Codehaus, and java.net.

TimeFrame

The prototype is ready for inclusion into the trunk immediately, however the principal dependent library used (Apach
e lvy) is a SVN snapshot. We should at least wait for a Beta 2 release and preferably for an RC release of the
library before merging into trunk. That makes it a possible 1.6 candidate, and more likely a 1.7 candidate.

General Requirements

* There must be a means to cause all calls to the Grape system to become no-ops and rely strictly on the JVM
classpath.

¢ Grape should support bringing in packages from Maven 2 repositories.

® There should be some notion of 'endorsed modules' that are shortcutted in for easier use. For example:
Scriptom, GroovyWS, SwingXBuilder. These can be hosted as regular Maven2 POMS or some other
repository mechanism can be used.

® There should be command line tools similar to RubyGems, to add, remove, enumerate, and update versions
of Grapes stored in the local cache.

* The implementation should not prevent movement into a container style module system such as integrating
OSGi or Java 7 Super Packages. (this requirement should not be construed as an endorsement of either)

Specification
Module versioning model.

Grape follows the vy conventions for module version identificaiton, with naming change.

® group - Which module group the module comes from. Translates directly to a Maven groupld or an Ivy
Organization. Any group matching /groovy[x][\..*]"/ is reserved and may have special meaning to the
groovy endorsed modules.

® module - The name of the module to load. Translated directly to a Maven artifactld or an Ivy artifact.

® version - The version of the module to use. Either a literal version '1.1-RC3' or an Ivy Range 2.2.1,)'
meaning 2.2.1 or any greater version).

Code Level Support

Annotation

One or more groovy.lang.Grab annotations can be added at any place that annotations are accepted to tell the
compiler that this code relies on the specific library. This will have the effect of adding the library to the classloader
of the groovy compiler. This annotation is detected and evaluated before any other resolution of classes in the script,
so imported classes can be properly resolved by a @Grab annotation.

http://ant.apache.org/ivy
http://ant.apache.org/ivy/
http://ant.apache.org/ivy/

import com.jidesoft.swing.JideSplitButton
@Grab (group='com.jidesoft’',
module='jide-oss', version='[2.2.1,)")
public class TestClassAnnotation {
public static String testMethod () {
return JideSplitButton.class.name

An appropriate grab(. . .) call will be added to the static initializer of the class of the containing class (or script
class in the case of an annotated script element).

TODO: How do we add a grab annotation to straight scripts? The current workaround is to annotate
something in the script that can accept an annotation, like a method or parameter.

Method call

Typically a call to grab will occur early in the script or in class initialization. This is to insure that the libraries are
made available to the ClassLoader before the groovy code relies on the code. A couple of typical calls may appear
as follows:

// random maven library
groovy.grape.Grape.grab(group: 'com.jidesoft'
, module: 'jide-oss', version:'[2.2.0,)")
groovy.grape.Grape.grab([group: 'org.apache.i
vy', module:'ivy', version:'2.0.0-betal’,
conf:['default', 'optional']],

[group: 'org.apache.ant’', module: 'ant’,
version: '1.7.0'])

// endorsed Groovy Module
// FUTURE grab('Scriptom')

* grab{Object—self —String—medulte),- grab(Object self, Map attrs), and grab(Object self,

Map attrs, Map... dependencies) will be added to the DGM so that references to the backing Grape

classes will not be needed. These will be proxies to the main Grape class calls.

Multiple calls to grab in the same context with the same parameters should be idempotent. However, if the
same code is called with a different ClassLoader context then resolution may be re-run.
grab is disabled by default. Starting calling Grape.initGrape () will enable grab. Any calls to grab before
initGrape () is called will be ignored. Hence Grape managed classloading is opt in only.
If the args map passed into the grab call has an attribute noExceptions that evaluates true no exceptions
will be thrown.
grab requires that a RootLoader or GroovyClassLoader be specified or be in the ClassLoader chain of the
calling class. By default failure to have such a ClassLoader available will result in module resolution and an
exception being thrown (if initGrape () has been called).

® The ClassLoader passed in via the classLoader: argument and it's parent classloaders.

®* The ClassLoader of the object passed in as the referenceObject: argument, and it's parent

classloaders.
® The ClassLoader of the class issuing the call to grab

grab{String} Isa-shoreutiorendorsed-groovymodule

TODO: all discussion of grab(String} are purely hypothetical as it hasn't been prototyped or the
needed infrastructure set up

grab (HashMap) Parameters

group: - <String> - Which module group the module comes from. Translates directly to a Maven groupld.
Any group matching /groovy (!\:- % | x\..)/ is reserved and may have special meaning to the groovy
endorsed modules.

module: - <String> - The name of the module to load. Translated directly to a Maven artifactid.
version: - <String> and possibly <Range> - The version of the module to use. Either a literal version
'"1.1-RC3' or an vy Range '[2.2.1,)' meaning 2.2.1 or any greater version).

conf: - <String>, default 'default' - The configuration or scope of the module to download. The default conf is
default: which maps to the maven runtime and master scopes.

force:- <boolean>, defaults true - Used to indicate that this revision must be used in case of conflicts,
independently of

conflicts manager

changing: - <boolean>, default false - Whether the artifact can change without it's version designation
changing.

transitive: - <boolean>, default true - Whether to resolve other dependencies this module has or not.

There are two principal variants of grab, one with a single Map and one with an arguments Map and multiple
dependencies map. A call to the single map grab is the same as calling grab with the same map passed in twice, so
grab arguments and dependencies can be mixed in the same map, and grab can be called as a single method with
named parameters.

There are synonyms for these parameters. Submitting more than one is a runtime exception.

group:, groupId:, organisation:, organization:, org:
module:, artifactId:, artifact:

version:, revision:, rev:

conf:, scope:, {{configuration:}}

Grape may want support simple ranges (2.2.1'.."') or 2.2.1'..<'3.0.0' meaning any version
greater than 2.2.1 but no 3.x version. But there are implementation problems, trying either of
these ranges creates a runtime error having to do with enumerating the list.

Arguments Map arguments
classLoader: - <GroovyClassLaoder> or <RootClassLoader> - The ClassLoader to add resolved Jars to
®* refObject: - <Object> - The closest parent ClassLoader for the object's class will betreated as though it
were passed in as classLoader:
® validate: - <boolean>, default false - Should poms or ivy files be validated (true), or should we trust the

cache (false).
® noExceptions: - <boolean>, default false - If ClassLoader resolution or repository querying fails, should we

throw an exception (false) or fail silently (true).
Tool level support
GroovyStarter

GroovyStarter has been enhanced with an additonal —--grab option. All three main arguments are required
(group, module, version). Resolved jars will be added to the RootLoader. These modules will be resolved prior to
the main class call.

LoaderConfiguration conf files

LoaderConfiguration has been enhanced with an additional 'grab' line option, where the option is followed by all
three arguments (group, module, version). Resolved jars will be added as though they were specifically mentioned
by a 'load' line option. These lines are similarly subject to property replacement as 'load' lines are.

<groovyc> support

The GroovyC ant task has been enhanced with <grab> child elements. The attributes group, module, and versi
on specify the module to grab.

| TODO: currently this doesn't work when fork='true'
File Level View

The downloaded modules will be stored according to lvy's standard mechanism with a cache root of ~/.groovy/g
rape

Command Line Tools

grape install <groupId> <artifactId>
[<version>]

This installs the specified groovy module or maven artifact. If a version is specified that specific version will be
installed, otherwise the most recent version will be used (as if ™' we passed in).

grape list

Lists locally installed modules (with their full maven name in the case of groovy modules) and versions.

grape resolve (<groupId> <artifactId>
<version>)+

This returns the file locations of the jars representing the artifcats for the specified module(s) and the respective
transitive dependencies.

Motivation

The motivation for introducing Grape into groovy is to resolve the library and module proliferation problem we are
encountering. As a general purpose language Grape is suitable for a lot of wildly variable tasks. Providing groovy
ways to do those things can crate 'bloat' because a large number of classes that are

Rational
Credit for coming up with the name Grape goes to J6rg Staudemeyer and grab Andres Almiray.

Use of Maven Repositories

Maven is big, there are tons of Java libraries that are already deployed in a well-known infrastructure. Because
almost all@ of these are straight Java they are all usable in Groovy out of the box.

Use of Ivy

® |vy is licensed under the ASL2, which is the same license as Groovy

® |vy is focused strictly on Repository Management. Maven has a strong Repository Management portion, but
also has other aspects not germane to the needs of the Grape system, namely build management and project
management. If the goal is to provide a means to drop unneeded code we shouldn't bring in unneeded code.

® |vy provides for an extensible repository resolution system. If we decide to roll our own Groovy Repository we
have the infrastructure to do it, we can also support other non-maven repository systems if needed.

Backward Compatibility

GroovyStarter does do some existing library management, namely loading every singe jar in ~/.groovy/lib into the
RootLoader. With Grape installed such behavior can continue, and is merely duplicate effort with no adverse
implications. In the 2.0 timeframe we may want to look into deprecating or removing the auto-include of the
~/groovy/lib directory.

Reference Implementaion

A 0.1.0 protptype is available. This shows the grab(...) method, the @Grab annotation, and command line tools.
Examples are available in subversion in src/examples, except for the annotation, where the best examples are in the
test class.

This version may conflict with Gant, only one of the Ivy files should exist under $GROOVY HOME/1libs. If the beta-1
jar is left in place then Grape may not work.

Future Directions

We may want to increase the kind of repositories that Grape can handle from simple lvy and Maven repositories to
other areas such as OSGi Repository Bundles , JNLP (WebStart) files and JSR-277 JAM files.

http://svn.codehaus.org/groovy/trunk/groovy/modules/grape-ivy/src/examples/
http://svn.codehaus.org/groovy/trunk/groovy/modules/grape-ivy/src/test/groovy/grape/GrapeClassLoaderTest.groovy

Groovy realtime archive internet lookup

What is Grail?
Groovy Realtime Archive Internet Lookup == GRAIL

This "grail" ideas are not related to the Grails web application framework.

What does it do?

Check IRC log below
The idea is to have something like RubyGems or CPAN for Groovy automating the resolution of dependencies on

external jars, and downloading them automatically %=/, the end of jar hell.

A list of potential features

® Dynamic class loading without using import statements...

® Maven repository support, with local/mirrors support,

® virtual mavens repos (a repository that does not exists, but is presented as such by an index that can point to
any jar, i.e. for Sourceforge based files, or other non ibiblio based jars)

® Support for version resolution, scoping

® Jar integrity verification

® the base for doing it: http://www.pmilne.net/Launcher/

Going forward

After a chat with Phil Milne, the author of Launcher.java, we could use his code as a base. He is also in!

The project could be called Jail (Java Archive Internet Lookup) instead of Grail, because it would be for any java
environments, not only Groovy.

The license would be a simple MIT style license.

Maybe hosted at Codehaus?

Grail Genesis : the Groovy 1.0 Beta 7 Release Process IRC logs...

08:36 <tug> Jstrachan: can you put the embeddable jar on the ftp download area, once built.

08:37 <jstrachan> happy

08:37 <Guillaume> we should also distribute this artifact as well

08:38 <jstrachan> you mean in the dist.codehaus.org/groovy/jars area?

08:40 <Guillaume> | guess so along the groovy.jar so that ppl can just choose one single jar with everything
included

08:43 <Guillaume> perhaps a sub-project, like xml-rpc | guess (for the xml-rpc.jar) with reactor?
08:43 <jstrachan> good idea
08:43 <jstrachan> hmm, no the subproject only gets copied into the binary distro not as a separate jar AFAIK

08:44 <tug> After build it creates target/embedable/groovy-all-xxx.jar
08:44 <tug> Include that jar file on it's own, in the ftp area, for ease of fetching...

08:44 <pombreda> Guillaume: instead of having one big jar, what about somethng like maven/ibiblio integration?
something like RubyGems http://rubygems.rubyforge.org/wiki/wiki.pl or CPAN?

08:45 <jstrachan> we've got the repo, maven, we just need to use in in a clever way

08:45 <jstrachan> | friend of mine has done a cool class loader to do this... http://www.pmilne.net/Launcher/
08:45 <Guillaume> pompreda, the big jar includes the asm jars into one big groovy+asm

08:46 <tug> Jez says: Can we put the bloglines example in the groovy src examples dir...

08:46 <Guillaume> tug-jez, good ideal!

http://grails.codehaus.org
http://www.pmilne.net/Launcher/
http://rubygems.rubyforge.org/wiki/wiki.pl
http://www.pmilne.net/Launcher/

08:46 <Guillaume> we'd need to add the http-client jar to the dependencies
08:47 <jstrachan> lets do that next release - its been chugging for 30 mins already

08:46 <pombreda> Guillaume: but for stuffs like xml-rpc getting based on Maven... integrated in Groovy... would be
way cool.

08:48 <jstrachan> it'd be cool to just type : x = new com.foo.something.Whatever()

08:48 <jstrachan> and for it to just work, downloading whatever it needs

08:48 <pombreda> Yehaa! happy)) that would rock!

08:48 <Guillaume> what if there are two com.foo.something.Whatever ? with three different releases?

08:49 <jstrachan> you setup rules for versions

08:49 <Guillaume> yeah, nobody reads the reports... useless

08:49 <jstrachan> e.g. use latest production relases or for 'foo' use version '1.2.3' latest production release is fine for
most people plus we should include metadata in the manifest of the versions we depend on so dependent jars
should match the release of each project

08:51 <Guillaume> and if groovy requires a specific version, but the script you're running would require another
one?

08:51 <jstrachan> things could certainly get nasty

08:51 <pombreda> | would rather get a ganifest than an ugly xml manifest?

08:51 <jstrachan> but you could do a nice simple

08:52 <jstrachan> versionScope

Unknown macro: { / do something with version 1 of foo }

08:52 <jstrachan> versionScope

Unknown macro: { / do something with version 2 }

08:52 <jstrachan> etc
08:52 <jstrachan> versionScope

Unknown macro: { it.setMinimumRequirement("foo", 2.0);

o)

08:52 <jstrachan> etc

08:52 <Guillaume> hmmm... with a specific classloader for the scoped stuff?

08:52 <jstrachan> yep

08:52 <Guillaume> in its own thread,

08:53 <jstrachan> threads don't matter, its the classloader that does

08:53 <Guillaume> interesting idea

08:53 <jstrachan> all the Launcher is, above, is a classloader that auto-downloads stuff it needs
08:53 <jstrachan> would be trivial to add to groovy

08:53 <jstrachan> expecially for use in IDEs / consoles

08:53 <jstrachan> where you just wanna script something quick

08:53 <jstrachan> and not spend most of the time setting the goddamned classpath

08:54 <jstrachan> I'm sure it'd be easy to make a versionScope() thingy introspectable, so you could enquire the
versions your using etc

08:54 <pombreda> and include some auto Md5 verif

08:56 <pombreda> jstrachan, Guillaume: this idea rocks... the end of jar hell unhappy(
08:59 <pombreda> what about a name for the version/jar loader? GRAIL

08:59 <pombreda> Groovy Realtime Archive Internet Lookup == GRAIL

08:59 <precipice> ha!

08:59 <Guillaume> pombreda, that sounds like the French verb "grailler" happy
09:00 <jstrachan> happy

09:00 <jstrachan> or just 'groovy' happy

09:00 <pombreda> Guillaume, it would eat jars, would it? "grailler"== eating in slang
09:00 <brianm> WOOT

09:01 <brianm> you talking the go-get-jar-from-maven at runtime thing?

09:01 <jstrachan> yes

09:01 <jstrachan> happy

09:01 <brianm> GRAIL is perfect

09:01 <jstrachan> I'm sold!

09:01 <brianm> heh, better than "go get" use a remote classloader

09:01 <Guillaume> the holy grail cheesy

09:01 <jstrachan> happy

09:01 <Guillaume> who's going to implement taht?

09:01 <brianm> Sun already did

09:01 <Guillaume> wasn't there someone supposed to have been working on it?
09:02 <jstrachan> it shouldn't take long to wire the launcher into the shell / console etc
09:02 <brianm> parsing out maven paths will be tricky =)

09:02 <jstrachan> it does this already

09:02 <brianm> the package -> project mapping is doable though

09:02 <jstrachan> its already done, check the link above

09:05 <pombreda> about GRAIL: some issue: ibiblio/maven is so unreliable... it is down every now and then ...
09:06 <jstrachan> mirrors

09:06 <brianm> should check local maven repo first

09:06 <jstrachan> maven supports mirroring of repos, or have your own local mirror of projects you're interest in etc
09:06 <pombreda> good point.

09:08 <pombreda> that could call for a project.groovy rather than a project.xml...

09:44 <pombreda> brian: about GRAIL, you said earlier : Sun already did. could you elaborate?

09:44 <brianm> the remote classloader

09:44 <brianm> all we need to do is figure out url for jars

09:44 <jstrachan> the Launcher implementation trawls the maven repo to build up indices AFAIK

09:47 <pombreda> but does'nt remote class loader runs has security constraints?

09:53 <pombreda> briaim: AFAIK: remote class loader can only originate jars from the same code base as the app.
09:53 <pombreda> Check http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html

19:52 <pombreda>Guillaume: about GRAIL, | will start a page in the Groovy space, and post an edited IRC log. OK?
19:53 <Guillaume>okey dokey

19:53 <Guillaume>you want to work on that?

19:54 <pombreda>yep. why not? we call it GRAIL or Grail?

19:54 <Guillaume>not too many caps "=

19:54 <Guillaume>you're welcome to work on anything you like ‘=

19:54 <pombreda>So? which one?

19:56 <oni> what is GRAIL?

19:58 <pombreda>oni: Groovy Realtime Archive Internet Lookup == GRAIL

19:59 <oni> pombreda and what does it do?

20:00 <pombreda=>oni: check today's IRC log at : http://servlet.uwyn.com/drone/log/hausbot/groovy
20:00 <pombreda>the idea is to have something like RubyGems or CPAN for Groovy

20:01 <pombreda>automating the resolution of dependencies on external jars "=, the end of jar hell

http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://servlet.uwyn.com/drone/log/hausbot/groovy

JSR-295 Binding Builder

This proposal is deffered and not under active development or consideration
The reason for deferral is that the JSR-295 API is too unstable. Since this posting it has gone under a major
re-design. It will not be revisited any earlier than the posting of the first proposed final draft for that reason.

Based off of an example in Scott Violet's last blog at sun, a BindingBuilder in practice would look something like this:

// code from elsewhere...

public class Bug {
@BoundProperty String ID
@BoundProperty int priority
@BoundProperty String synopsis
@BoundProperty String type

List<Bug> bugs = [...] // assuming generics
make it into 1.1

bugTable = theSwingBuilder.bugTable
summaryLabel = theSwingBuilder.summaryLabel
idTF = theSwingBuilder.idTF

descriptionTF =
theSwingBuilder.descriptionTF

typeTF = theSwingBuilder.typeTF
prioritySlider =
theSwingBuilder.prioritySlider

// the actual bindings
bindings = new BeansBindingBuilder ()
context = bindings.context() {
binding(source: bugs, target: bugTable,
property: 'elements’') {
binding(value: '${ID}') {

http://weblogs.java.net/blog/zixle/archive/2007/02/index.html

tableColumn(0)

}
binding(value: ' '${priority}') {
tableColumn(1)
}
binding(value: ' '${synopsis}') {
tableColumn(2)
}
}
binding(

source:bugTable,
value: '${bb:listSize(selectedElements)}
of ${bb:listSize(elements)} are selected’,
target:summaryLabel,
property: 'text')
binding (source:bugTable,
value: '${selectedElements.ID}', target:idTF,
property: 'text') {
textChangeStrategy (CHANGE ON_TYPE)
concatenatingCondensoxr(['"', '""', ','1)
}
binding (source:bugTable,
value: '${selectedElements.synopsis}’',
target:descriptionTF, property: 'text') {
textChangeStrategy (CHANGE ON_TYPE)
concatenatingCondensoxr(['""', ""', ', '1)
}
binding (source:bugTable,
value: '${selectedElements.type}’,
target:typeTF, property: ' 'text') {
textChangeStrategy (CHANGE ON TYPE)

concatenatingCondensoxr(['""', ""', ','1)
}
binding (source:bugTable,
value: 'S {selectedElements.priority}’,
target:prioritySlider, property: 'value')

context.bind()

Once | get a better feel for the existing code | can mock up what all the possible children would be.

Here's what the java snippets from the post are
context = new BindingContext();

List<Bug> bugs = ...;
Binding tableBinding = context.addBinding(

bugs, // Source for the binding,
the List of bugs in this case.
null, // Expression, relative to

the source, used in obtaining the property.
// For this example it's
null, meaning use bugs as is.
bugTable, // Target of the binding, a
JTable in this case.
"elements"); // The property of the
target to bind to.

tableBinding.addBinding(
"${1ID}", // Expression evaluated
relative to each Bug.
// In this case, it's
treated as bug.getID().
null, // Target value (I'm not
going to get into this parameter now)

TableColumnParameter, 0); // Specifies
the binding applies to the first column

tableBinding.addBinding("${priority}", null,
TableColumnParameter, 1);
tableBinding.addBinding("${synopsis}", null,
TableColumnParameter, 2);

Binding textFieldBinding =
context.addBinding(
bugTable, // Source of
the binding, the JTable in this case.
"${selectedElements.ID}", // Expression
relative to the source. Evaluates to the

// the id
property of each of the selected elements
idTF, // Target of
the binding, a JTextField here.
"text", // The target

property to bind to.

// The next line specifies the 'text'
property should change as you type.

// The default is to change the property
on enter/focus leaving.

TextChangeStrategyParameter,
TextChangeStrategy.CHANGE ON TYPE);

textFieldBinding.setListCondenser (ListConden
ser.concatenatingCondenser (

"\"", // The string placed before each
element

"\"", // The string paced after each
element

", ")); // The string that separates
each element.

context.addBinding(

bugTable, // The source of the binding,
the table in this case.

// The expression evaluated relative to
the source. Notice this makes use

// of the function "listSize", that
returns an size of the list supplied to it.

"S${bb:listSize(selectedElements)} of
S{bb:listSize(elements)} are selected”,

summaryLabel, // The target of the
binding, a JLabel here.

"text"); // The target property to

bind to

context.bind();

Macro Use Cases

Use this page to list use cases for AST-level macros in Groovy.

How do you want to use such macros? Show examples of their usage (without showing how they're implemented).

Add to the bottom of the page.
Increase code readability

Rearrange code portions

The end-weight principle for natural languages says the longer stuff should be at the end of a sentence.
In Groovy/Java, while and if statements are usually heavy in the block/statement, and light in the condition.
When the statement/block is short and the condition long, it can be more readable to put the block last.

Eg:

do{ i++; return c }if(
(severance.taxAmount >=

TaxYear2006.taxAmounts.severanceLimit|

'dependent’'] ||

is transformed to:
if(e o o e o o e o o){ i++; return

We could use 'unless' and 'until' if using 'if' and 'while' caused problems.

Common modifier

When a long list of methods and/or fields have the same modifier/s,
it may be more readable to apply them to a whole block, eg:

static{

def a(){ ... }
def b(){ ... }
}
becomes
static a(){ ... }
static b(){ ... }

Transform statements

Eg:

def genUniqueScriptName(){ static int i=1;
'Script ' + i++ }

becomes

class UniqueScriptName{ static int i=1;
static gen(){ 'Script ' + i++ }

triggered by the 'static' modifier of a field in a function.

Names for operators

Use names instead of symbols for operators, eg:
if(a and b)

becomes

if(a && b)

or change their names to something shorter, eg:
if(a of A)

becomes

if(a instanceof A)

Equivalence of block and statement

Forgoing curlies for all statements, making a statement and block equivalent always:
Eg:

try A.call()

catch(e) if(e instanceof ABCException) throw
new BusinessException()

Use other natural languages with Groovy

Enable fuller internationalization of Groovy, eg:

mientras(i < 10){ }

would convert to
while(i <10){ .v. «vv. ... }

if a Spanish option for Groovy was loaded.

More Seamless Integration with Java and Java-like languages

Embed Java code within Groovy without quoting it,
and without needing to bind variables to the same name, ie, no binding.setVariable("', i).

eg:

int i= 0
java('jdkl.5.0 07'){ System.out.println i;
class }

Simplify the Antlr lexer/parser

Many existing syntactic sugars could be re-implemented as macros in a standard macro library.
This might simplify the Antlr lexer/parser, enabling better maintenance of and extensions to it.

Eg, properties where:
String reading= 'OK
expands to:

private String reading= 'OK'

public String getReading(){ this.xxxx }
public void setReading(String s){
this.xxxx= s }

Other examples:

® for(iin...) expanding to code using iterator
¢ shorthand notation for invoking method with closure/s at last parameter/s

MetaClass Redesign (by blackdrag)

This page is dedicated to the new Design of the MetaClass.

General Problem

It seems that we need 2 parts for MetaClass, one for the implementation and one for the user to customize the
behavior. The reason for this is, that the customization is done by subclassing the implementation part. This means
it is impossible to stay in the specification part (classes from groovy.*) to do a all day thing. Additionally the method
signatures must be fixed to not to break code.

Current Behavior

Currently we do something like:

class MyMetaClass extends MetaClassXY {
public Object invokeMethod(Object o,
String name, Object[] args) {
preProcessing();
super.invokeMethod (o, name,args);
postProcessing();

® preProcessing might change the arguments, name or call object, or might just do some logging.

® postProcessing might evaluate the return value of the method call, call additional methods, or just do logging
® every part here might end the invokeMethod method, that means super.invokeMethod might not be called

This is very flexible, it allows interception and logging as well as transformation at the same time.
Basic Design

If we want to separate the two cases (runtime MetaClass, user defined MetaClass) in two classes, then one must
call the other. As the user part should stay in the specification, it can't know the exact class of the runtime, or which
method to call there. This means the user part must be called from the MetaClass in the runtime. Since we are not
able to call "super" then we need an additonal Object, that we make the call on:

Call Chain

class MyMetaClass extends MetaClassXY {
public Object invokeMethod(Object o,
String name, Object[] args, CallChain chain)
{
preProcessing();
chain.invoke (o, name,args);
postProcessing() ;

interface CallChain {

Object invoke(Object base, String name,
Object[] args)
}

class RuntimeMetaClass {
Object invokeMethod(Object base, String
name, Object[] args,) {
process (args)
MetaClass mc = getMetaClass()
if (mc!=null) {
return mv.invokeMethod (base,name,args,
new CallChain() {
Object invoke(Object base, String
name, Object[] args) {
return
doReallInvoke (base,name,args...)

}

}
} else {

return doRealInvoke(base,name,args...)

That's a bit like the continuation passing style.

Disadvantages

* A custom MetaClass results in creating a ChainCall object each time an method of that class is invoked.

Advantages

® The old behavior can be preserved and guranteed

Multiple Behaviors controlled by Class

If we want to split the behavior, then we could have an interface for each of the cases

interface MetaClassInterceptor {

// thorws MissingMethodException if no
interception is done, which results in
normal method invocation

Object invokeMethod(Object base, String
name, Object[] args);

}

interface MetaClassLogger {

// throws never MissingMethodException
and does not change the arguments

void invokeMethodEntry (Object base,
String name, Object[] args);

void invokeMethodExit (Object base, String
name, Object[] args);

}

interface MetaClassTransformer {
// basically the same as above

Object invokeMethod(Object base, String
name, Object[] args, CallChain chain);

}

class RuntimeMetaClass {
Object invokeMethod(Object base, String
name, Object[] args,) {
process (args)
MetaClass mc = getMetaClass|()
if (mc!=null) {
Object result = null;
MetaClassLogger logger=null
MetaClassInterceptor interceptor=null
MetaClassTransformer transformer=null
if (mc instanceof MetaClassLogger)
logger = (MetaClasslLogger) mc
if (mc instanceof MetaClassInterceptor)
interceptor = (MetaClassInterceptor) mc
if (mc instanceof MetaClassTransformer
) interceptor = (MetaClassTransformer) mc
try {
if (logger!=null)
logger.invokeMethodEntry (base, name,args)
if (transformer!=null) {

transformer.invokeMethod (base,name,args, new

CallChain() {
Object invoke(Object base, String

name, Object[] args) {
return

invokeWithInterceptor (interceptor,

base,name,args...)
})
} else if (interceptor!=null) {
return

invokeWithInterceptor (interceptor,
base,name,args...)
}
} finally {
if (logger!=null)
logger.invokeMethodExit (base,name,args)
}
} else {
return doReallInvoke(base,name,args...)

Maybe it is a bit overkill, since a transformer can act as interceptor, but a logger is surely more lightweight than a
interceptor or transformer.

Disadvantages

¢ the common case still requires a ChainCall object each time an method of that class is invoked

Advantages

* the logging case does not influence the invokation so much
General Disadvantage

The general disadvantage of the seperation is that we need to associate the custom MetaClass and the runtime
MetaClass. Again | see two ways:

1. let the runtime get the custom MetaClass:

class RuntimeMetaClass {
Class theClass;
MetaClass getMetaClass() {
return registry.getMetaClass(theClass)

}

A null entry in the registry would then mean, that no custom MetaClass is set, in case of GroovyObject, the
logic must be changed a little because null here means just no per instance MetaClass. As there is only one
runtime MetaClass and several behaviors this means that it is not possible to do

metaClass.getProperties()

or something alike. Again we could add an interface and make the runtime MetaClass ask the custom
MetaClass or to provide an additional set of Properties and Methods at initialization, but then we get another
set of interfaces and the runtime MetaClass msut keep track of the changes in case a new custom MetaClass
is set.

2. let the runtime assign the runtime MetaClass to the custom MetaClass:

class MyCustomMetaClass extends MetaClass {
MyCustomMetaClass (MetaClass rmc, MetaClassRegistry mcr) {
super (rmc,mcr)

}

interface MetaClass {
MetaClass getChainedMetaClass()
List getProperties()

class MetaClass {

List getProperties(){return runtimeMetaClass.getProperties()}
MetaClass getInnerMetaClass() {return runtimeMetaClass}

So this works much like our ProxyMetaClass. The behavior is much like the old MetaClass, just the signature
of invokeMethod for example changes from (Object,String,Object(]) to (Object,String,Object[],ChainCall). It is
then no longer possible to invoke a method using invokeMethod directly, it is then only for internal use. Which
is no problem, as long as we keep an alternative way for Java as we currently have with InvokerHelper.
Multiple chained MetaClasses are also possible this way, the implementation must just keep that in mind and
iterate through all of them when making a call. This again is very unlike the ProxyMetaClass we currently
have. | would strongly suggest to make MetaClass no interface then and to remove ProxyMetaClass,
because the MetaClass then fulfills already the requirements of ProxyMetaClass. Another solution would be
to not to let it act as proxy, but to require an additional method:

class MetaClass {
QueryableMetaClass
getQueryableMetaClass () {
MetaClass mc = this
while (! (mc instanceof
QueryableMetaClass)) {
mc = mc.getChainedMetaClass ()

}

return mc;

Where getChainedMetaClass behaves like above, meaning, it returns the next MetaClass, the last MetaClass is
then the runtime implementation. This version means the usage is

metaClass.queryableMetaClass.getProperties ()

instead of the old

metaClass.getProperties()

but it means also, that we can keep the MetaClass interface/class very clean and don't need to add other methods
but the methods required for chaining, which we could even make final. Any additional behavior is then controlled by
the interfaces | have shown above. This way we could make an MetaClass that intercepts methods, but not
properties or fields. Or a version that does logging only on Properties, but does not interfere with normal method
invocation. | am aware that this means to have many interface.. 9 then (Interceptor + Transformer + Logger for each
of Property, Field and Method) or 6 (if Transformer and Interceptor are unified)

1. The custom behavior is unable to tell the difference between a call to super, a call from inside the class, or a

normal call from a context outside (could be solved with additional different interfaces)

General Advantage

* implementation and custom behavior are separated

* we can split the runtime MetaClass in a mutable and immutable part and reconstruct the immutable part on
demand

¢ custom MetaClasses becomes more lightweight, since no full initialization step is required for each custom
MetaClass and the heavy part can be shared by multiple custom MetaClasses

More efficient custom MetaClasses

Additionally to the traditional Design we could also have a new Design, where we don't take part in the CallChain,
but produce a MetaMethod (or property).

interface MetaClass2 {

MetaMethod getMetaMethod (Object base,
String name, Object[] args)
}

class MyMetaClass extends MetaClass
implements MetaClass2 {
MetaMethod getMetaMethod (Object base,
String name, Object[] args) {
if (name.equals("foo")) return
myFooMetaMethod ()
return null

which means this method is called in case of a cache miss, and not every time. Returning a MetaMethod we can
control if we would like to add the method to the cache or not through the isCachable() method on MetaMethod. We
could also change the interface a little and force the call to getMetaMethod even if there is no cache miss. The
advantage is, we can still intercept methods, but in a more efficient way, because we don't need to throw a
MissingMethodException. And we can use the cache directly if we do not force method selection through this clsss
each time, which makes it very fast.

Proposal

So my proposal is to chain the MetaClasses as shown above, to have a more or less empty MetaClass class which

does only the chaining and to have interfaces controlling all aspects of the method invocation (or for
properties/fields) like | have shown with logger and transformer or MetaClass2. Having
metaClass.queryableMetaClass.getProperties() means to have less methods on MetaClass and since these
MetaClasses do normally not add real methods. It would make sense to do so, but metaClass.getProperties() is not
really a problem.

Variations

* |Instead of chaining the MetaClasses like above, we could also have a central MetaClass and just add
behavior using interface like the ones | shown (transformer, interceptor...). This would mean to change
GroovyObiject, because get/setMetaClass becomes meaningless then. If we use a proxy like mechanism,
then we end in something that looks almost as the one above, but even more complicated.

® | tried to find a way to keep the call to super, but | was unable to find out how wihtout using a ThreadLocal
workaround, which | would like to avoid.

MetaClass Redesign (by blackdrag) part 2

In MetaClass Redesign (by blackdrag) | tried to show some ideas of how such a redisgn might look like and what the
advantages and disadvantages might be.

groovy.lang.MetaClass

In this part | want to show a more detailed version of one idea. that is a implementation based MetaClass is in front
and the user can add custom behaviors. This limits the basic MetaClass interface to mere adminisatrative methods

package groovy.lang;

public interface MetaClass ({
// MOP
void addMOP (MetaClassObjectProtocoll mop);
MetaClassObjectProtokoll

removeMOP (MetaClassObjectProtokoll mop);

// add methods and properties
void addMethod (MetaMethod mm);
void addProperty(MetaProperty mp);
void addConstructor (MetaMethod mc);

// listener for MetaClass changes

void addMetClassListener (MetaClassListener
mcl);

void
removeMetaClassListener (MetaClassListener
mcl);

MetaClassListener([]
getMetClassListeners();

}

So the central point is addMOP, which allows to customize the method invocation for example. Besides this there
are some methods for mutating the MetaClass (adding properties and such), a standard listener interface that allows
to react to additions of properties for example. The implementation of this is not relevant for the user as it is thought
as specification. The implementation depends on the Grovy runtime and might differ from other runtimes if there are
ever such runtimes.

Usage of groovy.lang.MetaClass

If the user wants to influence themethod invocation process for example, then he has to implement the
MetaClassObjectProtokoll interface, which | will show later. In this section | want to show how to create a per
instance MetaClass and how to use it.

changing a MetaClass in the registry

//o0ld

coderegistry.setMetaClass (theClass,myMetaCla
SS)

// new code

metaClass =

registry.getMetaClass (theClass)metaClass.add
Behavior (myMOP)

// or in one line
registry.getMetaClass (theClass) .addMOP (myMOP

)

So the one-line codebecomes a more complex two-line code, unless we decide to change MetaClassRegistry to
make that by itself.

creating and changing a per instance MetaClass

The old code was like this:

groovyObject.metaClass = myMetaClass

The new code will look like this:

groovyObject.metaClass.addMOP (myMOP)

So the change here is minimal. The code to create a per instance MetaClass is hidden by the implementation and
might differ. This of course means that the class GroovyObjectSupport, which is part of groovy.lang has
implementation knowledge inside. So a implementator must change this class to his version of the runtime.

Using the Listener to MetaClass changes

(add interface)

Consequences

MOP 2.0 ideas

A small collection of ideas for MOP 2

ideas by Jochen:

we should no longer directly invoke methods like equals, setProperty and such.(see GROOVY-2635 for
example)

we should think about changing GroovyObject into a pure marker interface (if setProperty is needed in the
logic we have problems)

the MetaClass should be able to overwrite all methods including setProperty (this implies that we do not
directly call setProperty)

Comparable needs a rethought. This interface is not well to be used if you have to handle objects of different
types

it would be nice to be able to define only one operand like < or > instead of having to define both. At last
being able to define these additionally

we have to test if creating direct method call classes in call sites is doable. This would be like Reflector, but
only for a single method, allowing the JIT to inline the method without much hazzle. currently reflection means
to have a border where the JIT can not really inline the call. Maybe we should also have different modes
here, to allow users to still use reflection if this version has a problem on certain VMs or in certain scenarios
as a design goal | would like to transform the MetaClass from a directly method invoking to a request oriented
method returning class. This would be especially interesting for call site caching. The user could still write his
invokeMethod method, but instead of calling that method directly in the Metaclass we would let the MetaClass
return a method wrapper that can do the call to invokeMethod.

I would also like to add a Listener to each MetaClass which allows other parts of the program to be informed
when a MetaClass is changed in any kind. This could probably also be used to invalidate call site caches.

A version information added to the MetaClass allows a very fast check for changes. We could also think
about adding an additional version cache for method names. the idea here is to have a simple array and to let
a call site cache the index to the array, which means the index is equal to a complete method signature or
only to name. By checking the information in there(for example an referential identity check with the cached
method) would allow the call site to quickly know if it needs to update or not. Such an array would grow other
time if it needs to reflect dynamically added methods as well. So we should do this maybe only for the default
methods.

another design goal should be that if a code modifies a Metaclass, then as much changes as possible should
be done by the thread modifying the metaclass. that means that this thread will for example call all the
listeners, probably update caches, reorganize structures.. what ever

The allow call sites faster access without going through the registry it would be good to have some kind of
handle that can be used to directly access the MetaClass. This means that either the real MetaClass must not
be replaced (only on the implementation side of course) or that the handle is update if a replacement
happens.

I would also like to add a module concept based on different meta class registries. For this a class using a
module will contain some kind of information that will cause all code directly in this class to use only the meta
classes from the registry and probably no per instance meta class. As some kind of namespace is required to
differentiate one module from another we could couple this with the package "package foo with module" or by
using a package like reference to a constant "module Foo.myRegistry" (Foo is a normal class, myRegistry is
a final @ public static field of type MetaClassRegistry or an alibi type. Annotations seem not to be fitted for
this, as they would have to use enums, classes, primitives or strings and none but strings seem to fit that.
enums won't work as | would have to define all possibilities in the runtime not allowing the user to define his
own ideas of how it should work. Using classes would work, but where is the connection here to make it clear
what we mean? primitives lack memorization, the user would have not only to remember a number, he would
also have to make sure that it is not used somewhere else too. Strings are better, but there might still a name
conflict. An Annotation would be doable if we want to make the module per class, but | am not sure this
makes much sense.

we should also look if we can not reduce the amount of MOP methods. We need one for each non public
method, true, but we possibly do not need all these super$ methods

as Java still does direct calls we should think about adding the ability to methods to check if their MetaClass

has a new version for this method. This way Java could easily access the meta class stored method. Of
course we then have to also find a way to access the original method as well, as this method may be needed

® we should also think if we should add mechanisms we add for method calls should also be added for property
access.

® we need to look at method caching in builders.... or maybe this is not needed as a builder might not be
executed often

® for the meta class implementation we should also think about having special method selectors like | have in
ClosureMetaClass.

* if we do call site caching, then we should probably remove the method caching inside the MetaClass,
especially if we add specialized method selectors

® a point of discussion is if a method added to the parent classes metaclass should also affect the current
metaclass or not.

® we need also to test if rewriting the method itself at runtime is possible and what it will cost.

® we need to investigate if inlining primitive type operations at compile time is possible. This can help avoiding
boxing and direct usage of primitive types. Of course before doing something like that we would have to
check the Metaclasses and all operations if this is allowed. If we do the idea with the method signature arrays
we could also define constants for certain operations like +,-,*,/ to do the check very fast. If | do for example
1+1 | could compile this as: "if (Integer.metaclass.version==0 && Integer.metaclass.ops1==0) {iload 1; iload
1; iadd;}" 0 would show it is the default version and 1 is a numeric constant to see if the operation + is still the
default or not.

®* maybe the module concept can be used to enable calling private methods/fields. With this we could disable
access to private from outside the class per default.. of course onlny after we solved the Closure problem
(information loss with getProperty)

® invokeMethod should loose its double role for being a method missing and at the same time a direct
invocation way from Java

Multiple Assignment Proposal
Superceded

Note that an initial implementation of multiple assignment is already built in to Groovy 1.6 and
above. This document is kept for historical purposes and because it contains suggestions for
advanced features not yet implemented. See Multiple Assignment for more details of the current
implementation.

Introduction

This page looks at proposed changes to the Groovy language to support multiple assignment. Such support would
allow for code such as:

a, b =D>b, a // will transparently handle
any temporary storage

list = [1, 2, 3]
def (c, d, e) = list
assert c==1 & d == 2 && e == 3

It is meant to be a discussion document, not a formal definition, we will work out the impact on the grammar etc.
once we clarify our intention.

Single Assignment

Some existing declarations involving single assigment:

def a = 'a' // for examples below
def b = 'b' // for examples below
def ¢ = '¢' // for examples below
[/====== Existing: Java style, simple case

(Proposal leaves unchanged)
def x1,yl,zl = a // only zl is equal to a,
the others are undefined

assert x1 == null

assert yl == null

assert zl == a

[/====—= Existing: Java style, list case

(Proposal leaves unchanged)
def x2, y2, z2 = [a,b,c] // only 22 is equal
to [a,b,c], the others are undefined

assert x2 == null

assert y2 == null

assert z2 == [a,b,c]

/[/-——=——- Existing: Java style, multiple

equals case (Proposal leaves unchanged)
def x3 = a, y3 = b, 23 = ¢ // obvious
assert x6 == a

I
o

assert y3 =
assert z3 =

]
Q

[/======= Existing: Java Java style,
multiple lists case (Proposal leaves
unchanged)

def x4 = [a,b], y4 = [b,c], 24 = [a,c] //
obvious

assert x4 == [a,b]
assert y4 == [b,c]
assert z4 == [a,c]

Variable declarations

In order to not conflict with existing definitions, any variable declaration which wishes to make use of multiple
assignments must surround the 'tuple' of variable declarations in round brackets. Whenever such a round bracket is
found, the compiler will match the tuple with a list. The list will be expected to be where it would be in the case of
single assignment. The compiler will 'unpack' the list into the tuple of variables.

def (x5,y5,z5) = [a,b,c] // common
type goes before round brackets

def (x6,y6) = [a,b], 26 = ¢ //
x,Y,2/5,6,7 must all be undefined

def list = [b, c]
def x7 = a, (y7, z7)
be explicit or implicit

list // list can

assert x5 == a && x6 == a && x7 == a

assert y5 == b && y6 == b && y7 == b

assert z5 == ¢ && 26 == ¢ && 27 == cC
Nested variations are also supported (this may be deferred initially):

def ((x8,y8),28) = [[a,b],c]

assert x8 == a && y8 == b && 28 == c

Differing sized tuples and lists are catered for by ignoring extra list members and leaving any untargeted variables in
the tuple set to null:

def (x9,v9,z9) = [a,b]
assert x9 == a && y9 == b && 29 == null

def (x10,y10,z10) = [a,b,c,d] // 4 unused
assert x10 == a && yl0 == b && 210 ==

There can be at most one [at the end like varargs?] 'tuple spread' operator which takes the rest of the list:

def (firstll,*restll) = [a,b,c,d]

assert firstll ==
assert restll == [b, ¢, d]

Setting a bunch of variables to the same (or related) values is accomplished using normal list conventions:

def (x12,y12,z12) = [a] * 3
assert [x12, yl12, z12]

= [a, a, a]

N

def (x13,y13,z13) =0
assert [x13, y13, z13

] == [0, 1, 2]

def string = 'abcdefghi'’

def (x14,y14,z14) = (1..3).collect{
string[0..it*2]}

assert [x14, yl4, z1l4] = ["abc", "abcde",
"abcdefg"]

The tuple list is strictly a list (apart from the nesting seen earlier) and may not contain assignments itself:

// INVALID
def (x15 = ¢, yl1l5, z1l5) = [a,b,c]

Example involving nulls:

def (x16,y16,z16)

assert x16 == null
assert yl6 == null
assert z16 == null

Examples involving real world use:

def (name, addressl, address2, postcode) =
myData.tokenize("\n").toList ()

// acts like first/head/top

def (name) = myData.tokenize("\n").toList()
// equivalent to above but 'self
documenting'

def (name, *ignored) =
myData.tokenize("\n").toList ()

Use in Expressions

The left hand side (LHS) of an expression involving the simple assignment operator, =, can be replaced with a tuple.
In this case, the variables will be predefined or binding variables and the result of the RHS of the expression will be
a (possibly coerced) list which will be unpacked into the tuple.

def list = [a, Db]

def x17, yl7

(x17, yl17) = list

assert [x17, yl1l7] == [a, b]

Where it is not ambiguous, the round brackets can be removed from the tuple list when used in such expressions,
so the above could be written as:

x17, yl7
y17)

list // LHS turned into (x17,

If the right hand side after any assignment operator contains a comma separated list of subexpressions, they will be
assumed to make up a list (i.e. automatically turned into a list), so the above could be written as:

x17, y17 = a, b // RHS turned into [a, b]

[Note: the above probably requires lots of pouring over the grammar!]

If you find you need a tuple with different typed items inside, use an expression form rather than the variable
declaration form which requires the types to be the same, e.g.:

def myMonth(){ [2000, "Jan", 1] }
String month

int day, year

(year, month, day) = myMonth()

Unlike with declarations, the LHS doesn't need to simply be a variable:

def map = [a:1l, b:2]
(map.a, map.b) = [3, 4]

assert map == [a:3, b:4]

a = 10..15

i=3

i, a[i] = i+1, 20

assert i == 4 && a[3] == 20 && a[4] == 14

Other examples which need to work:

x =0
a, b, c=x, (x +=1), (x += 1)
assert [a, b, ¢] == [0, 1, 2]

year, month, day = "2007-03-20".split('-")

Other assignment operators

These may not be implemented initially, but we attempt to define them here. It includes these:

*= /= = 4= —= <<= D= >O>>= &= = =

First, a tuple on the LHS of a special assignment operator:

a, b *= 3

// form list [a, b] (tuple spread operator
ignored here if present)

// call multiply() operator with arg 3

// unpack result into (a, b) tuple (spread
operator applies to unpacking)

// example

def x18 = a, y18 = b

x18, *yl8 *= 3

assert x18 = a

assert y18 = [b, a, b, a, b]

Now, an example with special treatment on the RHS:

yourObject *= 1, 2
// calls the multiply() method on yourObject
with the list [1, 2]

As an alternative to the semantics described here, we could define 'a, b *= 3'tobethesameas'a *= 3; b *=
3'. This seems more useful but then if the semantics were to be consistent, then 'a, b = 3'should mean'a = 3;
b = 3.

Use in Method declarations

No change, no grouping of method parameters is supported, i.e. the following is invalid:

// INVALID
def myMethod((a, b), ¢) { ... }

See Also

http://jira.codehaus.org/browse/GROOVY-158

http://jira.codehaus.org/browse/GROOVY-158

Multiple Assignment

Multiple Assignment

Groovy supports multiple assignment, i.e. where multiple variables can be assigned at once, e.g.:

def (a, b, ¢c) =1
assert a == 1

You can provide types as part of the declaration if you wish, e.g.:
def (int i, String j) = [10, 'foo']

As well as used when declaring variables (as above) it also applies to existing variables, e.g.:

def nums = [1, 3, 5]
def a, b, c
(a, b, ¢) = nums

I
I
Ul

assert a == 1 & b == 3 && c
The syntax works for arrays as well as lists, as well as methods that return either of these, e.g.:

def (_, month, year) = "18th June
2009".split ()

println "In Smonth of S$year" // => In June
of 2009

Overflow and Underflow

If the left hand side has too many variables, excess ones are filled with null's, e.g.:

N
b

’

def (a, b, ¢c) =1
assert a == 1 & b

Il
I
N
2
4}
Q
Il
I
=
s
[
[

If the right hand side has too many variables, the extra ones are ignored, e.g.:

def (a, b) = [1, 3]

2,
assert a == 1 & b

il
il
N

Notes:

® currently only simple variables may be the target of multiple assignment expressions, e.g. if you have a pers
on class with firstname and lastname fields, you can't currently do this:

(p.firstname, p.lastname) = "My name".split()

® currently multiple assignment cannot be used for declaring multiple class fields and initializing them as:

class Foo {
def (i,3j) = [1,2]
}

Multiproject builds

| think the biggest challenge for our build system is how to implement multiproject builds. It is likely that most of
users will do multiproject builds.

Vision
¢ Gant enables DRY for multiproject builds. This is were Ant has massively failed so far.

¢ Gant offers an intuitive way to write a multiproject build.
¢ Gant offers out of the box functionality for standard Java build tasks, which will grow from release to release.
® Gant offers maximum flexibility for customization. This is were Maven has massively failed.

Directory structure for multiproject builds

| think it is good to be very flexible regarding the possible directory structures. For Steven's use case it was good
enough to assume that all projects are toplevel folders of the root folder. But there are many situations were this
structure is not expressive enough and therefore should not be imposed.

In my last project we had a structure like:

® gshared

® client
. '

® services
® services-shared
® servicet
. e
® serviceN
And I'm sure there are much more complicated project structures out there which can't be changed or people don't

want to change them. | propose to have only one assumption. There is a root folder were we (might) have a top level
buildfile and all projects folder must be contained somewhere in this root folder.

Determining the projects to be build

Even if | do not consider pathological cases, automatically determining the projects to be build is not easy or at least
not cheap. The rule would be that everything is a project which contains a buildfile. If we look at the projects layout
described in the section above (nested projects), we would have to scan many, many folders to look for the buildfiles
(e.g. src/main/java/org/codehaus/.....). We could try to be smart and have the policy not to look in folders with name
src. But the name src is just a convention and could be changed by the user. We could read the configuration of a
found project first and then continue our search. But there might be some folder in a project with many files and
subfolder which just sits there (e.g. not in use any longer but people don't want to delete it). For every build that is
triggered we would have to scan this folder to look for buildfiles. | think an easy way out of this problem is that
people have to declare the projects to be build in a top level build file. This has also the advantage to have a static
file containing the projects layout.

Implementation

I've been thinking a lot about this in the last days. | think | have a solution I'm happy with now. It is very much
inspired from looking at the code of buildr.

Endresult

After processing all the build scripts, our new Gant will produce one classic Gant build script (im memory). So the
complete multiproject build is finally described by exactly one flat list of targets which are related by dependency
relations.

How to get there

Every subproject is represented by an instance of a Project object. This Project object is amongst other things a
container for target object. For each Project object we create a set of default target instances (e.g. compile, test, ...)
which we add to the Project object. Every Project must have a unique name (parent-project-name + project-name).
The target instances of a Project object have the name: project-name+target-name.

Customization of the default targets

The default targets are not simple target objects. | think about creating for example a class Compile which extendss
the class Target. That means the compile target is a target but also a special compile object, that offers methods for
customization and of course the action for actually doing the compile.

In our build script we could write for example target ("compile").with classpath. Or even better compile.
with classpath.

Adding new behavior

For this feature | guess we have to extend the classic Gant a little bit. We might make it a bit more Rakish. Basically
| have two additional methods for a target in mind:

® target("compile").dependsOn(otherTarget1, otherTarget?, ...)

¢ target("compile").addAction { ... }

To add behavior we can now either create a new target in our build script and make a default target dependent on it.
Or we can simply add behavior to an existing target, which gets executed after the default behavior is executed.

When | talk about the build script | have in mind that every subproject has its build script. That means the behavior
changes described above only apply to the build of this particular subproject. If we want a more general change, we
have a couple of possibilities. In the build script of a parent project we can say:

¢ something like this.getChildren().each(add behavior)
® addRecursiveTarget(target)

Interproject dependencies

| think we don't have to explicitly declare them. If there is such a dependency, it means somewhere in the build script
of the project that depends on the other project, it refers to this other project anyway. For example compile.with
project("otherProject").classpath.

Conclusions

Of course there are many details to hammer out. But I'm confident enough now to start implementing something
based on the above ideas if we all think this makes sense.

Proposed Website Revamp

New web page mockup

|@ Grails - Home - Microsoft Internet Explorer l._"il

. Fichier Edition Affichage Favoris Outlls 7

@Précédente v J @ @ \kh /'f) Rechercher \;\\'(Favoris @ E}z- :_; d v |_J ﬁ 'ﬁ

: Adresse |@ httpe figrails.codehaus, orgf M oK
: Liens @ eTempt@tion Q Gestion Guestbook Free @ Stats JunkBond @ B.A.-Ba de la Féte @ Fétes par Fétes Q Yahoo! @ eBuyClub a Crédit Agricole ® '@ T
~
HOME DOVNLOAD DOCUMENTATION COMMUNITY ’_
Java for $10/hr Spring Framework Training
Think Globally Eazy as Hira, Manage, Just 1 place |eft! Learn Spring with Rod
Pay Johnsen in London on 28/03
Ads by Goooooogle Advertise on this site

Experience agile dynamic programming with Groowy

& DOCUMENTATION

Installation
Grails stands for Groovy on Rails and aims to bring the "coding by convention" paradigm to Groowvy, 1t's an open- Quick Start
source web application framewark that leverages the Groovy language and complements Java Web developrment.
You can use Grails as a standalone developrnent environment that hides all configuration details or integrate your User Guide
Java business logic, Tutorials

Grails has been specifically designed and developed to attract new developers to the Java platform, If vou are a
developer of web applications whether it be with PHP, Perl or Python the concepts in Grails will make you feel at
home, Grails shields much of the technicalities away from the developer and offers a gentle introduction to the
Groowy language and Grails. [f you have a basic understanding of prograrmming technigues you will be able to
start using Grails straight away. Dynamic Methods

Command Line

Builders

)
. Inkernet

&l
R T a: |6 [ET) 8 1501

New logos in "grails" spirit

GROOV b*

11.

CROOVS

CGROOVY
GRDCNH*

Web based GroovyShell
Hi All,

This is my first post at Groovy forum. Last couple of days | am learning groovy. | like this language a lot.
Previously | had explored BeanShell. BeanShell provides online Web based BeanShell Servlet for executing
beanshell code online. | find same for Groovy, but | am not able to find it. So | had written very primitive Web Based
Groovy Shell (essentially Groovy Server Page with Groove Shell capabilities). Might be it is useful to others also like
me. Mainly | am using all these web based scripting shell for debugging web based application. Typically changing
code, session, request variables from it and debugging the application.

Web based Groovy Shell:

Miscellaneous Feature Requests and Enhancements

Legacy enhancements and feature requests which haven't yet been accepted for the current version of Groovy or
earmarked for a known future version of Groovy. Further progress will require additional discussion or ideally
creation of a GEP.

® GROOVY-54 Add generator syntax similar to Python's
* GROOVY-1077 operator overloading

Groovy 2.0 modularization

Rationale

Groovy has become a pretty complete package with more than just the language itself, but also with several useful
APIs and wrappers to simplify the life of developers, dealing with Ant, Swing, XML, JDBC, command-line, and more.
The main groovy-all JAR has reached over 4MB, preventing, for example, usage in an applet, as the time to load the
JAR is too long. Recognizing that nobody needs everything in Groovy, it is time we rework the Groovy source
organization, deliverables, project build, and more. However, this is a "big bang" kind of change that needs a good
level of discipline to get through properly, as several key steps will have to be made.

Key steps

Having a modular system means that:

¢ sources will have to be reorganized: this is where a DVCS system will be especially useful
* modules will have to be created: as source code is being reorganized, modules will be created, but will
need to be built using a multi-module approach

A good approach will be to follow some baby steps:

® providing a new build which will support multiple modules in the future
® migrating to a DVCS system to ease the migration
® progressively migrate one module at a time, to avoid any breakage

Build System

The major options for modular build systems are:

® gradle
® mvn (+gmaven)

A concensus is emerging that Gradle should be our new build infrastructure. A Gradle replacement for the current
Ant build will be created over the next few weeks. This can then be evolved into a multi-project build once the
module structure is decided.

We'll also need to ensure that our toolset will properly support a Gradle build infrastructure:

® |DEs: IntelliJ IDEA supports Gradle out of the box, for instance
¢ Cl: continuous integration servers should be able to build a Gradle-poweed build of Groovy

Source reorganization and repository
Move to a DVCS system: Git

To help with external contributions, and also to ease the work of source code reorganization, it'll be interesting to

http://docs.codehaus.org/download/attachments/95781049/GroovyShell.war

move to a different source code repository, moving from Subversion to a distributed source control system. Git is the
choice made for DVCS at Codehaus, so we'll migrate to Git as part of the process.

Here again, we need to ensure that tool support is okay with Git:

* IDEs: Intellid IDEA offers a great support of Git, the command-line is also usable, of course. Eclipse has
some support for Git.

® FishEye: FishEye is pretty handy for navigating in the source's history. We need to check that the issues of
FishEye support for Git are fixed.

® Cl: the continuous integration servers should be able to checkout the source code from Git. Codehaus'
Bamboo already has suypport for Git.

Base structure

The current SVN structure does not really follow standards. For example, groovy-core, a separately release
component (at the moment, hope to change), is located at: http://svn.codehaus.org/groovy/trunk/groovy/groovy-core/
This should really be something like:

The modules listed above would be listed under: http://svn.codehaus.org/groovy/core/trunk/<module>

And they would be release together. Completely optional projects, like the native support, ide support, etc. should be
located at: http://svn.codehaus.org/groovy/<project>/trunk

Such a structure will ensure the core modules follow the same lifecycle as groovy-core, whereas external modules
cans still be evolved independently, and don't need to be released alongside Groovy releases.

There should perhaps be three levels of module:

1. Core
2. Non-core, centrally supported
3. Others

Core modules are those needed for the core set of functionality to work. Whether these are shipped as a single jar
or a set of jars is up for debate. Everything in this category should be held in the central Git master repository.

Non-core, centrally supported should be in separate Git repositories, not in the Groovy master. They should though
be managed from Codehaus in tight-knit collaboration with the master core repository.

Others are modules held by whom and wherever they are held. These might be managed using Bazaar, Mercurial,
or Git — there is no need to impose Git as a tool unless they are to migrate into one of the two above centrally
managed in which case they must migrate to use Git.

There should be a central index of core modules, non-core centrally managed modules and of any other modules
people care to register with the index.

Other considerations
OSGi

Since we've made Groovy's deliverables be proper OSGi bundles, we need to persue our efforts, and make sure the
core modules are also valid OSGi bundles, also marking dependencies between core modules, and external
dependencies.

DefaultGroovyMethods registration

Some modules (swing, sql) also provide their own DefaultGroovyMethods. We'll need to figure out a way for these
modules to register their own DGM methods, such as a META-INF/services technique.

Capabilities support

http://svn.codehaus.org/groovy/trunk/groovy/groovy-core/
http://svn.codehaus.org/groovy/core/trunk/
http://svn.codehaus.org/groovy/

An old JIRA issue we may consider: http://jira.codehaus.org/browse/GROOVY-2422

The idea is to provide a "capabilities" mechanism to Groovy, to know which features are supported in the current
Groovy version.

Inspired by this issue, we could at least provide some utility class (for instance in GroovySystem) where we could
discover the existing modules available on the classpath.

Modules

Proposed structure

Here's a module structure we could follow. We shouldn't multiplicate the number of modules to a useless high
number, but focus on core functionality, and ensure a pure core will be small enough to be easily embeddable and
downloadable (for applets, mobile devices such as Android, etc.)

® groovy-core
® modules
® test
jmx
swing
xml
sql
web
template
integration
® bean-scripting-framework
® javax.script
® tools
® groovydoc
® shell
® console
® java2groovy

Issues to be aware of
Certain classes would naturally belong to certain modules, but are sometimes used in core, etc.

A good example of this is GroovyTestCase and GroovyShellTestCase. These two classes would naturally go into
the test module, but it means the core module would depend on test, but test would already depend on core. So, so
far, in the following approach, I've kept these base classes (not very heavyweight anyway) in core, but we'll have to
figure out a good way to migrate them in their respective module.

Another example is the java2groovy tool (not very much used, may perhaps be discarded at some point). It belongs
to its own module, under some tools meta-module, but the trick with this tool is that it also contributes some batch
scripts so one can run the tool from the command-line easily. For the normal distribution, anyway, we can embed
those scripts, so that shouldn't be critical.

An important thing to consider is DefaultGroovyMethods. There are already some work done in that area to split
methods related to SQL/JDBC and for Swing. So these additional DGM methods will naturally go in their respective
modules (ie. sql and swing), but that means we need to provide a mechanism for discovering and registering such
methods, for example with some META-INF/services discovery mechanism.

The modules proposed here are more or less coarse-grained modules, in order to keep things simple, and to try to
regroup things by big functionality. But some things may be split furthermore. For instance, we could put CliBuilder

http://jira.codehaus.org/browse/GROOVY-2422

into its own class, and the same for AntBuilder (although those two are really just one class each!). It may be
interesting to do so, also because these classes need additional dependencies (respectively commons-cli and ant).
Speaking of splitting those builders into their respective modules, we could even regroup such builders into some
meta-builder module.

The groupings below are done per functionality, so even if some utility class like groovy.util.GroovyMBean is in
groovy.util, | moved it to the jmx module. Ultimately, it'd certainly be nicer to move such classes into their proper
packages, following a deprecation strategy.

More detailed regroupment of classes into each module

I've created a little Groovy script to list / group all the Java and Groovy classes per package. Afterwards, I've moved
the packages and some individual classes to form modules according to their respective feature set.

Module: groovy-core

Package: groovy.beans

Bindable.java
BindableASTTransformation.java
Vetoable.java
VetoableAST Transformation.java

Package: groovy.grape
GrabAnnotationTransformation.java
Grape.java

GrapeEngine.java

Grapelvy.groovy

Package: groovy.io
* EncodingAwareBufferedWriter.java
® GroovyPrintStream.java
¢ GroovyPrintWriter.java
® PlatformLineWriter.java

Package: groovy.lang

AdaptingMetaClass.java
Benchmarkinterceptor.java
Binding.java

Buildable.java

Category.java

Closure.java
ClosureException.java
ClosurelnvokingMethod.java
Delegate.java
DelegatingMetaClass.java
DeprecationException.java
EmptyRange.java
ExpandoMetaClass.java
ExpandoMetaClassCreationHandle.java
Grab.java

GrabConfig.java
GrabExclude.java

GrabResolver.java

Grapes.java
GroovyClassLoader.java
GroovyCodeSource.java
Groovylnterceptable.java
GroovylLogTestCase.groovy
GroovyObiject.java
GroovyObjectSupport.java
GroovyResourcelLoader.java
GroovyRuntimeException.java
GroovyShell.java
GroovySystem.java

GString.java
lllegalPropertyAccessException.java
Immutable.java
IncorrectClosureArgumentsException.java
Interceptor.java

IntRange.java

Lazy.java
MetaArrayLengthProperty.java
MetaBeanProperty.java
MetaClass.java

MetaClasslmpl.java
MetaClassRegistry.java
MetaClassRegistryChangeEvent.java

MetaClassRegistryChangeEventListener.java

MetaExpandoProperty.java
MetaMethod.java
MetaObjectProtocol.java
MetaProperty.java
MissingClassException.java
MissingFieldException.java
MissingMethodException.java
MissingPropertyException.java
Mixin.java
MutableMetaClass.java
Newify.java
NonEmptySequence.java
ObjectRange.java
PackageScope.java
ParameterArray.java
PropertyAccessinterceptor.java
PropertyValue.java
ProxyMetaClass.java

Range.java
ReadOnlyPropertyException.java
Reference.java

Script.java

Sequence.java

Singleton.java
SpreadListEvaluatingException.java
SpreadMap.java
SpreadMapEvaluatingException.java

StringWriterlOException.java
Tracinglnterceptor.java
Tuple.java

Writable.java

Package: groovy.security

® GroovyCodeSourcePermission.java

Package: groovy.time

BaseDuration.java
DatumDependentDuration.java
Duration.java

TimeCategory.java
TimeDatumDependentDuration.java
TimeDuration.java

Package: org.codehaus.groovy.ant

AntProjectPropertiesDelegate.java
CompileTaskSupport.java
Filelterator.java
FileScanner.java
GenerateStubsTask.java
Groovy.java

Groovyc.java
GroovycTask.java
Groovydoc.java
LoggingHelper.java
RootLoaderRef.java
UberCompileTask.java
VerifyClass.java

Package: org.codehaus.groovy.antir

AntlrASTProcessor.java
AntlIrASTProcessSnippets.java
AntlrParserPlugin.java
AntlrParserPluginFactory.java
ASTParserException.java
ASTRuntimeException.java
EnumHelper.java
GroovySourceAST .java
GroovySourceToken.java

Package: org.codehaus.groovy.antlr.parser

GroovylLexer.java
GroovyRecognizer.java
GroovyTokenTypes.java
SourceBuffer.java
Sourcelnfo.java

Package: org.codehaus.groovy.antir.treewalker

¢ CompositeVisitor.java
® FlatNodelListTraversal.java

MindMapPrinter.java
NodeAsHTMLPrinter.java
NodeCollector.java
NodePrinter.java
PreOrderTraversal.java
SourceCodeTraversal.java
SourcePrinter.java
TraversalHelper.java
Visitor.java
VisitorAdapter.java
UnicodeEscapingReader.java

Package: org.codehaus.groovy.ast

AnnotatedNode.java
AnnotationNode.java
ASTNode.java

Package: org.codehaus.groovy.ast.builder

AstBuilder.groovy
AstBuilderTransformation.groovy
AstSpecificationCompiler.groovy
AstStringCompiler.groovy
ClassCodeExpressionTransformer.java
ClassCodeVisitorSupport.java
ClassHelper.java
ClassNode.java
CodeVisitorSupport.java
CompileUnit.java
ConstructorNode.java
DynamicVariable.java

Package org.codehaus.groovy.ast.expr

® AnnotationConstantExpression.java
ArgumentListExpression.java
ArrayExpression.java
AttributeExpression.java
BinaryExpression.java
BitwiseNegationExpression.java
BooleanExpression.java
CastExpression.java
ClassExpression.java
ClosureExpression.java
ClosureListExpression.java
ConstantExpression.java
ConstructorCallExpression.java
DeclarationExpression.java
ElvisOperatorExpression.java
EmptyExpression.java
Expression.java
ExpressionTransformer.java
FieldExpression.java
GStringExpression.java

ListExpression.java
MapEntryExpression.java
MapExpression.java
MethodCallExpression.java
MethodPointerExpression.java
NamedArgumentListExpression.java
NotExpression.java
PostfixExpression.java
PrefixExpression.java
PropertyExpression.java
RangeExpression.java
RegexExpression.java
SpreadExpression.java
SpreadMapExpression.java
StaticMethodCallExpression.java
TernaryExpression.java
TupleExpression.java
UnaryMinusExpression.java
UnaryPlusExpression.java
VariableExpression.java
FieldNode.java
GenericsType.java
GroovyClassVisitor.java
GroovyCodeVisitor.java
ImportNode.java
InnerClassNode.java
InterfaceHelperClassNode.java
MethodNode.java
MixinASTTransformation.java
MixinNode.java
ModuleNode.java
PackageNode.java
Parameter.java

®* PropertyNode.java

Package: org.codehaus.groovy.ast.stmt

AssertStatement.java
BlockStatement.java
BreakStatement.java
CaseStatement.java
CatchStatement.java
ContinueStatement.java
DoWhileStatement.java
EmptyStatement.java
ExpressionStatement.java
ForStatement.java
IfStatement.java
ReturnStatement.java
Statement.java
SwitchStatement.java
SynchronizedStatement.java
ThrowStatement.java
TryCatchStatement.java

® WhileStatement.java
® Variable.java
® VariableScope.java

Package: org.codehaus.groovy.binding

AbstractFullBinding.java
AggregateBinding.java
BindingProxy.java
BindingUpdatable.java
BindPath.java
ClosureSourceBinding.java
ClosureTriggerBinding.java
EventTriggerBinding.java
FullBinding.java
MutualPropertyBinding.java
PropertyBinding.java
PropertyChangeProxyTargetBinding.java
PropertyPathFullBinding.java
SourceBinding.java
SwingTimerTriggerBinding.java
TargetBinding.java
TriggerBinding.java

Package: org.codehaus.groovy.classgen

AnnotationVisitor.java
AsmClassGenerator.java
BytecodeExpression.java
BytecodeHelper.java
Bytecodelnstruction.java
BytecodeSequence.java
ClassCompletionVerifier.java
ClassGenerator.java
ClassGeneratorException.java
CompileStack.java
DummyClassGenerator.java
EnumVisitor.java
ExtendedVerifier.java
genArrayAccess.groovy
genArrays.groovy
genDgmMath.groovy
GeneratorContext.java
genMathModification.groovy
GroovyCompilerVersion.java
InnerClassVisitor.java
MethodCaller.java
MethodCallerMultiAdapter.java
ReturnAdder.java
RuntimelncompleteClassException.java
Variable.java
VariableScopeVisitor.java
Verifier.java
VerifierCodeVisitor.java

Package: org.codehaus.groovy.control

CompilationFailedException.java
CompilationUnit.java
CompilePhase.java
CompilerConfiguration.java
ConfigurationException.java
ErrorCollector.java
GenericsVisitor.java
HasCleanup.java

Package: org.codehaus.groovy.control.io

AbstractReaderSource.java
FileReaderSource.java
InputStreamReaderSource.java
NullWriter.java
ReaderSource.java
StringReaderSource.java
URLReaderSource.java
Janitor.java

LabelVerifier.java

Package: org.codehaus.groovy.control.messages

ExceptionMessage.java
LocatedMessage.java
Message.java
SimpleMessage.java
SyntaxErrorMessage.java
WarningMessage.java
MultipleCompilationErrorsException.java
OptimizerVisitor.java
ParserPlugin.java
ParserPluginFactory.java
Phases.java
ProcessingUnit.java
ResolveVisitor.java
SourceUnit.java
StaticlmportVisitor.java
GroovyBugError.java

Package: org.codehaus.groovy.tools.ast

TranformTestHelper.groovy
Compiler.java
DgmConverter.java
ErrorReporter.java
FileSystemCompiler.java
GrapeMain.groovy
GroovyClass.java

Package: org.codehaus.groovy.tools.gse

® DependencyTracker.java
¢ StringSetMap.java

Package: org.codehaus.groovy.tools.javac

JavaAwareCompilationUnit.java
JavaAwareResolveVisitor.java
JavacCompilerFactory.java
JavacJavaCompiler.java
JavaCompiler.java
JavaCompilerFactory.java
JavaStubCompilationUnit.java
JavaStubGenerator.java
LoaderConfiguration.java
RootLoader.java

Package: org.codehaus.groovy.transform

ASTTransformation.java

AST TransformationCollectorCodeVisitor.java
ASTTransformationVisitor.java
CategoryASTTransformation.java
DelegateASTTransformation.java
GroovyASTTransformation.java
GroovyASTTransformationClass.java
ImmutableASTTransformation.java
LazyASTTransformation.java
NewifyASTTransformation.java
PackageScopeAST Transformation.java

Package: org.codehaus.groovy.transform.powerassert

AssertionRenderer.java
AssertionRewriter.java
AssertionTransformation.java
AssertionVerifier.java
PowerAssertionError.java
SourceText.java
SourceTextNotAvailableException.java
StatementReplacingVisitorSupport.java
TruthExpressionRewriter.java
Value.java

ValueRecorder.java

SingletonAST Transformation.java

Package org.codehaus.groovy.util

® AbstractConcurrentDoubleKeyMap.java
AbstractConcurrentMap.java
AbstractConcurrentMapBase.java
ComplexKeyHashMap.java
DoubleKeyHashMap.java
FastArray.java

Finalizable.java
HashCodeHelper.java
LazyReference.java
LockableObject.java
ManagedConcurrentMap.java
ManagedDoubleKeyMap.java

ManagedLinkedList.java
ManagedReference.java
Reference.java
ReferenceBundle.java
ReferenceManager.java
ReferenceType.java
Releaselnfo.java
SingleKeyHashMap.java
TripleKeyHashMap.java

Package: org.codehaus.groovy.runtime.typehandling

BigDecimalMath.java
BigIntegerMath.java
ClassDistance.java
DefaultTypeTransformation.java
FloatingPointMath.java
GroovyCastException.java
IntegerMath.java

LongMath.java

NumberMath.java
NumberMathModificationInfo.java

Package: org.codehaus.groovy.runtime.wrappers

BooleanWrapper.java
ByteWrapper.java
CharWrapper.java
DoubleWrapper.java
FloatWrapper.java
GroovyObjectWrapper.java
IntWrapper.java
LongWrapper.java
PojoWrapper.java
ShortWrapper.java
Wrapper.java
WritableFile.java
XmlGroovyMethods.java

Package: org.codehaus.groovy.syntax
ASTHelper.java
CSTNode.java

Numbers.java
ParserException.java
ReadException.java
Reduction.java
RuntimeParserException.java
SyntaxException.java
Token.java
TokenException.java
TokenMismatchException.java
Types.java

Package: org.codehaus.groovy.reflection

CachedClass.java
CachedConstructor.java
CachedField.java
CachedMethod.java
Classinfo.java
ClassLoaderForClassArtifacts.java
GeneratedMetaMethod.java
handlegen.groovy
MethodHandle.java
MethodHandleFactory.java
MixinInMetaClass.java
ParameterTypes.java
ReflectionCache.java
ReflectionUtils.java

Package: org.codehaus.groovy.reflection.stdclasses

ArrayCachedClass.java
BigDecimalCachedClass.java
BigintegerCachedClass.java
BooleanCachedClass.java
ByteCachedClass.java
CachedClosureClass.java
CharacterCachedClass.java
DoubleCachedClass.java
FloatCachedClass.java
IntegerCachedClass.java
LongCachedClass.java
NumberCachedClass.java
ObjectCachedClass.java
ShortCachedClass.java
StringCachedClass.java
SunClassLoader.java

Package: org.codehaus.groovy.runtime

® ArrayUtil.java

Package: org.codehaus.groovy.runtime.callsite

AbstractCallSite.java

CallSite.java

CallSiteArray.java
CallSiteAwareMetaMethod.java
CallSiteClassLoader.java
CallSiteGenerator.java
ClassMetaClassGetPropertySite.java
ConstructorMetaClassSite.java
ConstructorMetaMethodSite.java
ConstructorSite.java
DummyCallSite.java
GetEffectivePogoFieldSite.java
GetEffectivePogoPropertySite.java
GetEffectivePojoFieldSite.java
GetEffectivePojoPropertySite.java

GroovySunClassLoader.java
MetaClassConstructorSite.java
MetaClassSite.java
MetaMethodSite.java
NullCallSite.java
PerinstancePojoMetaClassSite.java
PogoGetPropertySite.java
PogolnterceptableSite.java
PogoMetaClassGetPropertySite.java
PogoMetaClassSite.java
PogoMetaMethodSite.java
PojoMetaClassGetPropertySite.java
PojoMetaClassSite.java
PojoMetaMethodSite.java
StaticMetaClassSite.java
StaticMetaMethodSite.java
ClassExtender.java
ConversionHandler.java
ConvertedClosure.java
ConvertedMap.java
CurriedClosure.java
DefaultCachedMethodKey.java
DefaultGroovyMethods.java
DefaultGroovyMethodsSupport.java
DefaultGroovyStaticMethods.java
DefaultMethodKey.java

Package: org.codehaus.groovy.runtime.dgmimpl.arrays
ArrayGetAtMetaMethod.java
ArrayMetaMethod.java
ArrayPutAtMetaMethod.java
BooleanArrayGetAtMetaMethod.java
BooleanArrayPutAtMetaMethod.java
ByteArrayGetAtMetaMethod.java
ByteArrayPutAtMetaMethod.java
CharacterArrayGetAtMetaMethod.java
CharacterArrayPutAtMetaMethod.java
DoubleArrayGetAtMetaMethod.java
DoubleArrayPutAtMetaMethod.java
FloatArrayGetAtMetaMethod.java
FloatArrayPutAtMetaMethod.java
IntegerArrayGetAtMetaMethod.java
IntegerArrayPutAtMetaMethod.java
LongArrayGetAtMetaMethod.java
LongArrayPutAtMetaMethod.java
ObjectArrayGetAtMetaMethod.java
ObjectArrayPutAtMetaMethod.java
ShortArrayGetAtMetaMethod.java
ShortArrayPutAtMetaMethod.java
NumberNumberDiv.java
NumberNumberMetaMethod.java
NumberNumberMinus.java
NumberNumberMultiply.java

NumberNumberPlus.java
FlushingStreamWriter.java
GeneratedClosure.java
GroovyCategorySupport.java
GStringlmpl.java
HandleMetaClass.java
InvokerHelper.java
InvokerIinvocationException.java
IteratorClosureAdapter.java

Package: org.codehaus.groovy.runtime.metaclass

ClosureMetaClass.java
ClosureMetaMethod.java
ClosureStaticMetaMethod.java
ConcurrentReaderHashMap.java
MemoryAwareConcurrentReadMap.java
MetaClassRegistrylmpl.java
MetaMethodIndex.java
MethodHelper.java
MethodSelectionException.java
MissingMethodExceptionNoStack.java
MissingMethodExecutionFailed.java
MissingPropertyExceptionNoStack.java
MixedInMetaClass.java
MixinlnstanceMetaMethod.java
MixinlnstanceMetaProperty.java
NewlnstanceMetaMethod.java
NewMetaMethod.java
NewStaticMetaMethod.java
OwnedMetaClass.java
ReflectionMetaMethod.java
ReflectorLoader.java
TemporaryMethodKey.java
ThreadManagedMetaBeanProperty.java
TransformMetaMethod.java
MetaClassHelper.java
MethodClosure.java

MethodKey.java
MethodRankHelper.java
NullObject.java
ReflectionMethodInvoker.java
Reflector.java

RegexSupport.java
Reverselistlterator.java
ScriptBytecodeAdapter.java
ScriptReference.java
ScriptTestAdapter.java
StackTraceUtils.java
StringBufferWriter.java
TimeCategory.java

Package: groovy.util

® AbstractFactory.java

AllTestSuite.java
AntBuilder.java
BuilderSupport.java
CharsetToolkit.java
CliBuilder.groovy
ClosureComparator.java
ConfigObject.groovy
ConfigSlurper.groovy
Eval.java

Expando.java

Factory.java
FactoryBuilderSupport.java
FileNameByRegexFinder.groovy
FileNameFinder.groovy
GroovyCollections.java
GroovylLog.java
GroovyScriptEngine.java
GroovyShellTestCase.groovy
GroovyTestCase.java
GroovyTestSuite.java
IFileNameFinder.java
IndentPrinter.java
MapEntry.java

Node.java
NodeBuilder.java
NodelList.java
NodePrinter.java
ObjectGraphBuilder.java
ObservableList.java
ObservableMap.java
OrderBy.java
PermutationGenerator.java
Proxy.java
ProxyGenerator.java
ResourceConnector.java
ResourceException.java
ScriptException.java

Package: org.codehaus.groovy.vmplugin.v4

® Javad.java

Package: org.codehaus.groovy.vmplugin.v5
Java5.java

JUnit4Utils.java

PluginDefaultGroovyMethods.java

TestNgUtils.java

VMPlugin.java

VMPluginFactory.java

Module: test

Package: groovy.mockPackage: groovy.mock.interceptor

Demand.groovy
LooseExpectation.groovy
MockFor.groovy
MockInterceptor.groovy
MockProxyMetaClass.java
StrictExpectation.groovy
StubFor.groovy

Module: jmx

Package: groovy.jmxPackage: groovy.jmx.builder

JmxAttributeInfoManager.groovy
JmxBeanExportFactory.groovy
JmxBeanFactory.groovy
JmxBeanlnfoManager.groovy
JmxBeansFactory.groovy
JmxBuilder.groovy
JmxBuilderException.java
JmxBuilderModelMBean.java
JmxBuilderTools.groovy
JmxClientConnectorFactory.groovy
JmxEmitterFactory.groovy
JmxEventEmitter.java
JmxEventEmitterMBean.java
JmxEventListener.java
JmxListenerFactory.groovy
JmxMetaMapBuilder.groovy
JmxOperationinfoManager.groovy
JmxServerConnectorFactory.groovy
JmxTimerFactory.groovy

Package: groovy.util

® GroovyMBean.java

Module: swing

Package: groovy.model

ClosureModel.java
DefaultTableColumn.java
DefaultTableModel.java
FormModel.java
NestedValueModel.java
PropertyModel.java
ValueHolder.java

® ValueModel.java

Package: groovy.swingPackage: groovy.swing.binding
AbstractButtonProperties.java

AbstractSyntheticBinding.java

AbstractSyntheticMetaMethods.groovy

JComboBoxMetaMethods.groovy

JComboBoxProperties.java

JComponentProperties.java
JScrollBarProperties.java
JSliderProperties.java
JSpinnerProperties.java
JTableMetaMethods.groovy
JTableProperties.java
JTextComponentProperties.java

Package: groovy.swing.factory

ActionFactory.groovy
BeanFactory.groovy
BevelBorderFactory.groovy
BindFactory.groovy
BindGroupFactory.groovy
BindProxyFactory.groovy
BoxFactory.groovy
BoxLayoutFactory.groovy
ButtonGroupFactory.groovy
CollectionFactory.groovy
ComboBoxFactory.groovy
ComponentFactory.groovy
CompoundBorderFactory.groovy
DialogFactory.groovy
EmptyBorderFactory.groovy
EtchedBorderFactory.groovy
FormattedTextFactory.groovy
FrameFactory.groovy
GridBagFactory.groovy
ImagelconFactory.groovy
InternalFrameFactory.groovy
LayoutFactory.groovy
LineBorderFactory.groovy
ListFactory.groovy
MapFactory.groovy
MatteBorderFactory.groovy
RendererFactory.groovy
RichActionWidgetFactory.groovy
RootPaneContainerFactory.groovy
ScrollPaneFactory.groovy
SeparatorFactory.groovy
SplitPaneFactory.groovy
SwingBorderFactory.groovy
TabbedPaneFactory.groovy
TableFactory.groovy
TableLayoutFactory.groovy
TableModelFactory.groovy
TextArgWidgetFactory.groovy
TitledBorderFactory.groovy
WidgetFactory.groovy
WindowFactory.groovy

Package: groovy.swing.impl

¢ ClosureRenderer.java

ComponentFacade.java
ContainerFacade.java
DefaultAction.java
Startable.java
TableLayout.java
TableLayoutCell.java
TableLayoutRow.java
LookAndFeelHelper.groovy
SwingBuilder.groovy

Package: org.codehaus.groovy.runtime.metaclass

® SwingGroovyMethods.java

Module: xml

Package: groovy.util.slurpersupport

Attribute.java
Attributes.java
FilteredAttributes.java
FilteredNodeChildren.java
GPathResult.java
NoChildren.java
Node.java
NodeChild.java
NodeChildren.java
Nodelterator.java
ReplacementNode.java
XmlINodePrinter.java
XmlParser.java
XmiSlurper.java

Package: groovy.xmiPackage: groovy.xml.dom
DOMCategory.java
DOMUtil.java

DOMBuilder.java

Entity.groovy
FactorySupport.java
MarkupBuilder.java
MarkupBuilderHelper.java
Namespace.java
NamespaceBuilder.java
NamespaceBuilderSupport.java
QName.java

SAXBuilder.java
StaxBuilder.groovy
StreamingDOMBLuilder.groovy
StreamingMarkupBuilder.groovy

Package: groovy.xml.streamingmarkupsupport
® AbstractStreamingBuilder.groovy
® BaseMarkupBuilder.java
® Builder.java

¢ StreamingMarkupWriter.java
¢ StreamingSAXBuilder.groovy
* XmlUtil.java

Package: org.codehaus.groovy.tools.xml

®* DomToGroovy.java

Module: sql

Package: groovy.sql
CallResultSet.java

DataSet.java
ExpandedVariable.java
GroovyResultSet.java
GroovyResultSetExtension.java
GroovyResultSetProxy.java
GroovyRowResult.java
InOutParameter.java
InParameter.java
OutParameter.java
ResultSetMetaDataWrapper.java
ResultSetOutParameter.java
Sql.java

SqlOrderByVisitor.java
SqlWhereVisitor.java

Package: org.codehaus.groovy.runtime.metaclass
® SqlGroovyMethods.java

Module: web

Package: groovy.servlet

¢ AbstractHttpServlet.java
® GroovyServlet.java

¢ ServletBinding.java

® ServletCategory.java

* TemplateServlet.java

Module: template-engine

Package: groovy.text

GStringTemplateEngine.java
SimpleTemplateEngine.java
Template.java
TemplateEngine.java
XmlITemplateEngine.java

Module: bean-scripting-framework

Package: org.codehaus.groovy.bsf

® CachingGroovyEngine.java

¢ GroovyEngine.java

Module: javax.script (jsr-223)

Package: org.codehaus.groovy.jsr223
¢ GroovyCompiledScript.java
® GroovyScriptEngineFactory.java
® GroovyScriptEnginelmpl.java

Module: groovydoc

Package: org.codehaus.groovy.tools.groovydoc

ClasspathResourceManager.java
ExternalGroovyClassDoc.java
FileOutputTool.java
FileSystemResourceManager.java
GroovyDocTemplateEngine.java
GroovyDocTool.java
GroovyDocWriter.java
GroovyRootDocBuilder.java

Package:
org.codehaus.groovy.tools.groovydoc.gstringTemplates.to
pLevel

LinkArgument.java
MockOutputTool.java

OutputTool.java

ResourceManager.java
SimpleGroovyAnnotationRef.java
SimpleGroovyClassDoc.java
SimpleGroovyClassDocAssembler.java
SimpleGroovyConstructorDoc.java
SimpleGroovyDoc.java
SimpleGroovyExecutableMemberDoc.java
SimpleGroovyFieldDoc.java
SimpleGroovyMemberDoc.java
SimpleGroovyMethodDoc.java
SimpleGroovyPackageDoc.java
SimpleGroovyParameter.java
SimpleGroovyProgramElementDoc.java
SimpleGroovyRootDoc.java
SimpleGroovyTag.java
SimpleGroovyType.java
GroovyStarter.java

Package: org.codehaus.groovy.groovydoc

GroovyAnnotationRef.java
GroovyClassDoc.java
GroovyConstructorDoc.java
GroovyDoc.java

GroovyDocErrorReporter.java
GroovyExecutableMemberDoc.java
GroovyFieldDoc.java
GroovyMemberDoc.java
GroovyMethodDoc.java
GroovyPackageDoc.java
GroovyParameter.java
GroovyProgramElementDoc.java
GroovyRootDoc.java
GroovyTag.java
GroovyType.java
GroovyException.java
GroovyExceptioninterface.java

Module: shell

Package: org.codehaus.groovy.tools.shell

BufferManager.groovy
Command.groovy
CommandAlias.groovy
CommandRegistry.groovy
CommandSupport.groovy
ComplexCommandSupport.groovy
ExitNotification.groovy
Groovysh.groovy
InteractiveShellRunner.groovy
Interpreter.groovy

10.java

Main.groovy

Parser.groovy

Shell.groovy
ShellRunner.groovy

Package: org.codehaus.groovy.tools.shell.commands

AliasCommand.groovy
ClearCommand.groovy
DisplayCommand.groovy
EditCommand.groovy
ExitCommand.groovy
HelpCommand.groovy
HistoryCommand.groovy
ImportCommand.groovy
InspectCommand.groovy
LoadCommand.groovy
PurgeCommand.groovy
RecordCommand.groovy
RegisterCommand.groovy
SaveCommand.groovy
SetCommand.groovy
ShadowCommand.groovy
ShowCommand.groovy

Package: org.codehaus.groovy.tools.shell.util

ClassNameCompletor.groovy
HelpFormatter.groovy
Logger.java
MessageSource.java
NoEXxitSecurityManager.java
Preferences.java
SimpleCompletor.java
XmICommandRegistrar.groovy

Module: console

Package: groovy.inspect

® Inspector.java

Package: groovy.inspect.swingui

AstBrowser.groovy
AstBrowserProperties.groovy
ObjectBrowser.groovy
ScriptToTreeNodeAdapter.groovy
TableMap.java

TableSorter.java

Package: groovy.ui

Console.groovy
ConsoleActions.groovy
ConsoleApplet.groovy
ConsoleSupport.java
ConsoleTextEditor.java
ConsoleView.groovy
GroovyMain.java
GroovySocketServer.java
HistoryRecord.groovy

Package: groovy.ui.icons

® InteractiveShell.java
¢ OutputTransforms.groovy
¢ SystemOutputinterceptor.java

Package: groovy.ui.text

AutolndentAction.groovy
FindReplaceUtility.java
GroovyFilter.java
StructuredSyntaxDocumentFilter.java
StructuredSyntaxHandler.java
StructuredSyntaxResources.java
TextEditor.java
TextUndoManager.java

Package: groovy.ui.view

¢ BasicContentPane.groovy

BasicMenuBar.groovy
BasicStatusBar.groovy
BasicToolBar.groovy
Defaults.groovy
GTKDefaults.groovy
MacOSXDefaults.groovy
MacOSXMenuBar.groovy
WindowsDefaults.groovy

Module: java2groovy

Package: org.codehaus.groovy.antlr.java

® Groovifier.java
¢ Java2GroovyConverter.java
® Java2GroovyMain.java
® Javalexer.java
® JavaRecognizer.java
® JavaTokenTypes.java
® PreJava2GroovyConverter.java
® |exerFrame.java
® LineColumn.java
® Main.java
Roadmap

Considering our limited human resources and time constraints, it is hard to give definitive and accurate estimates of
the milestones we are going to release.

Groovy 2.1
Groovy 2.1 is the latest stable version of Groovy.

Feature set

¢ offers full support for the JDK 7 “invoke dynamic” bytecode instruction and API for improved
performance,

® goes beyond conventional static type checking capabilities with a special annotation to assist with
documentation and type safety of Domain-Specific Languages,

® adds static type checker extensions,

® provides additional compilation customization options,

* features a meta-annotation facility for combining annotations elegantly.

Releases

¢ Groovy 2.1 beta: end of December 2012
® Groovy 2.1 RC: early January 2013
* Groovy 2.1 final: end of January 2013

Groovy 2.2 (@3 2013)

Feature set for consideration

¢ Class-loading-less compilation

® using ASM when needed, to avoid loading/initializing classes needed during the compilation
® Stub-less joint compilation

® to avoid various problems with the stubs and the various compilation phases

® Static traits or mixins
® but dependent on stub-less joint compilation issues

Groovy 3.0 (Q1 2014)

Feature set for consideration

* New Meta-Object Protocol dedicated to fully leverage "invoke dynamic"
® Rewrite the Groovy grammar from scratch with Antlir 4
® Retrofitting Groovy closures to accommodate JDK 8 upcoming closures for interoperability

Groovy 4.0 (Q1 2015)

Feature set for consideration

®* No concrete plans at the moment

Other topics we could consider for later Groovy

® add static "trait" capabilities
® compiler related:
® investigate the integration of the Eclipse joint compiler to replace the Groovy stub-based joint compiler
® investigate making the groovyc compiler multithreaded
® Incremental compiler
a treturn keyword or dedicated AST transformation for tail calls for closures and methods
ability to pass expression trees / AST nodes as parameters (see C# 4's own expression tree)
lexical categories
a symbol concept, a bit like Ruby's :symbol, or like Java interned strings
co-routines and/or generators
pattern matching
parser combinators
a native template engine compiling to AST (faster, correct line numbers for error reporting, optimized
outputting, etc.)

notes on JDK 7 and JDK 8 future
A few notes, as of September 2010, on the future of Java/JDK 7, and even 8.

Mark Reinhold's post on a possible roadmap for Java 7/8: http://blogs.sun.com/mr/entry/rethinking_jdk7

Jo Darcy on the Project Coin proposals: http://blogs.sun.com/darcy/entry/project_coin_jdk_7_plan

And this link provides the best overview of what's to expect for each version: http://openjdk.java.net/projects/idk7/fea

tures/

The Project Coin proposals retained and presented at JavaOne: http://blogs.sun.com/darcy/entry/project_coin_javao
ne_2010

Latest notes from Mark Reinhold, after the JCP meeting in Germany, post JavaOne: http://blogs.sun.com/mr/entry/pl

an_b_details

Some concrete examples of Project Coin usage: http://aruld.info/rest-of-project-coin-explored-advantage-java-7/

Not Yet Documented

The following items need documentation.

http://blogs.sun.com/mr/entry/rethinking_jdk7
http://blogs.sun.com/darcy/entry/project_coin_jdk_7_plan
http://openjdk.java.net/projects/jdk7/features/
http://openjdk.java.net/projects/jdk7/features/
http://blogs.sun.com/darcy/entry/project_coin_javaone_2010
http://blogs.sun.com/darcy/entry/project_coin_javaone_2010
http://blogs.sun.com/mr/entry/plan_b_details
http://blogs.sun.com/mr/entry/plan_b_details
http://aruld.info/rest-of-project-coin-explored-advantage-java-7/

When documenting, please create a page for each and link to it.

Generics

Closures
® Closure's variable resolving strategy

Joint Groovy/Java compiler, and its options and impact on the Groovyc Ant task

Explain the new Foo(a:1, b:2) shortcut notation calls setA() and setB() after new Foo() is created and
initialized, and that this is not an atomic thread-safe operation

Type handling
® ‘'as' keyword with its different meanings
® conversion vs coercion vs autoboxing
® closure and map coercion to interfaces and classes
® general typing approach (explicit static typing vs duck typing)
® static methods called from instances (see GROOVY-1706)
® Conversion rules, in all their complexity

Swing Builder
more builder documentation - Builders

Scoping
® handling of "return, break, and continue"
® open blocks vs closed blocks
®* Name scoping rules
® scoping rules for Closures

method dispatch algorithm
Method calls and property references, in all their complexity

'special' variables like -‘ewner-in-Glesares-, 'out' in Groovlets etc.
Class member naming conventions, and other JVM interfaces

Also, when you are working on a page that is unfinished, label that page with "Topo" and it will appear in this list:

SwingBuilder.button

Not Yet Documented

FactoryBuilderSupport

Gldapwrap - Usage

Feature Wish List

Gldapwrap - Usage

This package is not actively maintained, but it will be re-released once it has been reworked as
time permits.

Gldapwrap - Usage

To use Gldapwrap, you need to make sure the Gldapwrap jar is in your classpath as well as the Spring LDAP jars
(provided in the download). An easy way to do this is to to put the jars in ~/.groovy/1lib/.

First thing you need to do is define a schema class. A schema class is just an ordinary POGO.

class MyLdapEntry
{

List objectclass
String distinguisheName

}

That's all you need to do to define a schema.

Next is to create a GldapwrapTemplate which is basically the details of the LDAP server you want to connect to.
import gldapwrap.GldapwrapTemplate

def template = new GldapwrapTemplate(
url: "ldap://example.com",

base: "dc=example,dc=com",

userDn: "cn=admin,dc=example,dc=com",
password: "secret"

Next you need to inject the template into your schema class.
import

gldapwrap.GldapwrapInjector (MyLdapEntry,
template)

Now you can do searches.

List entries = MyLdapEntry.find() // Find
all entries at base

entries = MyLdapEntry.find(
filter: " (objectclass=person)”,
searchScope:
javax.naming.directory.SearchControls.SUBTRE
E_SCOPE
) // Find all people in the whole directory

entries = MyLdapEntry.find(

filter: " (objectclass=person)"”,
searchScope:
javax.naming.directory.SearchControls.SUBTRE
E_SCOPE

base: "ou=People”

countLimit: 50

) // Find the first 50 people in the
directory under the people OU

See Searching for more detail about searching.

Articles

Here are a bunch of articles and blog posts on all things groovy

Beginners Tutorials
* The K&R Series by Simon P. Chappell

1. Groovin' with Kernighan and Ritchie
2. Groovin' with K&R 2

3. Groovin' and Regroovin'

4, Groovin' with K&R 4

® Getting Groovy series by James Williams

[Originally a series of three articles. It has been merged into one document.]
Getting Groovy Without the Bad Clothes

http://simonpeter.org/technology/groovy/learn/knr1.html
http://simonpeter.org/technology/groovy/learn/knr2.html
http://simonpeter.org/technology/groovy/learn/knr3.html
http://simonpeter.org/technology/groovy/learn/knr4.html
http://jameswilliams.be/blog/entry/8

James Strachan talks about Groovy
® A collection of references to articles and emails by James Strachan on the topic of Groovy.

Guillaume Laforge interviews on Groovy and Grails

® Vanward / Stelligent interview
® |ndicThreads interview

General

¢ Templates in Groovy by JavaBeat.
Closures in Groovy by JavaBeat.
Web Development in Groovy using Groovlets by JavaBeat.
Introduction to Groovy - Scripting Language by JavaBeat.
Using Groovy to Send Emails by Paul King.
Groovy: XML Without the Bloat by Pan Pantziarka: Part 1 and Part 2
Russel Winder gave a talk "Builders: How MOPs Make Life Easy" at ACCU 2007 which focused on the way
Groovy does things.
¢ Implementing Domain-Specific Languages with Groovy - tutorial given by Guillaume Laforge and John Wilson
at QCon 2007
® BEA Dev2Dev features an introduction to Groovy and Grails
® Scott Hickey gave a presentation about Groovy at the Omaha Java User Group, July 2006
Russel Winder had an article introducing Groovy published in {CVU} 18(3):3-7. {CVU} is the journal of the AC
CU. For more details on the article click here.
Scott Davis gave a recent presentation about Groovy even mentioning a few words about Grails.
Groovying With the JVM was a presentation given by Russel Winder at the ACCU 2006 conference.
It's a Groovy Day! by Eric Armstrong (inspired by Rod Cope's presentation at JavaOne 2005)
JavaPolis 2004 presentation or video from James and Dion along with a snap of James rambling
JSR 241 - Nov 2004 London Conference presentations
¢ Keynote(mp3 - 34Mb) by James Strachan
¢ History of Groovy by Jeremy Rayner
® User Feedback (mp3 - 15Mb) by Guillaume LaForge
¢ |an Darwin wrote this article for O'Reilly
® John Wilson gave this presentation on XML processing in Groovy at XMLOpen 2004 in Cambridge
lan Darwin gave [this presentation at the Toronto JUG in Novemberl
http://www.darwinsys.com/groovy/jugslides-20041102.pdf]
James Strachan and Rod Cope gave this presentation at JavaOne 2004 or as PDF
Alexander Schmid gave this presentation at the JAOO in Cannes
Rod Cope gave this presentation at the Denver JUG
Laurent Weichberger gave this presentation at JSPRING in the Netherlands
Mike Spille wrote a great
review of Groovy
® Ted Leung did a great
presentation at SeaJUG
® Gerald Bauer did a presentation at the
Austria JUG and another one in Vancouver
® Mark Volkmann has written the excellent
Groovy - Scripting in Java
® An old presentation James Strachan gave at CodehausOne August 2003 is available as a PPT
® Marc Hedlund has written several very good introductory articles about getting stuff done with Groovy
(especially with the SwingBuilder). The index of all his articles can be found at O'Reilly's website.
® Articles from the Practically Groovy series by Andrew Glover
® Smooth operators
® (25 Oct 2005) Of MOPs and mini-languages

http://groovy.codehaus.org/James+Strachan+on+Groovy?refresh=1
http://www.stelligent.com/content/articles/article.php?topicId=81
http://www.indicthreads.com/interviews/429/groovy_grails_scripting_enterprise_java.html
http://www.javabeat.net/articles/2008/04/templates-in-groovy/
http://www.javabeat.net/articles/2008/04/closures-in-groovy/
http://www.javabeat.net/articles/2007/12/web-development-in-groovy-using-groovlets/
http://www.javabeat.net/groovy/2007/06/groovy-introduction-scripting-language/
http://www.onjava.com/pub/a/onjava/2007/03/23/using-groovy-to-send-emails.html
http://www.regdeveloper.co.uk/2007/12/14/groovy_xml_part_one/
http://www.regdeveloper.co.uk/2008/01/11/groovy_xml_part_two/
http://www.russel.org.uk/blog/2007-04-16-16-43
http://glaforge.free.fr/groovy/QCon-Tutorial-Groovy-DSL-2-colour.pdf
http://glaforge.free.fr/blog/groovy
http://dev2dev.bea.com/pub/a/2006/10/introduction-groovy-grails.html
http://www.codehaus.org/~jshickey/OJUG-GroovyPresentation.pdf
http://www.accu.org
http://www.accu.org
http://www.russel.org.uk/blog/2006-06-12-14-19
http://www.davisworld.org/presentations/groovy-GreasingWheels.pdf
http://grails.org
http://www.russel.org.uk/blog/2006-04-24-11-59
http://www.russel.org.uk/
http://www.accu.org/
http://www.artima.com/weblogs/viewpost.jsp?thread=116723
http://docs.codehaus.org/download/attachments/2715/JavaPolisGroovy.ppt?version=1
http://www.javalobby.org/av/javapolis/3/almaer-groovy
http://docs.codehaus.org/download/attachments/2715/james1.jpg?version=1
http://groovy.javanicus.com/jstrachan/keynote.mp3
http://groovy.javanicus.com/nov2004meet/audio/groovy-user-feedback.mp3
http://www.onjava.com/lpt/a/5199
http://wilson.co.uk/Groovy/Groovy-XMLOpen.ppt
http://www.darwinsys.com/groovy/jugslides-20041102.pdf
http://www.codehaus.org/~jstrachan/GroovyJavaOne-2004.ppt
http://www.codehaus.org/~jstrachan/GroovyJavaOne-2004.pdf
http://home.t-online.de/home/alex.schmid/conferences.html
http://www.openlogic.com/presentations/
http://www.triveratech.com/webinars/groovy/groovy.htm
http://www.theserverside.com/blogs/showblog.tss?id=GroovyReview
http://www.sauria.com/presentations/Groovy%20SeaJUG%202004-03.ppt.pdf
http://viva.sourceforge.net/talk/jug-mar-2004/slides.html
http://slideshow.rubyforge.org/groovy.html
http://www.ociweb.com/jnb/jnbFeb2004.html
http://groovy.javanicus.com/GroovyCodehausOneAugust2003.ppt
http://www.oreillynet.com/pub/wlg/5789
http://www-128.ibm.com/developerworks/views/java/libraryview.jsp?search_by=practically+groovy
http://www.ibm.com/developerworks/java/library/j-pg10255.html
http://www.ibm.com/developerworks/java/library/j-pg09205/index.html

° ® (20 Sep 2005) Functional programming with curried closures
® (23 Aug 2005) Groovy's growth spurt

° ® (19 Jul 2005) Stir some Groovy into your Java apps

° ® Mark it up with Groovy Builders

° ® (12 Apr 2005) Go server side up, with Groovy
® (15 Mar 2005) MVC programming with Groovy templates
® (15 Feb 2005) JDBC programming with Groovy
*

11 Jan 2005) Ant scripting with Groovy
® (14 Dec 2004) Unit test your Java code faster with Groovy
(09 Nov 2004) Craig Castelaz guides you through Groovy closures on java.net
If you're getting to know Groovy John Zukowski will bring you up to speed with Groovy (syntax prior to the
JSR syntax)
¢ Matthias Luebken wrote about Implementing OSGi-Services in Groovy.

References
* Jeremy Rayner has created a Groovy reference card with latex source

French articles

¢ Guillaume Laforge gave an introductory presentation of Groovy at the Parisian OSS-Get Together event
Guillaume speakrs about the advantage of using dynamic languages to increase the semantic density to
Introduction au langage de script Groovy on the JDN site

Introduction au langage de script Groovy on developpez.com

Intégrer JXTA dans une application Web avec JSF et Groovy par Bertrand Goetzmann

Invoquer un service JBI (Java Business Integration) écrit en Groovy avec AJAX par Bertrand Goetzmann

German articles

® June 2009: Joachim Baumann presented the new functionality in Groovy 1.6 in a talk at the Entwicklertag
Karlsruhe. The slides can be downloaded here
® QOctober 2008: Lars Blumberg, Christoph Hartmann & Arvid Heise did a seminar about Groovy Meta
Programming at the Hasso-Plattner-Institute. Groovy Meta Programming Paper (German)and Groovy Meta
Programming Slides (English)
® May 2007: Joachim Baumann presented Groovy in a talk at the Entwicklertag Karlsruhe. The slides can be
downloaded here
* Dierk's Groovy series in JavaMagazin.
® 8.2006 Groovy fiir Java-Entwickler: Dynamische Programmierung auf der Java-Plattform Dynam
ischer Nachwuchs
® 9.2006 Groovy fiir Java-Entwickler: Ausdruckskraft durch starke Syntax Klassen- und
Objektnotation, Referenzierungsméglichkeiten, Operatoren, Kontrollstrukturen und
Meta-Objekt-Protokoll
® 10.2006 Groovy-Datentypen First class citizens: Zahlen, Strings, Regulédre Ausdricke, Listen, Maps,
Ranges und Closures
* 11.2006 Ausgewdhlte Groovy-Beispiele Groovy everywhere
® 12.2006 Grails Groovy fir Java-Entwickler
® 27.12.2006 Interview: Groovy - das Beste aus der Java- und der Scripting-Welt vereinen
¢ Joachim Baumann gave a presentation about Groovy in German at the "Symposium: Trends in der
Informations- und Kommunikationstechnik" in Stuttgart, September 2006.
® An article
by Alexander Schmid
¢ Sigs Datacom article
® Dierk's Groovy presentation at JAX 2006 is attached as Groovy at JAX_ pub.zip.

http://www.ibm.com/developerworks/java/library/j-pg08235/index.html
http://www.ibm.com/developerworks/java/library/j-pg07195.html
http://www.ibm.com/developerworks/java/library/j-pg05245/index.html
http://www-106.ibm.com/developerworks/java/library/j-pg04125/
http://www-106.ibm.com/developerworks/java/library/j-pg03155/
http://www.ibm.com/developerworks/java/library/j-pg02155/index.html
http://www.ibm.com/developerworks/java/library/j-pg01115.html
http://www.ibm.com/developerworks/java/library/j-pg12144.html
http://www.ibm.com/developerworks/java/library/j-pg11094/index.html
http://today.java.net/pub/a/today/2005/05/19/fences.html
http://java.sun.com/developer/technicalArticles/JavaLP/groovy/
http://luebken.com/?p=34
http://cvs.groovy.codehaus.org/viewrep/groovy/groovy-core/src/latex/ref/groovy-reference-card.tex
http://glaforge.free.fr/weblog
http://glaforge.free.fr/groovy/Groovy-OSS-GT.ppt
http://www.ossgtp.org/xwiki/bin/view/Main/WebHome
http://developpeur.journaldunet.com/tutoriel/jav/061017-java-groovy/0.shtml
http://ericreboisson.developpez.com/tutoriel/java/groovy/
http://www.odelia-technologies.com/node/115
http://www.odelia-technologies.com/node/122
http://www.entwicklertag.de
http://www.entwicklertag.de
http://www.andrena.de/Entwicklertag/2009/Downloads/Conference-Day/Groovy.pdf
http://www.acidum.de/wp-content/uploads/2008/10/groovy-meta-programming-paper.pdf
http://www.acidum.de/wp-content/uploads/2008/10/groovy-meta-programming-slides.pdf
http://www.acidum.de/wp-content/uploads/2008/10/groovy-meta-programming-slides.pdf
http://www.entwicklertag.de
http://www.groovybuch.de/ressourcen/Groovy_070511.pdf
http://javamagazin.de/itr/online_artikel/psecom,id,875,nodeid,11.html
http://javamagazin.de/itr/online_artikel/psecom,id,875,nodeid,11.html
http://javamagazin.de/itr/online_artikel/psecom,id,876,nodeid,11.html
http://javamagazin.de/itr/online_artikel/psecom,id,876,nodeid,11.html
http://javamagazin.de/itr/online_artikel/psecom,id,876,nodeid,11.html
http://javamagazin.de/itr/online_artikel/psecom,id,879,nodeid,11.html
http://javamagazin.de/itr/online_artikel/psecom,id,879,nodeid,11.html
http://entwickler.com/itr/online_artikel/psecom,id,880,nodeid,11.html
http://javamagazin.de/itr/online_artikel/psecom,id,860,nodeid,11.html
http://javamagazin.de/itr/news/psecom,id,32775,nodeid,367.html
http://www.groovybuch.de/ressourcen/vortrag_060929.pdf
http://www.javamagazin.de/itr/ausgaben/psecom,id,193,nodeid,20.html
http://www.sigs-datacom.de/sd/publications/pub_article_show.htm?&AID=1394&TABLE=sd_article
http://www.jax.de

¢ Dierk's Groovy usage patterns article in iX Magazin 7/06

Korean articles

¢ Groovy Language Study

¢ Groovy |, Dynamic Agile Scripting Language (Korean Language) by Pilho Kim

® Groovy Il, Groovlet and GSP \ (Korean Language) by Pilho Kim

* Groovy lll, Compare Groovy to Other Languages \ (Korean Language) by Pilho Kim

Russian articles

® What is Groovy - A brief introduction into Groovy language features in Russian

® Groovy + JSON + Prototype in Action - Example of using Groovy in a 'real' project
® Groovy: Easy extracting XML from database (Russian edition)
[]
[]

The "Exception #7" conference Groovy presentation materials, by Vadim Voituk
... and more russian Groovy articles

Japanese articles
® coverage of our JavaOne talk June 2004

Spanish articles

® Introduccion a Groovy | - Introduction to Groovy part | by Andres Almiray at Groovy.org.es
® Introduccion a Groovy Il - Introduction to Groovy part Il by Andres Almiray at Groovy.org.es

Success Stories

This page contains Success Stories from groovy users. A Success Story should contain information about the
company, the project, the number of people involved, and eventually a link the homepage of the project or company.
It would be nice to include statements about how groovy impacted on the company.

It would also be nice to include companies "know or suspected" to use groovy, providing evidences of this (articles,
statements, etc).

We use Groovy!
Company:
Project:

Description:
Link:;

Seems they use Groovy...
Company:
Project:

Description:
Link:

Version Scheme
The Groovy Version Scheme

Since Groovy 2.0.0:

Since Groovy 2.0.0 we follow the scheme as described in http://semver.org/. This means the next minor version

http://www.heise.de/ix/artikel/2006/07/131/
http://cafe.daum.net/groovyStudy
http://www.zdnet.co.kr/builder/dev/java/0,39031622,39132353,00.htm
http://www.zdnet.co.kr/builder/dev/java/0,39031622,39133077,00.htm
http://www.zdnet.co.kr/builder/dev/java/0,39031622,39134013,00.htm
http://voituk.kiev.ua/2007/01/26/what-is-groovy/
http://voituk.kiev.ua/2007/04/06/groovy-mysql-json-prototype-usage/
http://voituk.kiev.ua/2007/03/07/groovy-xml-database-export/
http://voituk.kiev.ua/groovy-presentation-for-exception-7/
http://voituk.kiev.ua/
http://voituk.kiev.ua/groovy
http://itpro.nikkeibp.co.jp/free/NBY/NEWS/20040630/1/
http://groovy.org.es/home/story/89
http://groovy.org.es
http://groovy.org.es/home/story/99
http://groovy.org.es
http://semver.org/

after 2.0.0 is 2.1.0, the first bugfix version after 2.0 is 2.0.1 and the next major version will be 3.0.0.

Before Groovy 2.0.0:

Before Groovy 2.0.0 we followed a version scheme where we have X.Y.Z, where X.Y is the major version, and Z the
minor version. Bugfix versions where not really done, you had to upgrade to the next minor version for that. Since
Groovy 1.0 we incremented only the Y for a new major version. The increment of X we wanted to leave for a very
big breaking change, like a new MOP. The last major version in these scheme is 1.8(.0), 1.8.1 is the first minor and
bugfix version. The major versions in the past using this scheme are: 1.8, 1.7, 1.6, 1.5, 1.0. Each of them having
around 10 minor/bugfix versions.

Official Major Version:

The official major version is the current major version that should/can be used by the developers if they are not
bound to a specific major version.

Maintenance Release Branch:

Here we indicate a former major version's bugfix release.

How long is a major version maintained?

That depends on the users. Let's say we have X in maintenance and Y is the official major version, then if a new
major version Z is released, Y goes into maintenance. Usually we make one or two more bugfix releases for X and
then we discontinue it, unless there are strong requests to have certain things fixed for users that can absolutely not
upgrade.

Documentation

Getting Started with Groovy
Installation and quickstart instructions, tutorials, feature overview.

Using Groovy
Bean scripting, compile-time metaprogramming, AST transformations, dynamic features, IDE support, XML

processing, GUI programming, Ant integration, more.

Cookbook Examples
Practical examples that focus on common applications and tasks.

Advanced Usage
Design patterns, polyglot programming, Ant troubleshooting, security, compiling, refactoring, more.

Testing with Groovy
Groovy mocks, model-based testing, unit testing, testing Web applications and Web services, integration with other
frameworks, test coverage, more.

Developing with Groovy
Building Groovy from source, setting up the environment, continuous integration, release process, more.

Feature Highlights

® GroovyMarkup
®* GPath

Groovy Beans
Using Ant from Groovy

Regular Expressions
Groovy Templates

Dynamic Groovy

Groovy and JMX

Spring Factories and Groovy

Reference

Groovy API

Groovy JDK
DZone quick reference card

Groovy wiki collection (20120226)

Getting Started Guide

Download

® |nvokeDynamic support
Feature Overview

® Groovlets

¢ Groovy Beans

* GroovyMarkup
® Groovy Templates

Quick Start
® |nstalling Groovy
® |nstalling Groovy and Grails on the Eee PC
® Running
Beginners Tutorial
® Tutorial 1 - Getting started
Tutorial 2 - Code as data, or closures
Tutorial 3 - Classes and Objects
Tutorial 4 - Regular expressions basics
Tutorial 5 - Capturing regex groups
Tutorial 6 - Groovy SQL
Differences to Other Languages
® Differences from Java
® Differences from Python
® Differences from Ruby
Groovy style and language feature guidelines for Java developers
For those new to both Java and Groovy
* JN0025-Starting
JNO515-Integers
JNO0525-Decimals
JNO0535-Floats
JNO0545-Dates
JN1015-Collections
JN1025-Arrays
JN1035-Maps
JN1515-Characters
JN1525-Strings
JN1535-Patterns
JN2015-Files
JN2025-Streams

® 6 6 o o o o o o o o o

http://groovy.codehaus.org/gapi/
http://groovy.codehaus.org/groovy-jdk/
http://refcardz.dzone.com/refcardz/groovy

JN2515-Closures
JN2525-Classes
JN2535-Control
JN3015-Types
JN3025-Inheritance
JN3035-Exceptions
JN3515-Interception
JN3525-MetaClasses
JN3535-Reflection
® Groovy for the Office

® Groovy Quick Start Project

Download

In this download area, you will be able to download the distribution (binary and source), the Windows installer (for
some of the versions) and the documentation for Groovy.

For a quick and effortless start on Mac OSX, Linux or Cygwin, you can use GVM (the Groovy enVironment
Manager) to download and configure any Groovy version of your choice. Basic instructions can be found below.

Groovy 2.1

Groovy 2 is the latest official major version of Groovy.

Learn more about Groovy 2.1 in the release notes.
Groovy 2.1.5

Download zip: Binary Release | Source Release

Download Windows-Installer: Binary Release (Module Versions)
Download documentation: JavaDoc and zipped online documentation
Combined binary / source / documentation bundle: Distribution bundle

You can have a look at the JIRA release notes.

If you plan on using invokedynamic support, read those notes.

Groovy 2.1.4

Download zip: Binary Release | Source Release

Download Windows-Installer: Binary Release (Module Versions)
Download documentation: JavaDoc and zipped online documentation
Combined binary / source / documentation bundle: Distribution bundle

You can have a look at the JIRA release notes.

If you plan on using invokedynamic support, read those notes.

Groovy 2.1.3

Download zip: Binary Release | Source Release

Download Windows-Installer: Binary Release (Module Versions)
Download documentation: JavaDoc and zipped online documentation
Combined binary / source / documentation bundle: Distribution bundle

http://gvmtool.net
http://dist.groovy.codehaus.org/distributions/groovy-binary-2.1.5.zip
http://dist.groovy.codehaus.org/distributions/groovy-src-2.1.5.zip
http://dist.codehaus.org/groovy/distributions/installers/windows/nsis/groovy-2.1.5-installer.exe
http://dist.codehaus.org/groovy/distributions/installers/windows/nsis/installed_versions_2.1.5.txt
http://dist.groovy.codehaus.org/distributions/groovy-docs-2.1.5.zip
http://dist.groovy.codehaus.org/distributions/groovy-sdk-2.1.5.zip
http://jira.codehaus.org/secure/ReleaseNote.jspa?projectId=10242&version=19320
http://dist.groovy.codehaus.org/distributions/groovy-binary-2.1.4.zip
http://dist.groovy.codehaus.org/distributions/groovy-src-2.1.4.zip
http://dist.codehaus.org/groovy/distributions/installers/windows/nsis/groovy-2.1.4-installer.exe
http://dist.codehaus.org/groovy/distributions/installers/windows/nsis/installed_versions_2.1.4.txt
http://dist.groovy.codehaus.org/distributions/groovy-docs-2.1.4.zip
http://dist.groovy.codehaus.org/distributions/groovy-sdk-2.1.4.zip
http://jira.codehaus.org/secure/ReleaseNote.jspa?projectId=10242&version=19182
http://dist.groovy.codehaus.org/distributions/groovy-binary-2.1.3.zip
http://dist.groovy.codehaus.org/distributions/groovy-src-2.1.3.zip
http://dist.codehaus.org/groovy/distributions/installers/windows/nsis/groovy-2.1.3-installer.exe
http://dist.codehaus.org/groovy/distributions/installers/windows/nsis/installed_versions_2.1.3.txt
http://dist.groovy.codehaus.org/distributions/groovy-docs-2.1.3.zip
http://dist.groovy.codehaus.org/distributions/groovy-sdk-2.1.3.zip

You can have a look at the JIRA release notes.

If you plan on using invokedynamic support, read those notes.
Groovy 2.1.2

Download zip: Binary Release | Source Release

Download Windows-Installer: Binary Release (Module Versions)
Download documentation: JavaDoc and zipped online documentation
Combined binary / source / documentation bundle: Distribution bundle

You can have a look at the JIRA release notes.

If you plan on using invokedynamic support, read those notes.

Groovy 2.0

Groovy 2.0 is the minor version before Groovy 2.1.
Learn more about Groovy 2.0 in the release notes.
Groovy 2.0.8

Download zip: Binary Release | Source Release
Download documentation: JavaDoc and zipped online documentation
Combined binary / source / documentation bundle: Distribution bundle

You can have a look at the JIRA release notes.

If you plan on using invokedynamic support, read those notes.

Groovy 1.8 (Maintenance Release)

Groovy 1.8 is the latest maintenance release branch of the Groovy 1 major version.
Learn more about the Groovy 1.8 in the release notes.

Groovy 1.8.9

Download zip: Binary Release | Source Release
Download documentation: JavaDoc and zipped online documentation

You can have a look at the JIRA release notes.

Snapshots

For those who want to test the very latest versions of Groovy and live on the bleeding edge, you can use our snapsh
ot builds. As soon as a build succeeds on our continuous integration server a snapshot is deployed to Codehaus'
snapshot repository.

Older Releases

All maintenance of the Groovy 1.5.X, 1.6.X and 1.7.X series has now stopped. These are the last released versions.

http://jira.codehaus.org/secure/ReleaseNote.jspa?projectId=10242&version=19156
http://dist.groovy.codehaus.org/distributions/groovy-binary-2.1.2.zip
http://dist.groovy.codehaus.org/distributions/groovy-src-2.1.2.zip
http://dist.codehaus.org/groovy/distributions/installers/windows/nsis/groovy-2.1.2-installer.exe
http://dist.codehaus.org/groovy/distributions/installers/windows/nsis/installed_versions_2.1.2.txt
http://dist.groovy.codehaus.org/distributions/groovy-docs-2.1.2.zip
http://dist.groovy.codehaus.org/distributions/groovy-sdk-2.1.2.zip
http://jira.codehaus.org/secure/ReleaseNote.jspa?projectId=10242&version=19100
http://dist.groovy.codehaus.org/distributions/groovy-binary-2.0.8.zip
http://dist.groovy.codehaus.org/distributions/groovy-src-2.0.8.zip
http://dist.groovy.codehaus.org/distributions/groovy-docs-2.0.8.zip
http://dist.groovy.codehaus.org/distributions/groovy-docs-2.0.8.zip
http://dist.groovy.codehaus.org/distributions/groovy-sdk-2.0.8.zip
http://jira.codehaus.org/secure/ReleaseNote.jspa?projectId=10242&version=19099
http://dist.groovy.codehaus.org/distributions/groovy-binary-1.8.9.zip
http://dist.groovy.codehaus.org/distributions/groovy-src-1.8.9.zip
http://dist.codehaus.org/groovy/distributions/installers/windows/nsis/installed_versions_1.8.6.txt
http://dist.codehaus.org/groovy/distributions/installers/windows/nsis/installed_versions_1.8.6.txt
http://dist.groovy.codehaus.org/distributions/groovy-docs-1.8.9.zip
http://jira.codehaus.org/secure/ReleaseNote.jspa?projectId=10242&version=18778
http://snapshots.repository.codehaus.org/org/codehaus/groovy/groovy-all/
http://snapshots.repository.codehaus.org/org/codehaus/groovy/groovy-all/

Groovy 1.7.11

Download zip: Binary Release | Source Release
Download documentation: JavaDoc and zipped online documentation

You can have a look at the JIRA release notes.

Groovy 1.6.9

Download zip: Binary Release (JDK 1.4 version) | Source Release
Download documentation: JavaDoc and zipped online documentation

You can have a look at the JIRA release notes.

Groovy 1.5.8

Download zip: Binary Release | Source Release

Download Windows-Installer: Binary Release

Download unofficial Fedora/RHEL/CentOS package: Binary Release | Source Release
Download documentation: JavaDoc and zipped online documentation

The release notes are Release Notes.

Legacy Groovy 1.0
If you still need to use the old Groovy 1.0, here are the links you may be interested in:

Download zip: Binary Release | Source Release

Download unofficial Ubuntu/Debian package: Binary Release
Download Windows-Installer: Binary Release

Download tar/gz: Binary Release | Source Release

Download Javadoc: Javadoc zip

Once vou've downloaded the distribution, please read the installation instructions.

Other versions can be found in the distributions archive.

Maven Repositories

If you wish to embed Groovy in your application, you may just prefer to point to your favourite maven repositories or
the codehaus maven repository. You should consult the individual pom files for the exact details but here is a
summary of the main supported artifactlds and grouplds:

Groovy 2.0.X and newer

Gradle Maven Explanation

http://dist.groovy.codehaus.org/distributions/groovy-binary-1.7.11.zip
http://dist.groovy.codehaus.org/distributions/groovy-src-1.7.11.zip
http://dist.groovy.codehaus.org/distributions/groovy-src-1.7.11.zip
http://dist.groovy.codehaus.org/distributions/groovy-docs-1.7.11.zip
https://jira.codehaus.org/secure/ReleaseNote.jspa?projectId=10242&version=17244
http://dist.groovy.codehaus.org/distributions/groovy-binary-1.6.9.zip
http://dist.groovy.codehaus.org/distributions/groovy-binary-jdk14-1.6.9.zip
http://dist.groovy.codehaus.org/distributions/groovy-src-1.6.9.zip
http://dist.groovy.codehaus.org/distributions/groovy-src-1.6.9.zip
http://dist.groovy.codehaus.org/distributions/groovy-docs-1.6.9.zip
http://jira.codehaus.org/secure/ReleaseNote.jspa?projectId=10242&version=16236
http://dist.groovy.codehaus.org/distributions/groovy-binary-1.5.8.zip
http://dist.groovy.codehaus.org/distributions/groovy-src-1.5.8.zip
http://dist.codehaus.org/groovy/distributions/installers/windows/nsis/groovy-1.5.8-installer.exe
http://dist.groovy.codehaus.org/distributions/rpm/groovy-1.5.8-1.noarch.rpm
http://dist.groovy.codehaus.org/distributions/rpm/groovy-1.5.8-1.src.rpm
http://dist.groovy.codehaus.org/distributions/rpm/groovy-1.5.8-1.src.rpm
http://dist.groovy.codehaus.org/distributions/groovy-docs-1.5.8.zip
http://jira.codehaus.org/secure/ReleaseNote.jspa?projectId=10242&version=14630
http://dist.codehaus.org/groovy/distributions/groovy-1.0.zip
http://dist.codehaus.org/groovy/distributions/groovy-1.0-src.zip
http://dist.codehaus.org/groovy/distributions/installers/deb/groovy-1.0.deb
http://dist.codehaus.org/groovy/distributions/installers/windows/nsis/groovy1.0-installer.exe
http://dist.codehaus.org/groovy/distributions/groovy-1.0.tar.gz
http://dist.codehaus.org/groovy/distributions/groovy-1.0-src.tar.gz
http://dist.groovy.codehaus.org/distributions/groovy-docs-1.1-BETA-1.zip
http://dist.groovy.codehaus.org/distributions/groovy-docs-1.1-BETA-1.zip
http://dist.groovy.codehaus.org/distributions/groovy-docs-1.1-BETA-1.zip
http://dist.groovy.codehaus.org/distributions
http://repository.codehaus.org/org/codehaus/groovy

'org.codehaus.groovy:groovy:x.y.z'

'org.codehaus.groovy:groovy-$mod
ule:xx.y.z'

'org.codehaus.groovy:groovy-all:x.y.

z

<groupld>org.codehaus.groovy</gr
oupld>
<artifactld>groovy</artifactld>
<version>Xx.y.z</version>

<groupld>org.codehaus.groovy</gr
oupld>
<artifactld>groovy-$module</artifac
tld>

<version>Xx.y.z</version>

<groupld>org.codehaus.groovy</gr
oupld>
<artifactld>groovy-all</artifactld>
<version>X.y.z</version>

Just the core of groovy without the
modules (see below). Treats Antlr,
ASM, etc. as standard
dependencies. Only useful if you
happen to also use the same
versions of these jars yourself as it
will save you having two copies of
these jars.

"$module" stands for the different
optional groovy modules "ant",
"bsf", "console", "docgenerator",
"groovydoc", "groovysh", "jmx",
"json", "jsr223", "servlet", "sql",
"swing", "test", "testng" and "xml".
Example:
<artifactld>groovy-sql</artifactld>

The core plus all the modules. Also
includes jarjar versions of Antlr,
ASM, Commons-CLI and
Retrotranslator runtime. Allows you
or your other dependencies (e.qg.
Hibernate) to use other versions of
these jars. Optional dependencies
are marked as optional. You may
need to include some of the
optional dependencies to use some
features of Groovy, e.g. AntBuilder,
GroovyMBeans, etc.

To use the InvokeDynamic version of the jars just append "indy' for Gradle or <classifier>indy</classifier> for

Maven.

Groovy 1.6.X - 1.8.X

Gradle

'org.codehaus.groovy:groovy:x.y.z'

Maven

<groupld>org.codehaus.groovy</gr
oupld>
<artifactld>groovy</artifactld>
<version>Xx.y.z</version>

Explanation

Treats Antlr, ASM, etc. as standard
dependencies. Only useful if you
happen to also use the same
versions of these jars yourself as it
will save you having two copies of
these jars. Optional dependencies
are marked as optional. You may
need to include some of the
optional dependencies to use some
features of Groovy, e.g. AntBuilder,
GroovyMBeans, etc.

http://groovy.codehaus.org/InvokeDynamic+support

'org.codehaus.groovy:groovy-all:x.y.

z

Groovy 1.1.X - 1.5.X

Gradle

'org.codehaus.groovy:groovy:x.y.z'

‘org.codehaus.groovy:groovy-all:x.y.

z

'org.codehaus.groovy:groovy-all-mi
nimal:x.y.z'

Groovy 1.0

<groupld>org.codehaus.groovy</gr
oupld>
<artifactld>groovy-all</artifactld>
<version>Xx.y.z</version>

Maven

<groupld>org.codehaus.groovy</gr
oupld>
<artifactld>groovy</artifactld>
<version>Xx.y.z</version>

<groupld>org.codehaus.groovy</gr
oupld>
<artifactld>groovy-all</artifactld>
<version>x.y.z</version>

<groupld>org.codehaus.groovy</gr
oupld>
<artifactld>groovy-all-minimal</artif
actld>

<version>x.y.z</version>

Available in the Maven 1 and Maven 2 repositories.

Gradle

Maven

Includes jarjar versions of Antlr,
ASM, Commons-CLI and
Retrotranslator runtime. Allows you
or your other dependencies (e.g.
hibernate) to use other versions of
these jars. Optional dependencies
are marked as optional. You may
need to include some of the
optional dependencies to use some
features of Groovy, e.g. AntBuilder,
GroovyMBeans, etc.

Explanation

Treats Antlr and ASM as standard
dependencies. Only useful if you
happen to also use the same
versions of these jars yourself as it
will save you having two copies of
these jars. Optional dependencies
are marked as optional. You may
need to include some of the
optional dependencies to use some
features of Groovy, e.g. AntBuilder,
GroovyMBeans, etc.

Includes jarjar versions of Antlr,
ASM and Commons-CLI. Allows
you or your other dependencies
(e.g. hibernate) to use other
versions of these jars. Optional
dependencies are marked as
optional. You may need to include
some of the optional dependencies
to use some features of Groovy,
e.g. AntBuilder, GroovyMBeans,
etc.

Includes jarjar versions of Antlr and
ASM. Does not include
Commons-CLlI or any optional
dependencies. Not suitable by itself
if you want to use any tools which
do command-line processing, €.g.
groovyc, GroovyShell, ...

Explanation

http://repo1.maven.org/maven/groovy/
http://repo1.maven.org/maven2/groovy/

'groovy:groovy:x.y.z' <groupld>groovy</groupld> Treats Antlr and ASM as standard
<artifactld>groovy</artifactld> dependencies. Only useful if you
<version>1.0</version> happen to also use the same

versions of these jars yourself as it
will save you having two copies of
these jars. Dependencies mandated
for all optional parts of Groovy, e.g.
AntBuilder, GroovyMBeans, etc.

'groovy:groovy-all:x.y.z' <groupld>groovy</groupld> Includes jarjar versions of Antlr and
<artifactld>groovy-all</artifactld> ASM. Allows you or your other
<version>1.0</version> dependencies (e.g. hibernate) to

use other versions of these jars.
Dependencies mandated for all
optional parts of Groovy, e.g.

AntBuilder, GroovyMBeans, etc.

'groovy:groovy-all-minimal:x.y.z' <groupld>groovy</groupld> Includes jarjar versions of Antlr and
<artifactld>groovy-all-minimal</artif =~ ASM. Does not include any optional
actld> dependencies.

<version>1.0</version>

For historical purposes, the releases candidates for 1.0 are also available by using the appropriate version instead
of 1.0 in the above version tag.

Snapshot Releases

In addition to the stable and milestone releases you can find intermediate SNAPSHOT releases at the codehaus
snapshot maven repository.

GVM (the Groovy enVironment Manager)

This tool makes installing Groovy on any Bash platform (Mac OSX, Linux, Cygwin, Solaris or FreeBSD) very easy.
Simply open a new terminal and enter:

$ curl -s get.gvmtool.net | bash

Follow the instructions on-screen to complete installation.

Open a new terminal or type the command:

$ source "$SHOME/.gvm/bin/gvm-init.sh"

Then install the latest stable Groovy:

$ gvm install groovy

After installation is complete and you've made it your default version, test it with:

$ groovy -version

That's all there is to it!

http://snapshots.repository.codehaus.org/org/codehaus/groovy
http://snapshots.repository.codehaus.org/org/codehaus/groovy

Other ways to get Groovy
If you're on MacOS and have Homebrew installed, you can run "brew install groovy" to install Groovy.

If you're on MacOS and have MacPorts installed, you can run "sudo port install groovy" to install the latest Groovy
release.

If you're on Windows, you can also use the NSIS Windows installer.

You may download other distributions of Groovy from this site.

If you prefer to live on the bleeding edge, you can also grab the source code from SVN.

If you are an IDE user, you can just grab the latest IDE plugin and follow the plugin installation instructions.

InvokeDynamic support

Foreword

Since Groovy 2.0, we added support for the JVM invokedynamic instruction. This instruction is supported since Java
7 and is a new bytecode instruction in the JVM that allows easier implementation of dynamic languages. This
instruction will also be used internally, by the JVM, for the upcoming lamdba support in Java 8.

This means that unlike APIs, AST transformations or syntactic sugar, this feature is not visible to the developer or
the end user. It is a compilation and runtime feature only. This means that given two programs written in Groovy,
you have the choice to compile it with or without invokedynamic support. Whatever you choose, it comes with pros
and cons:

® classes compiled with invokedynamic can only be used on JDK 1.7+
¢ without invokedynamic, Groovy classes are still compatible with JDK 1.5+
¢ call site caching, as implemented in "normal" Groovy is replaced with invokedynamic since Groovy 2.1
® jtis possible to mix classes compiled with and without invokedynamic in the same project, as long as you run
JDK 1.7+
¢ depending on the JVM (even different minor versions of the JVM), you can target close to Java performance
for dynamic Groovy with invokedynamic support activated

The distributions

Two jars

The Groovy distribution comes with two jars:

® groovy-x.y.z.jar : compatible with JDK 1.5+, makes use of call site caching
® groovy-x-y-z-indy.jar : compatible with JDK 1.7+ only, has invokedynamic support bundled, old call site
caching still possible

The first jar is Groovy compiled without invokedynamic support, while the second one has invokedynamic support
bundled. As Groovy core and the groovy modules are sometimes written in Groovy, we currently have no choice but
issuing two distinct versions of Groovy. This means that if you pick the "normal" jar, the groovy classes of groovy
itself are compiled with call site caching (1.5+), while if you use the "indy" jar, the groovy classes of groovy itself are
compiled using invokedynamic. This means that the invokedynamic version of Groovy doesn't make use of the old
call site caching mechanism.

Both jars contain a fully working groovy implementation. They are mutually exclusive (don't put both on classpath).

http://mxcl.github.com/homebrew/
http://www.macports.org/
http://dist.codehaus.org/groovy/distributions/
http://xircles.codehaus.org/projects/groovy/repo
http://docs.oracle.com/javase/7/docs/technotes/guides/vm/multiple-language-support.html#invokedynamic

Command-line and indy

If you download the distribution and that you use the command line, it's always the "normal" version of Groovy which
is picked up in classpath. This means that whatever command you use (groovy, groovyc, groovysh or groovyConsol
e), invokedynamic support is not available out of the box. To use the invokedynamic version, you have to switch the
jars manually. The distribution makes use of the jars in the lib directory, while the indy jars are available in the indy d
irectory. You have three things to do:

® remove or rename the groovy-*.jar files in the lib directory
® replace them with the indy version from the indy directory
® remove the -indy classifier from jar names

Here's a bash script that would do it all at once:

$ for £ in ~1s lib/groovy*.jar | cut -4/
-f2° ;do k="basename $f .jar ; mv lib/S$k.jar
lib/$k.jar.old; cp indy/$k-indy.jar
lib/$k.jar ; done

The compilation flag

Independently of the jar version that you use (and after having exchanged the jars as described), invokedynamic
support requires a specific compilation flag (indy). If you want to compile your classes with invokedynamic support,
this flag must be set at compile time. The following tables show you what happens with user compiled classes and
groovy core classes depending on the jar you use and the compilation flag:

indy flag off on

normal jar call site caching N/A

indy jar call site caching invokedynamic

user compiled classes

indy flag off on

normal jar call site caching N/A

indy jar invokedynamic invokedynamic

core groovy classes

So even if you use the indy jar, if you don't use the invokedynamic flag at compile time, then the compiled classes
will use the "old" format, meaning they will use the JDK1.5+ classes without invokedynamic.

Feature Overview

Groovlets

Groovy Beans

GroovyMarkup
Groovy Templates

Groovlets

You can write normal Java servlets in Groovy (i.e. Groovlets).
There is also a GroovyServlet

This feature will automatically compile your .groovy source files, turn them into bytecode, load the Class and cache it
until you change the source file.

Here's a simple example to show you the kind of thing you can do from a Groovlet.
Notice the use of implicit variables to access the