Groovy Documentation

zGroovy Introduction
QGetting Started Guide

e'-User Guide

QAdvanced Usage
Guide

QCookbook Examples
zTesting Guide
e'-DeveIoper Guide
e'—ModuIes

e'—FAQ

Introduction to Groovy

Groovy Introduction

Groovy...

is an agile and dynamic language for the Java Virtual Machine
builds upon the strengths of Java but has additional power
features inspired by languages like Python, Ruby and Smalltalk
makes modern programming features available to Java
developers with almost-zero learning curve

supports Domain-Specific Languages and other compact

syntax so your code becomes easy to read and maintain

makes writing shell and build scripts easy with its powerful
processing primitives, OO abilities and an Ant DSL

increases developer productivity by reducing scaffolding

code when developing web, GUI, database or console applications
simplifies testing by supporting unit testing and mocking out-of-the-box
seamlessly integrates with all existing Java objects and libraries

compiles straight to Java bytecode so you can use it anywhere you can use Java

b

Samples
A simple hello world script:
def name="World'; println "Hello $nane!"

A more sophisticated version using Object Orientation:

class Geet {

def name
G eet (who) { nane = who[O0].toUpperCase() +
who[1..-1] }
def salute() { println "Hello $nane!" }
}
g = new Geet('world') // create object
g.sal ute() /1 Qutput "Hello World!"

Leveraging existing Java libraries:
i mport static org.apache. cormons. | ang. WordUtils. *
class Greeter extends Geet {

G eeter(who) { nane = capitalize(who) }
}

new Greeter('world').salute()

On the command line:

groovy -e "println "Hello ' + args[0]" Wrld

History

New features and improvements in Groovy 1.7:

Anonymous Inner Classes and Nested Static Classes
Annotation enhancements

Grape enhancements

Power Asserts

AST enhancements: AST Viewer and AST Builder
Ability to customize the Groovy Truth
Dependency upgrades

Rewrite of GroovyScriptEngine

GroovyConsole enhancements

SQL batch updates and transactions

More details: Groovy 1.7 release notes

New features and improvements in Groovy 1.6:

Great runtime performance improvements

Multiple assignments- optional return in if/else and try/catch blocks

AST transformations and all the provided transformation annotations like @Singleton, @Lazy, @Immutable, @Delegate and friends
The Grape module and dependency system and its @Grab transformation

Various Swing builder improvements, thanks to the Swing / Griffon (http://griffon.codehaus.org) team

As well as several Swing console improvements

The integration of JMX builder

JSR-223 scripting engine built-in

Various metaprogramming improvements, like the EMC DSL, per-instance metaclasses even for POJOs, and runtime mixins

More details: Infoq

New features and improvements in Groovy 1.5:

Integrates Java 5 features: annotations, generics, static imports and enums

New meta-programming capabilities

A few syntax enhancements have also found their way into it to help ease the development of Domain-Specific Languages
Groovy's Swing builder support, to help you build Swing Uls, has almost completely been rewritten and spiced up with several useful
additions

A great attention to performance improvements made this new version much

A joint Java / Groovy compiler to let you mix and match Groovy and Java classes in the same compilation step

A GroovyDoc equivalent to JavaDoc lets you document your Groovy classes

A rewritten interactive shell is now really interactive and provides useful command completions for making you more productive
The Groovy Swing console has also been improved

More details: Infoq

Groovy 1.7 release notes

Coverage of these notes
The below release notes currently cover the new features of Groovy 1.7, our latest major release.

IDE Support

Before diving directly into the new features in Groovy 1.7, please let me mention the great progress made in terms of IDE support for Groovy (and
also for Griffon, Gradle, Gant or Grails). All the major IDEs (Eclipse, IntelliJ IDEA, NetBeans) provide an excellent level of support for the
language. Initially, the Eclipse support was the one lacking the most, but thanks to the hard work of the SpringSource Eclipse team, we now have
a great environment for developing mixed Java / Groovy applications with features like cross-language refactoring, Groovy-specific code
completion, and more.

@ New and Improved Eclipse plugin
For more information on the Eclipse support, please have a look at the Groovy Eclipse plugin home page, as well as the notes
for the M1 release and M2 release.

New features

Anonymous Inner Classes and Nested Classes

Although oftentimes closures and maps coercion suffice, there are still areas where the lack of Anonymous Inner Classes (AIC) and Nested
Classes (NC) can be problematic. That's why we decided to eventually implement AIC and NC in Groovy 1.7.

“1. Be Careful
I The implementation of AIC and NC follows the Java lead, but you should not take out the Java Language Spec and keep

shaking the head about things that are different. The implementation done looks much like what we do for groovy.lang.Closure,
with some benefits and some differences. Accessing private fields and methods for example can become a problem, but on the

other hand local variables don't have to be final.

Nested Static Classes

Here's an example of Nested Static Classes:

class A {
static class B {}

}

new A.B()

The usage of static nested classes is the best supported one. If you absolutely need an inner class, you should make it a static one.

Anonymous Inner Classes

Some other examples, this time for Anonymous Inner Classes:

boolean called = false

Timer timer = new Timer ()
timer.schedule (new TimerTask () {
void run() {
called = true

}
}, 0)
sleep 100

assert called

iﬁ. More information
If you want to learn a bit more about the cases which are currently supported in 1.7, you can have a look at one of our unit tests

covering this new feature.

Accessing the Outer Context from a Nested Class

If you are in a nested class Y and the surrounding class is X, then you can access the variable v of X in Java by X.this.v. Groovy does not support
this syntax.

Creating Instances of Non-Static Inner Classes

In Java you can do this:

public class Y {
public class X {}
public X foo() {
return new X () ;
}
public static X createX(Y y) {
return y.new X();

}

It should be noted that the nested class X needs a reference to the outer class instance of Y. For this Java will create a constructor that takes Y
as first parameter in X. This constructor is synthetic, so it won't appear in any code completion.
In case of new X(), like you have it in method foo(), then compiler will then create new X(this) instead. In case of createX the compiler will create

new X(y). Groovy does not support this.

Instead Groovy supports giving the instance in like the compiler would do it. That means the code above has to be rewritten as

public class Y {
public class X {}
public X foo() {
return new X (this);
}
public static X createX(Y y) {
return new X(y);

}

i Caution

=2
Caution though, Groovy supports calling methods with one parameter without giving an argument. The parameter will then have
the value null. Basically the same rules apply to calling a constructor. There is a danger that you will write new X() instead of
new X(this) for example. Since this might also be the regular way we have not yet found a good way to prevent this problem.

Annotations

Groovy's support of annotations is identical to Java 5 annotations, but we felt that in some cases it would be interesting to be able to add
annotations in other places than the usual places (types, fields, methods, parameters, etc.). For instance, in Java, it is impossible to add
annotations on imports or packages. Groovy does go beyond and adds support for annotation on imports, packages and variable declarations.
We'll take a look at the usage of those extended annotations on Grape.

Grape

The Grape dependency system lets you request dependencies in your scripts, without having to deal with downloading, packaging, or specifying
the classpath yourself. To use Grape, we had to use the @Grab annotation to "grab" a dependency from a repository (Maven's central repository,
for example). The problem was that annotation had to be attached to some allowed elements, ie. the places where annotations can be put in
Java. Now, we can put annotations on imports:

@Grab (group="'net.sf.json-1ib', module='json-1lib', version='2.3"', classifier='jdkl5"')
import net.sf.json.groovy.*

assert new JsonSlurper () .parseText (
new JsonGroovyBuilder () .json {
book (title: "Groovy in Action", author:"Dierk Koénig et al")
}.toString ()
) .book.title == 'Groovy in Action'

Another example with @Grab on variable declarations:

@Grab ('net.sf.json-1lib:json-1ib:2.3:jdk1l5")
def builder = new net.sf.json.groovy.JsonGroovyBuilder ()

def books = builder.books {
book (title: "Groovy in Action", author: "Dierk Koenig")

}

assert books.toString() == '''{"books":{"book":{"title":"Groovy in Action", "author":"Dierk Koenig"

e

i} Remark
Please note on this one an improvement in the @Grab annotation: we provide a shorter version taking just a String as value
parameter representing the dependency, in addition to the more verbose example in the previous example. You simply append
the group, module, version and classifier together, joined by colons.

A Grape resolver was added, so you can specify a remote location where grapes are downloaded from:

@GrabResolver (name='restlet.org', root='http://maven.restlet.org')
@Grab (group='org.restlet', module='org.restlet',6 version='1.1.6")
import org.restlet.Restlet

//

Power Asserts

Groovy's "assert" keyword has sometimes been criticized as it's, in a way, limited, as it just checks that the expression it's being passed is true or
false. Unlike with testing frameworks such as JUnit/TestNG and the various additional assertion utilities, where you get nicer and more descriptive
messages, Groovy's assert would just tell you the expression was false, and would give the value of variables used in the expression, but nothing
more. With Power Asserts, initially developed in the Spock Framework, the output of the assert is now much nicer and provides a visual
representation of the value of each sub-expressions of the expression being asserted. For example:

assert new File('foo.bar') == new File ('example.txt')

Will yield:

Caught: Assertion failed:

assert new File('foo.bar')

foo.bar

== new File ('example.txt')
.

| example.txt

false

AST

With Groovy 1.6, we introduced AST Transformations, for letting developers do compile-time metaprogramming, by modifying the Abstract Syntax
Tree before it is transformed into bytecode. In Groovy 1.6, several such transformations were added, especially "local" transformations triggered
by annotations (such as @Delegate, @Singleton, @Bindable and friends). However powerful this feature is, writing AST transformation has
always been a bit tedious. Groovy 1.7 features two new features which should help simplify the work of AST transformation writers: an AST
viewer and an AST builder.

AST Viewer

The following screenshot shows a new window that can be launched from the Groovy Swing Console. You can visualize the AST of a script you're
working on in the console: for instance, writing the code you'd like to create in your AST transformation. The AST viewer greatly help with figuring
out how Groovy builds its AST when compiling your Groovy code.

_io) x|
e s foahsn - Fofizch
-’ . -
LT E Paarzsr czand =] e bl T
T 3 - = R [RN Ry NN T LRTRRTLL /N NEITRTRTLONE LAY N TIR
! F-_5| F 135 Smal= ant - Hat--TnsIF =[S oraeahs s B -t
| _'_| el o=l s e adde ol - E chazs Irz C2IERAE 0 W [X5
X vos Naerazly sy ez ulil oz “recz hawtiarshz ks ol
' 1= Bl Lokl pnery'sSramy EELYETE YT] 1l ril
! FEArsn vt kb= aeer? rlrrg e rul
. 1%k zowd o by 2 Smar TToyed k=
' SN A= TH T | Il s, “dk= ==
! =] a==l=5- - hkherys o e e RT3 o il ril =T
i I A RRer - haty =yl laz7Tan vt ra=r ni it
: : C L aksthodlal hstrezal 1321 "= Irher TR bit
h H T T T YT T) ITl_l:ﬂ.l'u'.:' 2= il
1 1 =s okt - cbe el e hatry =g
| | U rqurseikr o) STy = ISR L B e
| | BRI T TRE SRS AT P aupeCopn ez k=
. IS TR WIS S TR i = U mlh “ab=
' D S | e il el ol R il ARl) IR il iy
! ! T L A=thoal habrosevesi th sF=[res - k=
' ' . liez [ER I L v U P (o o w
1 1 A ekt s Tt g ; NET TRICIT R |J-:L_ I
! ! SRR YO T
! ! l—w Fopalrr--r cavacses
: ' ZrpaTlasirzn .
1 LI ':z—m'.:u‘l:ﬂ: it - B oossion T
4 F

AST Builder

Visualizing the AST is one thing, but we also need a mechanism to create and modify ASTs more easily. The introduction of the AST builder
simplifies the authoring of AST transformations, by giving you three different approaches for working on the AST:

® building from string
® building from code
® building from specification

Before the AST builder, one had to create and instantiate manually all the various AST nodes. Let's see how those three forms help with this, for
instance for creating a node representing a constant string.

Building from string

List<ASTNode> nodes = new AstBuilder() .buildFromString(''' "Hello" ''")

Building from code

List<ASTNode> nodes = new AstBuilder().buildFromCode { "Hello" }

Building from specification

List<ASTNode> nodes = new AstBuilder().buildFromSpec {
block {
returnStatement {
constant "Hello"

}

For more information
Please have a look at the documentation on the AST Builder. You'll discover the advantages and inconveniences of the various
forms, and why all three are needed depending on what you want to achieve with the AST.

Other minor enhancements

Ability to customize the Groovy Truth

In Groovy, booleans aren't the sole things which can be evaluated to true or false, but for instance, null, empty strings or collections are evaluated
to false or true if of length > 0 or non-empty. This notion of "truth" was coined "Groovy Truth" in the Groovy in Action book. With Groovy Truth,
instead of doing frequent null checks, you could simply write:

def string = "more than one character"
if (string) { println "the String is neither null nor empty" }

Up until Groovy 1.7, only a small set of classes had a certain meaning with regards to how they were coerced to a boolean value, but now it is
possible to provide a method for coercion to boolean in your own classes. For example, the following Predicate class offers the ability to coerce
Predicate instances to true or false, thanks to the implementation of the boolean asBoolean() method:

class Predicate {
boolean value
boolean asBoolean() { value }

}

assert new Predicate(value: true)
assert !new Predicate(value: false)

Is is also possible to use categories or ExpandoMetaClass to inject an asBoolean() method, or to override an existing one (even one on the small
set of classes with special Groovy truth behavior).

Dependency upgrades

Some of the dependencies of Groovy have been upgraded to newer versions.

For instance, Groovy now uses the latest ASM version, which is "invokedynamic"-ready. So as we progress towards the inclusion of JSR-292 /
invokedynamic, we'll be ready and be using the latest version of ASM. We also use the latest version of lvy which is used by the Grape
dependency module.

Rewrite of the GroovyScriptEngine

The GroovyScriptEngine (which is also used by Groovlets) has been rewritten to solve various dependency issues it was suffering from, and the
outcome of this is that it should also now be much faster overall.

The new logic uses additional phase operations to track dependencies. As a result the error-prone class loader technique to track them is gone
now. These operations ensure that every script file will be tracked, its dependencies recorded during compilation and all transitive dependencies
will be calculated. And only scripts will be recorded as dependency, no classes. The new GroovyScriptEngine also uses only one compilation
"process" for script compilation which solves the problem of circular or mutual dependencies, that caused stack overflows in the past. As a result
the new engine can reliably handle dependencies and should be much faster.

Groovy console preferences

A small annoyance, especially for developers using big LCD screens: the Groovy Console didn't remember preferences of position of the
separator between the coding area and output view, or the font size being used. This is now fixed, as the console remembers such settings. You
won't need anymore to adjust the console to your liking each time you run it, it should now have some more brain cells to remember your
preferences.

New output window for the Groovy console

There is a new visualization option for the results of the execution of your scripts in your Groovy Console. Instead of displaying the results in the
bottom output pane, it's now possible to use an external window for viewing those results. Run your script with CTRL-R or CMD-R, you will see
something like the following screenshot. You can then dismiss the window by hitting Escape, CTRL-W (CMD-W on Macs) or Enter.

i

IETETE][3]e [4[D[D]: [%] [<]w][E]
class Drug {

String name

String toString() { name }

}

class DrugQuantity {
int number
String toString() {
number == 1 ? "1 pill" : "$number pills"

(0= 1= o BN B SRR) B =S PR I S

def take(Map m, DrugQuantity dg) {
println "Take $dg of $m.of in $m.in.number $
}

def chlorogquinine = new Drug(name: "Chloroguinin

take 2.pills, of: chloroquinine, in: 6.hours

Execution complete. Result was null.

You will also notice the addition of line numbers in the gutter of the editor area.
SQL batch updates and transactions

Batch updates

The Groovy Sql class now features batch updates, thanks to its new withBatch() method, taking a closure and a statement instance:

sql.withBatch { stmt ->
["Paul", "Jochen", "Guillaume"] { name ->
stmt.addBatch "insert into PERSON (name) values ($name)"

}

Transactions

Similarly, there's a withTransaction() method added to Sql, which works also with datasets:

def persons = sqgl.dataSet ("person")
sql.withTransaction {
persons.add name: "Paul"
persons.add name: "Jochen"
persons.add name: "Guillaume"

Getting Started Guide

Getting Started Guide

® Beginners Tutorial
® Tutorial 1 - Getting started
® Tutorial 2 - Code as data, or closures
® Tutorial 3 - Classes and Objects
® Tutorial 4 - Regular expressions basics
® Tutorial 5 - Capturing regex groups
® Tutorial 6 - Groovy SQL
® Differences to Other Languages
® Differences from Java
® Differences from Python
® Differences from Ruby
® Download
® Feature Overview
® Groovlets
® Groovy Beans
® GroovyMarkup
® Groovy Templates
® For those new to both Java and Groovy
* JN0025-Starting
JNO0515-Integers
JN0525-Decimals
JN0535-Floats
JNO0545-Dates
JN1015-Collections
JN1025-Arrays
JN1035-Maps
JN1515-Characters
JN1525-Strings
JN1535-Patterns
JN2015-Files
JN2025-Streams
JN2515-Closures
JN2525-Classes
JN2535-Control
JN3015-Types
JN3025-Inheritance
JN3035-Exceptions
JN3515-Interception
JN3525-MetaClasses
® JN3535-Reflection
® Groovy for the Office
® Groovy Quick Start Project
® Quick Start
® Installing Groovy
¢ Installing Groovy and Grails on the Eee PC
® Running

Beginners Tutorial

Welcome on board the Groovy flight. Before proceeding through the content of this tutorial, please make sure to fasten your seat belt, before we
take off to higher levels of grooviness...

This page is intended to get you started with Groovy, following a trail of a few tutorial labs on various topics mainly oriented towards typical use of
scripting languages for data crunching or text manipulation.

Graham Miller, a Groovy aficionado, has been teaching a class of business on data crunching. And he was kind enough to contribute back to the
Groovy project this great set of educational material to help you learn Groovy, using some nice examples to massage, summarize and analyze
data - a task for which Groovy is a quite good fit.

The topics covered are about Groovy basics, text parsing, regular expressions, and SQL:

Getting started
Code as data
Classes and Objects
Regular Expressions
Capturing groups

® Groovy SQL

If you are a Java developer

® you might want to check on the Differences from Java
® also there are a few Things to remember

Tutorial 1 - Getting started

Getting Started

Setting up your Java environment

Groovy requires Java, so you need to have a version available (1.4 or greater is required). Here are the steps if you don't already have Java
installed:

® Get the latest Java distribution from the http://java.sun.com website.
® Run the installer.
® Set the JAVA_HOME environment variables. On Windows, follow these steps:
® Open the System control panel
® Click the Advanced tab
® Click the Environment Variables button
® Add a new System variable with the name JAVA_HOME and the value of the directory Java was installed in (mine is C:\Program
Files\Java\jdk1.5.0_04)
® Optionally add %JAVA_HOME%\bin to your system path
(Note: as an alternative to setting a system environment variable, you can create yourself a ".bat' or .cmd' file which sets the
variable. You then need to run that batch file in any console window in which you wish to run Java and double clicking on ".bat' or
'.cmd' files containing Java invocation instructions won't work. If you are unsure about what this means, follow the earlier
instructions.)

Setting up your Groovy environment

Download the Groovy installer or binaries from the downloads page and follow the installation instructions. (There is currently an issue where you
cannot have spaces in the path where Groovy is installed under windows. So, instead of accepting the default installation path of "c:\Program
Files\Groovy" you will want to change the path to something like "c:\Groovy")

OR

® Get a copy of the Groovy distribution from the website, and copy it to some place on your hard drive.
® Unzip the groovy archive to some logical place on your hard drive, | have mine in C:\dev\groovy-1.0-jsr-06
® Set the GROOVY_HOME environment variables. On Windows, follow these steps:
® Add a new System variable with the name GROOVY_HOME and the value of the directory groovy was installed in (mine is
C:\dev\groovy-1.0-jsr-06)
® Start a command prompt, and type "set" and hit return to see that your environment variables were set correctly.
® Optionally add %GROOVY_HOME%\bin to your system path
® Try opening groovyConsole.bat by double clicking on the icon in the bin directory of the Groovy distribution. If it doesn't work, open a
command prompt, and change to the bin directory and run it from there to see what the error message is.

Setting up optional jar files

You may wish to obtain optional jar files, either corresponding to Groovy modules (see module documentation for details) or corresponding to
other Java classes you wish to make use of from Groovy. Some possibilities are listed below:

Name From Description
jtds-version.jar http://jtds.sourceforge.net = Database driver for SQL Server and/or Sybase

hsqldb-version.jar | http://www.hsqldb.org/ Database driver for HSQLDB, a 100% Java database

The recommended way for making Groovy be aware of your additional jar files is to place them in a predefined location. Your Groovy install
should include a file called groovy-starter.conf. Within that file, make sure a line such as

load ${user.home}/.groovy/lib/*

is not commented out. The user . home system property is set by your operating system. (Mine is C: \Document and Settings\paul. Now
simply place your jar files into the .groovy/1ib directory.

(Note: as an alternative, you can set up a CLASSPATH variable and make sure it mentions all of your additional jar files, otherwise Groovy works
fine with an empty or no CLASSPATH variable.)

Hello, World

In the top part of the window of the groovyConsole, type the following

println "Hello, World!"

And then type <CTRL-R>.
Notice that the text gets printed out in the OS console window (the black one behind the groovyConsole window) and the bottom part of the
groovyConsole says:

groovy> println "Hello, World!"
null

The line starting with "groovy>" is just the text of what the console processed. The "null" is what the expression "evaluated to". Turns out the
expression to print out a message doesn't have any "value" so the groovyConsole printed "null".
Next try something with an actual value. Replace the text in the console with:

123+45%67

or your favorite arithmetic expression, and then type <CTRL-R> (I'm going to stop telling you to hit <CTRL-R>, | think you get the idea). Now the
"value" printed at the bottom of the groovyConsole has more meaning.

Variables

You can assign values to variables for later use. Try the following:

x =1
println x

x = new java.util.Date (
println x

X = -3.1499392
println x

x = false
println x

x = "Hin
println x

Lists and Maps

The Groovy language has built-in support for two important data types, lists and maps (Lists can be operated as arrays in Java language). Lists
are used to store ordered collections of data. For example an integer list of your favorite integers might look like this:

myList = [1776, -1, 33, 99, 0, 928734928763]

You can access a given item in the list with square bracket notation (indexes start at 0):

println myList[0]

Should result in this output:

1776

You can get the length of the list with the "size" method:

println myList.size()

Should print out:

But generally you shouldn't need the length, because unlike Java, the preferred method to loop over all the elements in an list is to use the "each”
method, which is described below in the "Code as Data" section.

Another native data structure is called a map. A map is used to store "associative arrays" or "dictionaries". That is unordered collections of
heterogeneous, named data. For example, let's say we wanted to store names with 1Q scores we might have:

scores = ["Brett":100, "Pete":"Did not finish", "Andrew":86.87934]

Note that each of the values stored in the map is of a different type. Brett's is an integer, Pete's is a string, and Andrew's is a floating point
number. We can access the values in a map in two main ways:

println scores["Pete"]
println scores.Pete

Should produce the output:

Did not finish
Did not finish

To add data to a map, the syntax is similar to adding values to an list. For example, if Pete re-took the 1Q test and got a 3, we might:

scores ["Pete"] = 3

Then later when we get the value back out, it will be 3.

println scores["Pete"]

should print out 3.
Also as an aside, you can create an empty map or an empty list with the following:

emptyMap = [:]
emptyList = []

To make sure the lists are empty, you can run the following lines:

println emptyMap.size ()
println emptyList.size()

Should print a size of 0 for the List and the Map.

Conditional Execution

One of the most important features of any programming language is the ability to execute different code under different conditions. The simplest

way to do this is to use the "if" construct. For example:

amPM = Calendar.getInstance () .get (Calendar.AM PM)
if (amPM == Calendar.AM)

{

println ("Good morning")

} else {

println("Good evening")

}

Don't worry too much about the first line, it's just some code to determine whether it is currently before noon or after. The rest of the code

executes as follows: first it evaluates the expression in the parentheses, then depending on whether the result is "'true™ or "'false™ it executes the

first or the second code block. See the section below on boolean expressions.
Note that the "else" block is not required, but the "then" block is:

amPM = Calendar.getInstance () .get (Calendar.AM PM)
if (amPM == Calendar.AM)

{

println("Have another cup of coffee.")

}

Boolean Expressions

There is a special data type in most programming languages that is used to represent truth values, "true™ and "false™. The simplest boolean

expression are simply those words. Boolean values can be stored in variables, just like any other data type:

myBooleanVariable = true

A more complex boolean expression uses one of the boolean operators:

Most of those are probably pretty intuitive. The equality operator is "'==""to distinguish from the assignment operator "'="". The opposite of equality
is the "'!="" operator, that is "not equal”
So some examples:

titanicBoxOffice = 1234600000
titanicDirector = "James Cameron"

trueLiesBoxOffice = 219000000
trueLiesDirector = "James Cameron"

returnOf TheKingBoxOffice = 752200000
returnOfTheKingDirector = "Peter Jackson'

theTwoTowersBoxOffice = 581200000
theTwoTowersDirector = "PeterJackson"

titanicBoxOffice > returnOfTheKingBoxOffice // evaluates to true
titanicBoxOffice >= returnOfTheKingBoxOffice // evaluates to true

titanicBoxOffice >= titanicBoxOffice // evaulates to true

titanicBoxOffice > titanicBoxOffice // evaulates to false

titanicBoxOffice + trueLiesBoxOffice < returnOfTheKingBoxOffice + theTwoTowersBoxOffice // evaluates
to false

titanicDirector > returnOfTheKingDirector // evaluates to false, because "J" is before "P"
titanicDirector < returnOfTheKingDirector // evaluates to true

titanicDirector >= "James Cameron" // evaluates to true

titanicDirector == "James Cameron" // evaluates to true

Boolean expressions are especially useful when used in conjunction with the ™if" construct. For example:

if (titanicBoxOffice + trueLiesBoxOffice > returnOfTheKingBoxOffice + theTwoTowersBoxOffice)

{

println(titanicDirector + " is a better director than " + returnOfTheKingDirector)

}

An especially useful test is to test whether a variable or expression is null (has no value). For example let's say we want to see whether a given
key is in a map:

suvMap = ["Acura MDX":"\$36,700", "Ford Explorer":"\$26,845"]
if (suvMap ["Hummer H3"] != null)

{

println("A Hummer H3 will set you back "+suvMap ["Hummer H3"]) ;

}

Generally null is used to indicate the lack of a value in some location.

Debugging and Troubleshooting Tips

® Print out the class of a variable that you're interested in with myVar.getClass(). Then look up the documentation for that class.

® |f you're having trouble with a complex expression, pare it down to a simpler expression and evaluate that. Then build up to your more
complex expression.

® Try restarting the groovyConsole (this will clear out all the variables so you can start over.

® ook for the topic you're interested in in the Groovy User Guide

If you are a Java developer

® you might want to check on the Differences from Java
® also there a few Things to remember

Tutorial 2 - Code as data, or closures

Closures

One of the things that makes Groovy different than most compiled languages is that you can create functions that are first class objects. That is
you can define a chunk of code and then pass it around as if it were a string or an integer. Check out the following code:

square = { it * it }

The curly braces around the expression "it * it" tells the Groovy compiler to treat this expression as code. In the software world, this is called a
"closure". In this case, the designator "it" refers to whatever value is given to the function. Then this compiled function is assigned to the variable
"square" much like those above. So now we can do something like this:

square (9)

and get the value 81.

This is not very interesting until we find that we can pass this function "square" around as a value. There are some built in functions that take a
function like this as an argument. One example is the "collect" method on arrays. Try this:

[1, 2, 3, 4].collect(square)

This expression says, create an array with the values 1,2,3 and 4, then call the "collect' method, passing in the closure we defined above. The
collect method runs through each item in the array, calls the closure on the item, then puts the result in a new array, resulting in:

For more methods you can call with closures as arguments, see the Groovy GDK documentation.

By default closures take 1 parameter called "it", you can also create closures with named parameters. For example the method Map.each() can
take a closure with two variables, to which it binds the key and associated value:

printMapClosure = { key, value -> println key + "=" + value }

["yue" : "wu", "lane" : "burks", "sudha" : "saseethiaseeleethialeselan"].each(printMapClosure)
Produces:

yue=wu

lane=burks

sudha=saseethiaseeleethialeselan

More Closure Examples

Here are a few more closure examples. This first one shows a couple of things. First, the closure is interacting with a variable outside itself. That
is, the closure's purpose is to put together the parts of a stock order held in the array orderParts, by adding (appending) it to the variable fullString.
The variable fullString is not in the closure. The second thing that is different about this example is that the closure is "anonymous", meaning that
it is not given a name, and is defined in the place where the each method is called.

fullString = ""
orderParts = ["BUY", 200, "Hot Dogs", "1"]
orderParts.each {

fullString += it + " "

}

println fullString

You can probably guess what this prints out.

The next example is another anonymous closure, this time, summing up the values stored in a map.

myMap = ["asdf": 1 , "gwer" : 2, "sdfg" : 10]

result = 0
myMap . keySet () .each({ result+= myMap[it] })
println result

Dealing with Files

Reading data from files is relatively simple. First create a text file, and call it myfile.txt. It doesn't matter what's in it, just type some random text
into it and save it on your C: drive in the \temp directory. Then type the following code in the groovyConsole:

myFileDirectory = "C:\\temp\\"
myFileName = "myfile.txt"
myFile = new File (myFileDirectory + myFileName)

printFileLine = { println "File line: " + it }

myFile.eachLine (printFileLine)

This should print out every line in the file prefixed with "File line: ". The first two lines of the code simply declare variables to specify where the file
is located. The variable names don't have any special significance, and as you can see, all we do is combine them when we use them. Note that
because the backslash character has special meaning in groovy, you have to use two of them to tell it that you "really™ mean a backslash.

The next line that starts "myFile =" creates a new File object. An object is simply a collection of related methods and data. For example, a file
object might have data describing its location, in this case "C:\temp\myfile.txt", and maybe a method to delete the file if it exists. In this case the
only method we are going to use is the eachLine method, which we call in the last line of code. The line before that is a simple closure definition,
that you have seen several times by this point.

Dealing with strings

Strings in Groovy have all the same functionality of Java strings. That is, a Groovy string is just a Java string with a few extra things added to it.
Because of that, we can refer to the Java documentation for the String class to find out some of the interesting things we can do with it. For
example, look in the section entitled ""Method Summary™ at the description for the "split" method. This method does something very useful,
which is to split a string based on a regular expression. We will talk more about regular expressions later, but for now the only thing you have to
know is that the simplest regular expression is a single character. So let's say that we want to split up the components of the date "2005-07-04",
so that we can add one to the year to get the date of next fourth of July. We might:

stringDate = "2005-07-04"

dateArray = stringDate.split("-") // split() uses regEx's, so you need to escape chars such as a "."
-> ”\\A”

year = dateArray[0].toInteger()

year = year + 1

newDate = year + "-" + dateArray[l] + "-" + dateArray[2]

This code brings together a bunch of things we have talked about before. There are two new things, first is the use of the split method on a String.
Second is the call of tolnteger() on a String. This call to tolnteger simply tells Groovy that you want to treat that data as a number rather than a
String. See what happens if you run the same code without ".toInteger()" at the end of the third line.

Another thing you might notice is that tolnteger is not listed in the Java documentation for string. That is because it is one of the extra features that
Groovy has added to Strings. You can also take a look at the documentation for the Groovy extensions to Java objects.

Tutorial 3 - Classes and Objects

Classes and Objects

® Obijects are collections of related code and data
® Everything in Java and Groovy can be considered an object

® Aclass is a higher level description of an object.
® For example a 10-Q is a specification developed by the SEC and can be thought of as a "Class". A quarterly report issued by
IBM for Q2 2005 can be thought of as an object of the class 10-Q.

® Documentation for java classes can be found here
® Documentation for Groovy extensions to Java classes can be found here

Tutorial 4 - Regular expressions basics

Regular Expressions

Regular expressions are the Swiss Army knife of text processing. They provide the programmer the ability to match and extract patterns from
strings. The simplest example of a regular expression is a string of letters and numbers. And the simplest expression involving a regular
expression uses the ==~ operator. So for example to match Dan Quayle's spelling of 'potato”:

"potatoe" ==~ /potatoe/

If you put that in the groovyConsole and run it, it will evaluate to true. There are a couple of things to notice. First is the ==
~ operator, which is similar to the == operator, but matches patterns instead of computing exact equality. Second is that the regular expression is
enclosed in /'s. This tells groovy (and also anyone else reading your code) that this is a regular expression and not just a string.

But let's say that we also wanted to match the correct spelling, we could add a '?" after the 'e’ to say that the e is optional. The following will still
evaluate to true.

"potatoe" ==~ /potatoe?/

And the correct spelling will also match:

"potato" ==~ /potatoe?/

But anything else will not match:

"motato" ==~ /potatoe?/

So this is how you define a simple boolean expression involving a regular expression. But let's get a little bit more tricky. Let's define a method
that tests a regular expression. So for example, let's write some code to match Pete Wisniewski's last name:

def checkSpelling(spellingAttempt, spellingRegularExpression)
{
if (spellingAttempt ==~ spellingRegularExpression)
{
println("Congratulations, you spelled it correctly.")
} else {
println("Sorry, try again."

theRegularExpression = /Wisniewski/
checkSpelling ("Wisniewski", theRegularExpression)
checkSpelling ("Wisnewski", theRegularExpression)

There are a couple of new things we have done here. First is that we have defined a function (actually a method, but I'll use the two words
interchangably). A function is a collection of code similar to a closure. Functions always have names, whereas closures can be "anonymous".
Once we define this function we can use it over and over later.

In this function the if statement in bold tests to see if the parameter spellingAttempt matches the regular expression given to the function by using
the ==~ operator.

Now let's get a little bit more tricky. Let's say we also want to match the string if the name does not have the 'w' in the middle, we might:

theRegularExpression = /Wisniew?ski/

checkSpelling ("Wisniewski", theRegularExpression)
checkSpelling ("Wisnieski", theRegularExpression)
checkSpelling ("Wisniewewski", theRegularExpression)

The single ? that was added to the spellingRegularExpression says that the item directly before it (the character 'w') is optional. Try running this
code with different spellings in the variable spellingAttempt to prove to yourself that the only two spellings accepted are now "Wisniewski" and
"Wisnieski". (Note that you'll have to leave the definition of checkSpelling at the top of your groovyConsole)

The *?* is one of the characters that have special meaning in the world of regular expressions. You should probably assume that any punctuation
has special meaning.

Now let's also make it accept the spelling if "ie" in the middle is transposed. Consider the following:

theRegularExpression = /Wisn(ie|ei)w?ski/
checkSpelling ("Wisniewski", theRegularExpression)
checkSpelling ("Wisnieski", theRegularExpression)
checkSpelling ("Wisniewewski", theRegularExpression)

Once again, play around with the spelling. There should be only four spellings that work, "Wisniewski", "Wisneiwski", "Wisnieski" and "Wisneiski".
The bar character '|' says that either the thing to the left or the thing to the right is acceptable, in this case "ie" or "ei". The parentheses are simply
there to mark the beginning and end of the interesting section.

One last interesting feature is the ability to specify a group of characters all of which are ok. This is done using square brackets *[]*. Try the
following regular expressions with various misspellings of Pete's last name:

theRegularExpression = /Wis[abcdlniewski/ // requires one of 'a', 'b', 'c¢' or 'd’

theRegularExpression = /Wis[abcd] ?niewski/ // will allow one of 'a', 'b', 'c¢' or 'd', but not required
(like above)

theRegularExpression = /Wis[a-zA-Z]lniewski/ // requires one of any upper\- or lower-case letter
theRegularExpression = /Wis[%abcdlniewski/ // requires one of any character that is '''not''' 'a',

'b', 'c¢' or 'd'

The last one warrants some explanation. If the first character in the square brackets is a *** then it means anything but the characters specified in
the brackets.

The operators
So now that you have a sense for how regular expressions work, here are the operators that you will find helpful, and what they do:

Regular Expression Operators

a? matches 0 or 1 occurrence of *a* ‘a' or empty string
a* matches 0 or more occurrences of *a* empty string or 'a’, 'aa’, 'aaa’, etc
a+ matches 1 or more occurrences of *a* ‘a’, 'aa’, 'aaa’, etc
alb match *a* or *b* ‘a' or 'b’
match any single character a','q, I, ", ', ete
[woeirjsd] match any of the named characters 'w', o', ‘e, i ', s, !
[1-9] match any of the characters in the range 1','2",'3", '4",'5", '6', '7", '8','9"
[*13579] match any characters not named even digits, or any other character
(ie) group an expression (for use with other operators) ‘ie'
Aa match an *a* at the beginning of a line ‘a’
a$ match an *a* at the end of a line ‘a’

There are a couple of other things you should know. If you want to use one of the operators above to mean the actual character, like you want to
match a question mark, you need to put a '\' in front of it. For example:

// evaluates to true, and will for anything ending in a question mark (that doesn't have a question
mark in it)

"How tall is Angelina Jolie?" ==~ /["\?]+\?/

This is your first really ugly regular expression. (The frequent use of these in PERL is one of the reasons it is considered a "write only" language).
By the way, google knows how tall she is. The only way to understand expressions like this is to pick it apart:

/ [*?] + ? 1

begin expression any character other than '?' more than one of those a question mark end expression

So the use of the \ in front of the ? makes it refer to an actual question mark.
Tutorial 5 - Capturing regex groups
Capture groups

One of the most useful features of Groovy is the ability to use regular expressions to "capture" data out of a regular expression. Let's say for
example we wanted to extract the location data of Liverpool, England from the following data:

locationData = "Liverpool, England: 53° 25?2 0?2 N 3° 0? 02"

We could use the split() function of string and then go through and strip out the comma between Liverpool and England, and all the special
location characters. Or we could do it all in one step with a regular expression. The syntax for doing this is a little bit strange. First, we have to
define a regular expression, putting anything we are interested in in parentheses.

myRegularExpression = /([a-2z2A-Z]1+), ([la-zA-Z]1+): ([0-9]1+). ([0-91+). ([0-91+). ([A-Z]) ([0-9]1+).

([0-91+). ([0-91+)./

Next, we have to define a "matcher" which is done using the =~ operator:

matcher = (locationData =~ myRegularExpression)

The variable matcher contains a java.util.regex.Matcher as enhanced by groovy. You can access your data just as you would in Java from a
Matcher object. A groovier way to get your data is to use the matcher as if it were an array--a two dimensional array, to be exact. A two

dimensional array is simply an array of arrays. In this case the first "dimension" of the array corresponds to each match of the regular expression
to the string. With this example, the regular expression only matches once, so there is only one element in the first dimension of the
two-dimensional array. So consider the following code:

matcher [0]

That expression should evaluate to:

["Liverpool, England: 53° 25? 0? N 3° 0? 02", "Liverpool", "England", "53", "25", "o", "N", "3",6 "Q",
ngn]

And then we use the second dimension of the array to access the capture groups that we're interested in:

if (matcher.matches()) {
println (matcher.getCount () + " occurrence of the regular expression was found in the string.");
println(matcher[0] [1] + " is in the " + matcher[0] [6] + " hemisphere. (According to: " +

matcher[0] [0] + ") ")

}

Notice that the extra benefit that we get from using regular expressions is that we can see if the data is well-formed. That is if locationData
contained the string "Could not find location data for Lima, Peru", the if statement would not execute.

Non-matching Groups

Sometimes it is desirable to group an expression without marking it as a capture group. You can do this by enclosing the expression in
parentheses with ?: as the first two characters. For example if we wanted to reformat the names of some people, ignoring middle names if any,
we might:

names = [
"Graham James Edward Miller",
"Andrew Gregory Macintyre"

printClosure = {

matcher = (it =~ /(.*?)(?: .+)+ (.*)/); // notice the non-matching group in the middle
if (matcher.matches())
println(matcher[0] [2]+", "+matcher[0] [1]);

}

names .each (printClosure) ;

Should output:

Miller, Graham
Macintyre, Andrew

That way, we always know that the last name is the second matcher group.

Replacement

One of the simpler but more useful things you can do with regular expressions is to replace the matching part of a string. You do that using the
replaceFirst() and replaceAll() functions on java.util.regex.Matcher (this is the type of object you get when you do something like myMatcher = ("a"
+=/bl);).

So let's say we want to replace all occurrences of Harry Potter's name so that we can resell J.K. Rowlings books as Tanya Grotter novels (yes,
someone tried this, Google it if you don't believe me).

excerpt = "At school, Harry had no one. Everybody knew that Dudley's gang hated that odd Harry Potter
"+

"in his baggy old clothes and broken glasses, and nobody liked to disagree with Dudley's
gang.";
matcher = (excerpt =~ /Harry Potter/) ;
excerpt = matcher.replaceAll ("Tanya Grotter");

matcher = (excerpt =~ /Harry/);
excerpt = matcher.replaceAll ("Tanya") ;
println("Publish it! "+excerpt) ;

In this case, we do it in two steps, one for Harry Potter's full name, one for just his first name.

Reluctant Operators

The operators ?, +, and * are by default "greedy". That is, they attempt to match as much of the input as possible. Sometimes this is not what we
want. Consider the following list of fifth century popes:

popesArray = [
"Pope Anastasius I 399-401",
"Pope Innocent I 401-417",
"Pope Zosimus 417-418",
"Pope Boniface I 418-422",
"Pope Celestine I 422-432",
"Pope Sixtus III 432-440",
"Pope Leo I the Great 440-461",
"Pope Hilarius 461-468",
"Pope Simplicius 468-483",
"Pope Felix III 483-492",
"Pope Gelasius I 492-496",
"Pope Anastasius II 496-498",
"Pope Symmachus 498-514"

A first attempt at a regular expression to parse out the name (without the sequence number or modifier) and years of each pope might be as
follows:

/Pope (.*)(?: .*)? ([0-9]1+)-([0-9]1+)/

Which splits up as:

/ Pope ' (.%) (?:.%)? ([0-9]+) - ([0-9]+) /
begin Pope ' capture some non-capture group: space and some capture a - capture a end
expression characters characters number number expression

We hope that then the first capture group would just be the name of the pope in each example, but as it turns out, it captures too much of the
input. For example the first pope breaks up as follows:

/ Pope | (.*) (?:.%)? | ([0-9]+) - ([0-9]+) /

begin expression = Pope Anastasius | 399 - 401 end expression

Clearly the first capture group is capturing too much of the input. We only want it to capture Anastasius, and the modifiers should be captured by
the second capture group. Another way to put this is that the first capture group should capture as little of the input as possible to still allow a
match. In this case it would be everything until the next space. Java regular expressions allow us to do this using "reluctant" versions of the *, +
and ? operators. In order to make one of these operators reluctant, simply add a ? after it (to make *?, +? and ??). So our new regular expression
would be:

/Pope (.*?)(?: .*)? ([0-9]+)-([0-9]1+)/

So now let's look at our new regular expression with the most difficult of the inputs, the one before Pope Hilarius (a real jokester), breaks up as
follows:

/ Pope | (.*?) (?:.%)? ([0-9]+) - ([0-9]+) [/

begin expression Pope Leo ' |the Great 440 - 461 end expression

Which is what we want.

So to test this out, we would use the code:

popesArray = [
"Pope Anastasius I 399-401"
"Pope Innocent I 401-417",
"Pope Zosimus 417-418",
"Pope Boniface I 418-422",
"Pope Celestine I 422-432",
"Pope Sixtus III 432-440",
"Pope Leo I the Great 440-461",
"Pope Hilarius 461-468",
"Pope Simplicius 468-483",
"Pope Felix III 483-492",
"Pope Gelasius I 492-496",
"Pope Anastasius II 496-498",
"Pope Symmachus 498-514"

myClosure = {

myMatcher = (it =~ /Pope (.*?) (?: .*)? ([0-9]+)-([0-9]1+)/);

if (myMatcher.matches())

println(myMatcher[0] [1]+": "+myMatcher[0] [2]+" to "+myMatcher[0] [3]);
}

popesArray.each (myClosure) ;

Try this code with the original regular expression as well to see the broken output.

Tutorial 6 - Groovy SQL

Groovy SQL

This section some content from this GroovySQL article, by Andrew Glover. If some of the references to JDBC don't make sense, don't worry.
There is one new language construct that is used below, which is the inclusion of variables in string definitions. For example try the following:

piEstimate = 3;
println("Pi is about ${piEstimate}");
println("Pi is closer to ${22/7}");

As you can see, in a string literal, Groovy interprets anything inside ${} as a groovy expression.

This feature is used extensively below.

Performing a simple query

Your first Groovy SQL code consists of three lines.

import groovy.sgl.Sgl

sqgl = Sgl.newInstance ("jdbc:jtds:sqglserver://serverName/dbName-CLASS;domain=domainName", "username"
"password", "net.sourceforge.jtds.jdbc.Driver")
sql.eachRow("select * from tableName", { println it.id + " -- ${it.firstName} --"});

The first line is a Java import. It simply tells Groovy the full name of the Sql object. The second line creates a new connection to the SQL
database, and stores the connection in the variable sq|.

This code is written for a jTDS connection to a MS SQL Server database. You will need to adjust all the parameters to newlnstance to connect to
your database, especially username and password.

Finally the third line calls the eachRow method of sql, passing in two arguments, the first being the query string, the second being a closure to
print out some values.

Notice that in the closure the fields of "it" are accessed in two different ways. The first is as a simple field reference, accessing the id field of it.
The second is the included Groovy expression mentioned above.

So the output from a row might look like:

001 -- Lane --

Retrieving a single value from DB

If all you need is a value of one or a few columns of a single row in the DB, you could do this

row = sqgl.firstRow("select columnA, columnB from tableName")
println "Row: columnA = ${row.columnaA} and columnB = ${row.columnB}"

Doing more complex queries

The previous examples are fairly simple, but GroovySql is just as solid when it comes to more complex data manipulation queries such as insert,
update, and delete queries. For these, you wouldn't necessarily want to use closures, so Groovy's Sql object provides the execute and
executeUpdate methods instead. These methods are reminiscent of the normal JDBC statement class, which has an execute and an
executeUpdate method as well.

Here you see a simple insert that uses variable substitution again with the ${} syntax. This code simply inserts a new row into the people table.

firstName = "yue"
lastName = "O'shea"
sqgl.execute ("insert into people (firstName, lastName) values (${firstName}, ${lastName})")

Because the sql statement is expressed in a GString, the values firstName and lastName are provided as parameters and so the quote mark in
lastName will not be seen as part of the statement.

Another way to do the same thing is to use prepared statements as follows:

firstName = "yue"

lastName = "wu"

sgl.execute("insert into people (firstName, lastName) "+
" values (?,?)", [firstName, lastName])

The data that you want to insert is replaced with "?" in the insert statement, and then the values are passed in as an array of data items. Updates
are much the same in that they utilize the executeUpdate method. Notice, too, that in Listing 8 the executeUpdate method takes a list of values
that will be matched to the corresponding ? elements in the query.

comment = "Lazy bum"
sgl.executeUpdate ("update people set comment = ? where i1id=002", [comment]

Deletes are essentially the same as inserts, except, of course, that the query's syntax is different.

sqgl.execute ("delete from word where word id = 2" , [5])

Other Tips

If you are content with using your resulting database columns in your business logic, it's nice and easy to just return a collection of
GroovyRowResult objects which you can use directly:

def getPersons () {
def persons = []
sql.eachRow ("Select * from Person")
persons << it.toRowResult ()

}

return persons

If you prefer to use a defined type instead of a GroovyRowResult, as long as your type has all the fields returned from your query you can just do:

Person p = new Person(it.toRowResult())

Differences to Other Languages

® Differences from Java
® Differences from Python
® Differences from Ruby

Differences from Java

Groovy tries to be as natural as possible for Java developers. We've tried to follow the principle of least surprise when designing Groovy,
particularly for developers learning Groovy who've come from a Java background.

Here we list all the major differences between Java and Groovy.

Default imports

All these packages and classes are imported by default, i.e. you do not have to use an explicit import statement to use them:

java.io.*

java.lang.*
java.math.BigDecimal
java.math.Biginteger
java.net.*

java.util.*
groovy.lang.*
groovy.util.*

Common gotchas

Here we list the common things you might trip over if you're a Java developer starting to use Groovy.

® ==means equals on all types. In Java there's a wierd part of the syntax where == means equality for primitive types and == means
identity for objects. Since we're using autoboxing this would be very confusing for Java developers (since x == 5 would be mostly false if

x was 5 :L'I . So for simplicity == means equals() in Groovy. If you really need the identity, you can use the method "is" like foo.is(bar).
This does not work on null, but you can still use == here: foo==null.

® inis a keyword. So don't use it as a variable name.

® When declaring array you can't write

int[] a = {1,2,3};

you need to write

int[] a = [1,2,3]

® If you were used to write a for loop which looked like

for (int i=0; i < len; i++) {...}

in groovy you can use that too, but you can use only one count variable. Alternatives to this are

for (i in 0..len-1) {...}
or

for (i in 0..<len) {...}
or

len.times {...}

Things to be aware of

Semicolons are optional. Use them if you like (though you must use them to put several statements on one line).
The return keyword is optional.

You can use the this keyword inside static methods (which refers to this class).

Methods and classes are public by default.

can also see protected members.
Inner classes are not supported at the moment. In most cases you can use closures instead.

unchecked exceptions.
® You will not get compile errors like you would in Java for using undefined members or passing arguments of the wrong type. See
Runtime vs Compile time, Static vs Dynamic.

Uncommon Gotchas

Protected in Groovy has the same meaning as protected in Java, i.e. you can have friends in the same package and derived classes

The throws clause in a method signature is not checked by the Groovy compiler, because there is no difference between checked and

Java programmers are used to semicolons terminating statements and not having closures. Also there are instance initializers in class definitions.

So you might see something like:

class Trial {
private final Thing thing = new Thing () ;
{ thing.doSomething () ; }

}

Many Groovy programmers eschew the use of semicolons as distracting and redundant (though others use them all the time - it's a matter of
coding style). A situation that leads to difficulties is writing the above in Groovy as:

class Trial {
private final thing = new Thing ()
{ thing.doSomething () }

}

This will throw a MissingMethodException!

The issue here is that in this situation the newline is not a statement terminator so the following block is treated as a closure, passed as an

argument to the Thing constructor. Bizarre to many, but true. If you want to use instance initializers in this sort of way, it is effectively mandatory

to have a semicolon:

class Trial {
private final thing = new Thing () ;
{ thing.doSomething () }

}

This way the block following the initialized definition is clearly an instance initializer.

Another document lists some pitfalls you should be aware of and give some advice on best practices to avoid those pitfalls.

New features added to Groovy not available in Java

® closures

® native syntax for lists and maps

® GroovyMarkup and GPath support

® native support for regular expressions

® polymorphic iteration and powerful switch statement

® dynamic and static typing is supported - so you can omit the type declarations on methods, fields and variables
® you can embed expressions inside strings

® |ots of new helper methods added to the JDK

® simpler syntax for writing beans for both properties and adding event listeners

L]

safe navigation using the ?. operator, e.g. "variable?.field" and "variable?.method()" - no more nested ifs to check for null clogging up
your code

Differences from Python

General

Python Groovy
repr (x) x.inspect (), x.dump ()
x.y 1if x x?.y
else None

"$ (foo)s" % "${foo}"
locals()

Lists

Python Groovy

not x Ix
X.empty

len (x) x.size()

for item, idx in enumerate (x): x.eachWithIndex { item, idx -> ... }

Maps
Python Groovy
{} [:] // an empty map
Depends : d.keySet ()
d if used like: for k
in d:

list(d) if list needed
dliter] .keys () explicitly

d. [iter]values () d.values ()

[k+1 for k in d] d.collect { k, v -> k+1 }

d = dict(zip(k, Vv)) k =1..3
v ='a..'c
d = [:]; k.eachWithIndex { it, i -> d[it] = vI[i] }
println d // [1:"a", 2:"b", 3:"c"]

Ranges/Slices

Python Groovy
range (3) 0..<3
range (1, 3+1) 1..3

not represented as a data type but you can use

range (0, 10, 2)

0.step(10, 2) {...}

"abcdef" [3:] "abcdef" [3..-1]

Object access

Python Groovy
m = 'strip'; getattr(' ! ', m) () m = 'trim'; ' ! '."S$m" ()
args = ('a', 2); 'abcabc'.find(*args) args = ['a', 2]; 'abcabc'.indexOf (*args

Differences from Ruby

The core abstract programming model of Ruby and Groovy are very similar: everything is an object, there is a MOP in control of all activity, and
closures are the core structuring tool after classes. Ruby uses the Ruby library, Groovy uses the Java library with some additions of its own. This
is the biggest difference but it is a huge difference. Syntactically, things like:

File.open('blah') { | file | puts(file.read) }
becomes:
println (new File ('blah').text)

which doesn't show that the Groovy closures syntax is:

{ file -> doSomething (file) }

which is slightly different from Ruby, but does show that sometimes Groovy has a different approach to certain things compared to Ruby. So in
moving from Ruby to Groovy, there are gotchas.

Download

Stable Releases

Groovy 1.6

Groovy 1.6.x is the main and stable branch of the Groovy dynamic language.

Groovy 1.6.7

Groovy 1.6.7 is the latest stable and recommended release of Groovy.
You can have a look at the JIRA release notes.

Download zip: Binary Release | Source Release

Download Windows-Installer: Binary Release (Module Versions)
Download documentation: JavaDoc and zipped online documentation

Groovy 1.6.6
You can have a look at the JIRA release notes.

Download zip: Binary Release | Source Release
Download documentation: JavaDoc and zipped online documentation

Groovy 1.6.5

You can have a look at the JIRA release notes.

Download zip: Binary Release | Source Release

Download Windows-Installer: Binary Release (Module Versions)

Download unofficial Fedora/RHEL/CentOS package: Binary Release | Source Release
Download documentation: JavaDoc and zipped online documentation

Groovy 1.7

Groovy 1.7 is the current in-development branch.
The latest version of that branch is Groovy 1.7-RC-2.

Groovy 1.7-RC-2
You can have a look at the JIRA release notes.
Download zip: Binary Release | Source Release

Download documentation: JavaDoc and zipped online documentation

Groovy 1.7-RC-1
You can have a look at the JIRA release notes.
Download zip: Binary Release | Source Release

Download documentation: JavaDoc and zipped online documentation

Groovy 1.7-beta-2
You can have a look at the JIRA release notes.

Download zip: Binary Release | Source Release
Download Windows-Installer: Binary Release (Module Versions)

Download documentation: JavaDoc and zipped online documentation

Old Releases

Groovy 1.5.8

Groovy 1.5.8 is the latest official stable release of the 1.5.x maintenance branch (Release Notes). There should not be any further versions of
Groovy 1.5.x.

Download zip: Binary Release | Source Release
Download Windows-Installer: Binary Release
Download unofficial Fedora/RHEL/CentOS package: Binary Release | Source Release

Download documentation: JavaDoc and zipped online documentation

Legacy Groovy 1.0

If you still need to use the old Groovy 1.0, here are the links you may be interested in:
Download zip: Binary Release | Source Release

Download unofficial Ubuntu/Debian package: Binary Release

Download Windows-Installer: Binary Release

Download tar/gz: Binary Release | Source Release

Download Javadoc: Javadoc zip

Once you've downloaded the distribution, please read the installation instructions.

Other versions can be found in the distributions archive.

Maven Repositories

If you wish to embed Groovy in your application, you may just prefer to point to your favourite maven repositories or the codehaus maven
repository. You should consult the individual pom files for the exact details but here is a summary of the main supported artifactlds and grouplds:

Groovy 1.6.X/ 1.7-beta-x

Available in the Maven 2 repositories.

<groupld>org.codehaus.groovy</groupld> = Treats Antlr, ASM, etc. as standard dependencies. Only useful if you happen to also use the same
versions of these jars yourself as it will save you having two copies of these jars. Optional

<artifactld>groovy</artifactld> dependencies are marked as optional. You may need to include some of the optional

<version>x.y.z</version> dependencies to use some features of Groovy, e.g. AntBuilder, GroovyMBeans, etc.

<groupld>org.codehaus.groovy</groupld> ' Includes jarjar versions of Antlr, ASM, Commons-CLI and Retrotranslator runtime. Allows you or
your other dependencies (e.g. hibernate) to use other versions of these jars. Optional

<artifactld>groovy-all</artifactld> dependencies are marked as optional. You may need to include some of the optional

<version>x.y.z</version> dependencies to use some features of Groovy, e.g. AntBuilder, GroovyMBeans, etc.

Groovy 1.5.X (including 1.1.x milestone releases)

Available in the Maven 2 repositories.

<groupld>org.codehaus.groovy</groupld> ' Treats Antlr and ASM as standard dependencies. Only useful if you happen to also use the same
versions of these jars yourself as it will save you having two copies of these jars. Optional

<artifactld>groovy</artifactld> dependencies are marked as optional. You may need to include some of the optional

<version>x.y.z</version> dependencies to use some features of Groovy, e.g. AntBuilder, GroovyMBeans, etc.

<groupld>org.codehaus.groovy</groupld> ' Includes jarjar versions of Antlr, ASM and Commons-CLI. Allows you or your other dependencies

(e.g. hibernate) to use other versions of these jars. Optional dependencies are marked as optional.
<artifactld>groovy-all</artifactld> You may need to include some of the optional dependencies to use some features of Groovy, e.g.
<version>x.y.z</version> AntBuilder, GroovyMBeans, etc.

<groupld>org.codehaus.groovy</groupld> ' Includes jarjar versions of Antlr and ASM. Does not include Commons-CLI or any optional
dependencies. Not suitable by itself if you want to use any tools which do command-line

<artifactld>groovy-all-minimal</artifactld> = processing, e.g. groovyc, GroovyShell, ...
<version>x.y.z</version>

Previous stable release: Groovy 1.0

Available in the Maven 1 and Maven 2 repositories.

<groupld>groovy</groupld> Treats Antlr and ASM as standard dependencies. Only useful if you happen to also use the same
<artifactld>groovy</artifactld> versions of these jars yourself as it will save you having two copies of these jars. Dependencies
<version>1.0</version> mandated for all optional parts of Groovy, e.g. AntBuilder, GroovyMBeans, etc.
<groupld>groovy</groupld> Includes jarjar versions of Antlr and ASM. Allows you or your other dependencies (e.g. hibernate) to
<artifactld>groovy-all</artifactld> use other versions of these jars. Dependencies mandated for all optional parts of Groovy, e.g.
<version>1.0</version> AntBuilder, GroovyMBeans, etc.

<groupld>groovy</groupld> Includes jarjar versions of Antlr and ASM. Does not include any optional dependencies.

<artifactld>groovy-all-minimal</artifactid>

<version>1.0</version>
For historical purposes, the releases candidates for 1.0 are also available by using the appropriate version instead of 1.0 in the above version tag.

Snapshot Releases

In addition to the stable and milestone releases you can find intermediate SNAPSHOT releases at the codehaus snapshot maven repository.

Other ways to get Groovy

If you're on MacOS and have MacPorts installed, you can run "sudo port install groovy" to install the latest Groovy release.
If you're on Windows, you can also use the NSIS Windows installer.
You may download other distributions of Groovy from this site.

If you prefer to live on the bleeding edge, you can also grab the source code from SVN.

If you are an IDE user, you can just grab the latest IDE plugin and follow the plugin installation instructions.

Feature Overview

® Groovlets

® Groovy Beans

® GroovyMarkup

® Groovy Templates

Groovlets

You can write normal Java servlets in Groovy (i.e. Groovlets).
There is also a GroovyServlet

This feature will automatically compile your .groovy source files, turn them into bytecode, load the Class and cache it until you change the source
file.

Here's a simple example to show you the kind of thing you can do from a Groovlet.
Notice the use of implicit variables to access the session, output & request. Also notice that this is more like a script as it doesn't have a class
wrapper.

if (!session)
session = request.getSession(true);

}

if (!session.counter

{

)
session.counter = 1

println "mn
<html>
<head>
<title>Groovy Servlet</title>
</head>
<body>
Hello, ${request.remoteHost}: ${session.counter}! ${new Date()}
</body>
</html>

session.counter = session.counter + 1

Or, do the same thing using MarkupBuilder:

if (!session)
session = request.getSession (true)

}

if (!session.counter)
session.counter = 1
}
html.html { // html is implicitly bound to new MarkupBuilder (out)
head {

title("Groovy Servlet™")
}
body {
p("Hello, ${request.remoteHost}: ${session.counter}! ${new Date()}")
}
}

session.counter = session.counter + 1

Implicit variables

The following variables are ready for use in Groovlets:

variable name bound to note

request ServletRequest -

response ServletResponse -

context ServletContext unlike Struts
application ServletContext unlike Struts
session getSession(false) can be nulll see 'tr A
params a Map object
headers a Map object
out response.getWriter() see BI B
sout response.getOutputStream() see B2 B
html new MarkupBuilder(out) see B2 B

-0 A The session variable is only set, if there was already a session object. See the 'if (session == null)' checks in the examples above.

%L B These variables cannot be re-assigned inside a Groovlet. They are bound on first access, allowing to e.g. calling methods on the 'response’
object before using 'out'.

Setting up groovylets

Put the following in your web.xml:

<servlet>

<servlet-name>Groovy</servlet-name>
<servlet-class>groovy.servlet.GroovyServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>Groovy</servlet-name>
<url-pattern>*.groovy</url-pattern>
</servlet-mapping>

Then all the groovy jar files into WEB-INF/lib. You should only need to put the groovy.jar, the antir.jar and the asm.jar. Or copy the
groovy-all-xyz.jar into WEB-INF/lib - this almost all jar contains the antlr and asm jars.

Now put the .groovy files in, say, the root directory (i.e. where you would put your html files). The groovy servlet takes care of compiling the
.groovy files.

So for example using tomcat you could edit tomcat/conf/server.xml like so:

<Context path="/groovy" docBase='"c:/groovy-servlet"/>

Then access it with http://localhost:8080/groovy/hello.groovy

Groovy Beans

GroovyBeans are JavaBeans but using a much simpler syntax.
Here's an example:

class Customer {
// properties
Integer id
String name
Date dob

// sample code
static void main(args) {
def customer = new Customer(id:1, name:"Gromit", dob:new Date())
println("Hello ${customer.name}")

Hello Gromit

Notice how the properties look just like public fields. You can also set named properties in a bean constructor in Groovy. In Groovy, fields and
properties have been merged so that they act and look the same. So, the Groovy code above is equivalent to the following Java code:

import java.util.Date;

public class Customer {
// properties

private Integer id;
private String name;
private Date dob;

public Integer getId() {
return this.id;

public String getName () {
return this.name;

public Date getDob() {
return this.dob;

public void setId(Integer id)
this.id = id;

public void setName (String name) {
this.name = name;

public void setDob (Date dob) {
this.dob = dob;

// sample code
public static void main(String[] args) {
Customer customer = new Customer();
customer.setId(1);
customer.setName ("Gromit") ;
customer.setDob (new Date()) ;

println("Hello " + customer.getName()) ;

Property and field rules

When Groovy is compiled to bytecode, the following rules are used.

If the name is declared with an access modifier (public, private or protected) then a field is generated.

A name declared with no access modifier generates a private field with public getter and setter (i.e. a property).

If a property is declared final the private field is created final and no setter is generated.

You can declare a property and also declare your own getter or setter.

You can declare a property and a field of the same name, the property will use that field then.

If you want a private or protected property you have to provide your own getter and setter which must be declared private or protected.

If you access a property from within the class the property is defined in at compile time with implicit or explicit this (for example this.foo, or
simply foo), Groovy will access the field directly instead of going though the getter and setter.

® |f you access a property that does not exist using the explicit or implicit foo, then Groovy will access the property through the meta class,
which may fail at runtime.

So, for example, you could create a read only property or a public read-only property with a protected setter like this:

class Foo {
// read only property
final String name = "John"

// read only property with public getter and protected setter
Integer amount
protected void setAmount (Integer amount) { this.amount = amount }

// dynamically typed property
def cheese

}

Note that properties need some kind of identifier: e.g. a variable type ("String") or untyped using the "def" keyword.

Why a field with public access modifier do not have getter and setter generated? If we'd generate getter / setter all the time, it means Groovy
would not let you not define getters / setters, which can be problematic when you really don't want to geters / setters to be exposed.

Closures and listeners

Though Groovy doesn't support anonymous inner classes, it is possible to define action listeners inline through the means of closures. So instead
of writing in Java:

Processor deviceProc = ...
deviceProc.addControllerListener (new ControllerListener() {
public void controllerUpdate (ControllerEvent ce) {

}

You can do that in Groovy with a closure:

// BAdd a closure for a particular method on the listener interface
deviceProc.controllerUpdate = { ce -> println "I was just called with event $ce" }

Notice how the closure is for a method on the listener interface (controllerUpdate), and not for the interface itself(ControllerListener). This
technique means that Groovy's listener closures are used like a ListenerAdapter where only one method of interest is overridden. Beware:
mistakenly misspelling the method name to override or using the interface name instead can be tricky to catch, because Groovy's parser may see
this as a property assignment rather than a closure for an event listener.

This mechanism is heavily used in the Swing builder to define event listeners for various components and listeners. The JavaBeans introspector
is used to make event listener methods available as properties which can be set with a closure.

The Java Beans introspector (java.beans.Introspector) which will look for a BeanlInfo for your bean or create one using its own naming
conventions. (See the Java Beans spec for details of the naming conventions it uses if you don't provide your own Beanlinfo class). We're not
performing any naming conventions ourselves - the standard Java Bean introspector does that for us.

Basically the BeanlInfo is retrieved for a bean and its EventSetDescriptors are exposed as properties (assuming there is no clash with regular

beans). It's actually the EventSetDescriptor.getListenerMethods() which is exposed as a writable property which can be assigned to a closure.

GroovyMarkup

Note: the following examples are snippets, not ready-to-run examples.

Groovy has native support for various markup languages from XML, HTML, SAX, W3C DOM, Ant tasks, Swing user interfaces and so forth.
This is all accomplished via the following syntax...

}

def someBuilder = new NodeBuilder ()

someBuilder.people (kind: 'folks', groovy:true) {

person (x:123, name:'James', cheese:'edam') {
project (name: 'groovy')
project (name: 'geronimo')

}

person (x:234, name:'bob', cheese:'cheddar') {
project (name: 'groovy')
project (name: 'drools')

}

Whichever kind of builder object is used, the syntax is the same. What the above means is that the someBuilder object has a method called
'people’ invoked with 2 parameters...

a Map of arguments ['kind":'folks', 'groovy':true]
a Closure object which when invoked will call 2 methods on the builder called 'person’, each taking 2 parameters, a map of values and a

closure...

So we can easily represent any arbitrary nested markup with ease using a simple concise syntax. No pointy brackets! l';?:}

What's more is this is native Groovy syntax; so you can mix and match this markup syntax with any other Groovy features (iteration, branching,
method calls, variables, expressions etc). e.g.

// lets create a form with a label & text field for each property of a bean
def swing = new SwingBuilder ()

def widget = swing.frame (title:'My Frame',
defaultCloseOperation:javax.swing.WindowConstants.EXIT ON_CLOSE) {

}

widget.show ()

panel () {
for (entry in someBean) {
label (text:entry.key)
textField(text:entry.value)

}

button (text:'OK', actionPerformed:{ println("I've been clicked with event ${it}") })

}

Trees, DOMs, beans and event processing

The really neat thing about GroovyMarkup is that its just a syntax which maps down to method calls. So it can easily support the building of any
arbitrary object structure - so it can build any DOMish model, a bean structure, JMX MBeans, PicoComponents, Swing front ends, Ant tasks etc.
What's more since its just normal method invocations it can naturally map to SAX event processing too.

Out of the box Groovy comes with a few different markup builders you can use :

NodeBuilder - creates a tree of Node instances which can be easily navigated in Groovy using an XPath-like syntax
DOMBuilder - creates a W3C DOM document from the markup its given

SAXBuilder - fires SAX events into a given SAX ContentHandler

MarkupBuilder - outputs XML / HTML markup to some PrintWriter for things like implementing servlets or code generation
AntBuilder - fires off Ant tasks using familiar markup for processing build tasks

SwingBuilder - creates rich Swing user interfaces using a simple markup

Examples

Here's a simple example which shows how you could iterate through some SQL result set and output a dynamic XML document containing the
results in a custom format using GroovyMarkup

// lets output some XML builder (could be SAX / DOM / TrAX / text)
def xml = new NodeBuilder ()
xml.customers () {

loc = 'London'

sql.eachRow ("select * from customer where location = ${loc}) {

// lets process each row by emitting some markup
xml.customer (id:it.id, type:'Customer', foo:someVariable)) {
role(it.person_role)
name (it.customer_name)
location(id:it.location_id, name:it.location_name)
}
}
}

The interesting thing about the above is that the XML technology used at the other end could be push-event based (SAX) or pull-event based
(StAX) or a DOM-ish API (W3C, dom4j, JDOM, EXML, XOM) or some JAXB-ish thing (XMLBeans, Castor) or just beans or just good old text files.
e.g. a pull parser could literally pull the data out of the database - or the data could be pushed into data some structure or piped straight to a file
using 10 or async NIO.
The use of GroovyMarkup means developers can hide the XML plumbing and focus on tackling the real problems we're trying to solve.
To see more examples of using GroovyMarkup try looking at our unit test cases

® XML unit tests

® Ant unit tests

® Swing demos

There is more detail on markup here Make a builder.

Groovy Templates

Introduction

Groovy supports multiple ways to generate text dynamically including GStrings, printf if you are using Java 5, and MarkupBuilder just to name
a few. In addition to these, there is a dedicated template framework which is well-suited to applications where the text to be generated follows the
form of a static template.

Template framework

The template framework in Groovy consists of a TemplateEngine abstract base class that engines must implement and a Template interface
that the resulting templates they generate must implement.

Included with Groovy are several template engines:
® simpleTemplateEngine - for basic templates

® GStringTemplateEngine - stores the template as writable closures (useful for streaming scenarios)
® XmlTemplateEngine - works well when the template and output are valid XML

SimpleTemplateEngine

Shown here is the SimpleTemplateEngine that allows you to use JSP-like scriptlets (see example below), script, and EL expressions in your
template in order to generate parameterized text. Here is an example of using the system:

import groovy.text.SimpleTemplateEngine

def text = 'Dear "$firstname $lastname",\nSo nice to meet you in <% print city %>.\nSee you in
${month}, \n${signed}"'

def binding = ["firstname":"Sam", "lastname":"Pullara", "city":"San Francisco", "month":"December"
"signed":"Groovy-Dev"]

def engine = new SimpleTemplateEngine ()
template = engine.createTemplate (text) .make (binding)

def result = 'Dear "Sam Pullara",\nSo nice to meet you in San Francisco.\nSee you in
December, \nGroovy-Dev'

assert result == template.toString()

While it is generally not deemed good practice to mix processing logic in your template (or view), sometimes very simple logic can be useful. E.g.
in the example above, we could change this:

S$firstname

to this (assuming we have set up a static import for capitalize):

${capitalize (firstname) }

or this:

<% print city %>

to this:

<% print city == "New York" ? "The Big Apple" : city %>

Advanced Usage Note

If you happen to be embedding your template directly in your script (as we did above) you have to be careful about backslash escaping. Because
the template string itself will be parsed by Groovy before it is passed to the the templating framework, you have to escape any backslashes inside
GString expressions or scriptlet 'code' that are entered as part of a Groovy program. E.g. if we wanted quotes around The Big Apple above, we
would use:

<% print city == "New York" ? "\\"The Big Apple\\"" : city %>

Similarly, if we wanted a newline, we would use:

\\n

in any GString expression or scriptlet 'code' that appears inside a Groovy script. A normal "\n" is fine within the static template text itself or if the
entire template itself is in an external template file. Similarly, to represent an actual backslash in your text you would need

in an external file or

\\

in any GString expression or scriptlet 'code’. (Note: the necessity to have this extra slash may go away in a future version of Groovy if we can find

an easy way to support such a change.)

GStringTemplateEngine

As an example of using the GStringTemplateEngine, here is the example above done again (with a few changes to show some other
options). First we will store the template in a file this time:

test.template

Dear "$firstname S$lastname",

So nice to meet you in <% out << (city == "New York" ? "\"The Big Apple\"" : city) %>.
See you in ${month},

${signed}

Note that we used out instead of print to support the streaming nature of GStringTemplateEngine. Because we have the template in a
separate file, there is no need to escape the backslashes. Here is how we call it:

def £ = new File('test.template')

engine = new GStringTemplateEngine ()

template = engine.createTemplate (f) .make (binding)
println template.toString()

and here is the output:

Dear "Sam Pullara",

So nice to meet you in "The Big Apple".
See you in December,

Groovy-Dev

You can also plug in other templating solutions, e.g. GFreeMarker, Velocity, StringTemplate, Canvas and others.

If you wish to combine templating with Ant processing, consider Gpp.

Using TemplateServiet to serve single JSP-like HTML files

“L, Mind the gap! Ehm, meaning the difference between Groovlets and Templates.

The TemplateServlet just works the opposite as the Groovlets(GroovyServlet) does. Here, your source is HTML (or any other, fancy template
files) and the template framework will generate a Groovy script on-the-fly. This script could be saved to a .groovy file and served by the
GroovyServlet (and the GroovyScriptEngine), but after generation, the template is evaluated and responded to the client.

Here is a simple example helloworld.html file which is not validating and does not have a head element. But it demonstrates, how to let Groovy
compile and serve your HTML files to web clients. The tag syntax close to JSP and should be easy to read:

<html>
<body>
<% 3.times { %>
Hello World!
<%} %>

<% if (session != null) { %>
My session id is ${session.id}
<% } else println "No session created." %>
</body>
</html>

The first Groovy block - a for loop - spans the HelloWorld! text. Guess what happens? And the second Groovy statement prints the serviet's
session id - if there is a session avaiable. The variable session is one of some default bound keys. More details reveals the documentation of
ServletBinding.

Here is some sample code using http://jetty.mortbay.orgs servlet container. With jetty6.0, copy jetty-6.1.3.jar and jetty-util-6.1.3.jar into
$HOME/.groovy/lib, create a tiny web server with the following. To test it, add your above helloworld.html file into your current directory and
browse http://localhost:1234/helloworld.html

import org.mortbay.jetty.*
import org.mortbay.jetty.servlet.*
import groovy.servlet.*

def server = new Server(1234)

def root = new Context (server,"/",Context.SESSIONS)

root .setResourceBase (".")

root.addServlet (new ServletHolder (new TemplateServlet()), "*.html"
server.start ()

Here is a similiar web.xml example.

<web-app>

<servlet>
<servlet-name>Groovlet</servlet-name>
<servlet-class>groovy.servlet.GroovyServlet</servlet-class>
</servlet>
<servlet>
<servlet-name>Template</servlet-name>
<servlet-class>groovy.servlet.TemplateServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>Groovlet</servlet-name>
<url-pattern>*.groovy</url-patterns

</servlet-mapping>

<servlet-mapping>
<servlet-name>Template</servlet-name>
<url-pattern>*.html</url-patterns

</servlet-mapping>

<servlet-mapping>
<servlet-name>Template</servlet-name>
<url-patterns>*.gsp</url-patterns

</servlet-mapping>

</web-app>

Further reading

Article on templating with Groovy templates
Article on templating with Groovlets and TemplateServlets
Blog about combining Groovy and FreeMarker

For those new to both Java and Groovy

Java developers benefit from using Groovy, but so can you who don't already know Java. If you want to access the power of the Java Virtual
Machine and Development Kit libraries when programming, but don't want to learn the Java Language, you can use Groovy instead. Or maybe
you do want to learn Java, but do so the easy way: you can learn Groovy first. You'll be productive sooner, and can go on to learn more about
Java at your own pace.

Much of the documentation on this website at Codehaus is for those who already know Java. These pages are for you who don't, so you can
learn enough of the Groovy basics to easily use the other documentation on this website. They introduce Groovy's core classes and syntax
together. All code examples have been tested using Groovy 1.0 or later inside a script. It's aimed at you who have already programmed before,
just not in Java, maybe in PHP, Perl, or Visual Basic. Do note that although this documentation is correct and detailed, it's still a little raw because
it's still being written.

Getting Started - enough background to dive into the tutorials that follow

1. Numeric Processing
Integer Math - choose from many types of integers

Decimal Math - for high-precision decimal math
Floating Point Math - for high-speed decimal math
Dates and Times - enabling complex date manipulations

2. Collections
Lists and Sets - group various items into a collection

Arrays - fixed-size arrays for faster collections
Maps - assign collected values to keys

3. Text Processing
Characters - access the full power of Unicode

Strings - easily handle strings of characters
String Pattern Matching - find patterns within strings

4. Input and Output
Files - manipulate the file system easily

Streams, Readers, and Writers - access data as a flow of information

5. Control Structures
Blocks, Closures, and Functions - compose programs from many building blocks

Expandos, Classes, and Categories - encapsulate program complexity
Program Control - various ways to structure program logic

6. Data Typing
Static Typing and Interfaces - put compile-time restrictions in programs

Inheritance - use classes and methods for many purposes
Exceptions - handle exception and error conditions simply

7. Meta-Programming
Interceptors - intercept method calls

MetaClasses - add and modify behavior of objects

Class Reflection - examine and manipulate objects dynamically

To continue learning Groovy, you can now go on to:
Java, the engine behind Groovy's power and performance
Swing, the graphical interface for Java, made easy with Groovy's own SwingBuilder
Eclipse, the free IDE with a Groovy plugin to make managing your code easy
useful Groovy modules, such as Gant, which extend the Groovy system
Grails, bringing the power of Groovy to website development and deployment

JN0025-Starting

The Groovy Programming Language runs on top of the Java Runtime Environment, which itself runs on almost any computer system, such as
Windows, Linux, and Macintosh. If you don't have Groovy installed, see these pages:

Installing Groovy

Running Groovy
If you don't have the Java Runtime Environment:

Installing Java

These tutorials for those new to both Java and Groovy are in a sequence that builds on knowledge already presented. This tutorial therefore starts

with the basics. Throughout, we use code examples rather than lengthy explanations to present the features of Groovy, so you might miss things
if you just skim. We don't (yet) explain what you would use the features for, but rely on your previous programming background for this.

The code snippets in these tutorials use comments to explain things:

//comment like this to end of line, ignoring */ and /* and ' and "
/*or comment like this, ignoring // and ' and " until: */

/*or comment over

many lines, /*with no nesting*/

Groovy code can contain strings:

'A string can be within single quotes on one line...'

''"1'. ..or within triple single quotes

over many lines, ignoring // and */ and /* comment delimiters,...'"'
"...or within double quotes..."

nnn . .or within triple double quotes

over many lines."""

Each line here does the same:

println 'hello, world' //the function 'println' prints a string then newline
print 'hello, world\n' //'print' doesn't print newline, but we can embed
//newlines ('\n' on Unix/Linux, '\r\n' on Windows)
println 'hello' + ', ' + 'world' // + joins strings together
print 'hello, '; println 'world'
//use semi-colons to join two statements on one line
println('hello, world')
//can put command parameter in parens, sometimes we might have to
def a= 'world'; println 'hello, ' + a
//'def' to define a variable and give it a value
print 'hello, world'; println()
//empty parens must be used for no-arg functions; here, prints a blank line
def b= 'hello', c= 'world'; println "$b, ${c}"
//$ in print string captures variable's value

We can also assign integers and decimals to variables:

def g = 7, groovy = 10.2
//we can separate more than one defined variable by a comma
print g + ', ' + groovy + '\n' //prints: 7, 10.2
assert g + ', ' + groovy == '7, 10.2' //we can use assert statement and ==
//operator to understand examples

We can use operators like + - * / and parentheses () with numbers, following usual math grouping rules:

assert 4 * (2 + 3) - 6 == 14 //integers only
assert 2.5 + 7 == 9.5
assert 7 / 4 == 1.75 //decimal number or division converts expression to decimal

We can use the operators == > < >= <= |= with numbers, the values true and false, the operators ! (not), && (and), and || (or), all with
parentheses, to produce boolean expressions:

assert 2 > 3 == false

assert 7 <= 9

assert 7 l!= 2

assert true

assert ! false

assert 2 > 3 || 7 <=9

assert (2 >3 || 4 <5) & 6 !=7

Variables are versatile:

def a
assert a == null
//variables defined but not given a value have special value null
def b =1
assert b == 1
b =2
assert b == 2 //variables can be re-assigned to
b = 'cat'
assert b == 'cat' //they can be re-assigned different types/classes of data
b = null
assert b == null //they can be unassigned

All names in Groovy, including variable names, can contain any alphabetic character or the underscore, and contain any digit not in first position:

def abc= 4
def a23c= 4
def ab c= 4
def _abc= 4

def ABC= 4

assert abc == ABC //although their values are the same...

assert ! abc.is(ABC) //...the variables 'abc' and 'ABC' are different,
//the names being case-sensitive

/*these each produce compile errors when uncommented. ..

def abc //already defined

def a%c= 4 //not a valid name because it contains a symbol other than _
def 2bc= 4 //may not contain a digit in first position

*/

All data in Groovy is built from "classes" and instances of them. Class names by convention begin with an uppercase character:

assert Byte.MAX VALUE == 127
//a class can have attached variables, called 'fields'
assert Byte.parseByte('34') == 34

//a class can have attached functions, called 'methods'
def b= new Byte('34')

//we can create an 'instance' of a class using the 'new' keyword
assert b.intValue() == 34

//each instance can also have attached fields and methods

We can inspect the class of any entity, such as numbers and strings, using the class field:

assert 4.class == Integer //the common types have both a short name...

assert 4.class == java.lang.Integer //...and a long name
assert 4.5.class == BigDecimal

assert 'hello, world'.class == String

def a= 7

assert a.class == Integer

There are many predefined classes in Groovy, but only the most common ones are always visible to Groovy code. Most need to be qualified with
a "package" name, eg, 'java.text.DecimalFormat', or the package must be imported beforehand:

import java.text.*
assert new DecimalFormat('#,#00.0#').format(5.6789) == '05.68"'

assert new java.text.DecimalFormat ('#,#00.0#').format(5.6789) == '05.68"'

If a line can be interpreted as a valid statement, it will be:

def i=
1 //because 'def i=' isn't a valid statement,
//the '1' is appended to the previous line

//a compile error when uncommented: 'def j' is valid, so is interpreted as
//a statement. Then the invalid '= 1' causes the error...

/*

def j

=1

*/

def k \
= 1 //a backslash ensures a line is never interpreted as a standalone statement

Sometimes code in a script doesn't compile: we comment it out in our examples. Other code compiles but generates a "checked exception" which
we can catch and handle:

try(
'moo' .toLong () //this will generate an exception
assert false
//this code should never be reached, so will always fail if executed
}catch(e) { assert e instanceof NumberFormatException }
//we can check the exception type using 'instanceof'

We can use square brackets [] to represent both ordered lists and key mappings:

def list= [1, 2, 3]

list= [] //empty list

list= [1, 'b', false, 4.5 1 //mixed types of values OK

assert list[0] == 1 && list[1l] == 'b' && ! list[2] && list[3] == 4.5
//we can refer to items individually by index

def map= [l:'a', 2:'b', 3:'c'] //map indicated with colon

map= [:] //empty map

map= ['a': 1, 'b': 'c', 'groovy': 78.9, 12: true] //mixed types of values

assert map['a']l == 1 && map['b'] == 'c' && map['groovy'] == 78.9 && map[1l2]
//we can refer to values individually by key

'each' tells the code following it to execute for each item in a list or map:
//for every item in list, assign to 'it' and execute the following code...
[2, -17, +987, 0].each{
println it
}
//we can specify a different name for the argument other than the default...
[2, -17, +987, 0]l.each{ n ->
println n
}
//we can specify two or more arguments, as with this map...
[1: 3, 2: 6, 3: 9, 4: 12].each{ k, v->
assert k * 3 == v

We can specify a list as a 'range’, ie, by only the first and last items:

(3..7).each{ println it } //prints numbers 3, 4, 5, 6, and 7
(3..<7).each{ println it } //prints numbers 3, 4, 5, and 6 //excludes 7

We can convert data of one type to another using the 'as' keyword:

assert ('a' as Integer) == 97
//Unicode (and ASCII) representation of character 'a'

Sometimes, we need to use a more efficient type of list known as an array, where the type of each element must be the same. Arrays can't be
represented directly in the syntax, but we can convert a list to one easily:

def x= ['a', 'b', 'c'] as Integer[] //convert each item in list to an Integer
assert x[0] == 97 && x[1] == 98 && x[2] == 99 //access each element individually

We can choose between two execution options using the if-else-statement:

def a= 2
if(a< 5){
println "a, being Sa, is less than 5."
telse{
assert false //this line should never execute

}

We can execute some code a certain number of times:

def i=0
10.times{ println i++ } //increment i by 1 after printing it

//another less declarative style of looping...
while(i > 0){
println i-- //decrement i by after printing it

}

We can enclose code in parentheses and execute it later. The enclosed code is called a "closable block" or "closure":

def c= { def a= 5, b= 9; a * b }
assert c() == 45

[{ def a= 'ab'; a + 'bec' },
{ rabbc' },
] .each{ assert it() == 'abbc' }

We can spawn new threads from our main thread:

def i=0, j=0
def f= new File ('TheOutput.txt') //create or overwrite this file
Thread.start{

while (true) {

i++
if (1%1000 == 0) f<< 'S' //spawned thread
}
}
while (true) {
J++
if(j%1000 == 0) f<< 'M' //main thread

}

After, say, 5 seconds, abort the program then look at the file. On many computers, it'll show a roughly equal distribution of 'S' and 'M', but there'll
be some irregularities showing that thread scheduling isn't perfectly timed.

The tutorials following are grouped into functional areas, beginning with numeric processing, and build up to the advanced features of Groovy.

JNO0515-Integers

Groovy numbers are either decimals or integers. The 3 main types of integers are Integer, Long, and Biginteger. Biglnteger has no size limit,
while Integer and Long do. We can enquire their minimum and maximum values:

assert Integer.MAX VALUE == 2147483647 //at 2 billion, big enough for most uses
assert Integer .MIN VALUE == -2147483648

assert Long.MAX VALUE == 9223372036854775807

assert Long.MIN VALUE == -9223372036854775808

Integers will normally be the smallest type into which the value will fit (using 2's-complement representation):

assert 110.class == Integer
assert 3000000000.class == Long //value too large for an Integer
assert 10000000000000000000.class == BigInteger //value too large for a Long

We can represent integers in base-10, hexadecimal, or octal notation:

//base-10 integers, positive or negative...
[2, -17, +987].each{ assert it }

//hex using leading 0x (lowercase or uppercase for a,b,c,d,e,f,x)...
[0xACe, 0X01lff].each{ assert it }

//octal using leading O...
[077, 01].each{ assert it }

We can negate hexadecimals and octals to represent negative numbers.

assert Ox7FFFFFFF.class == Integer

assert (-0x7FFFFFFF).class == Integer //we must negate using the minus sign
assert 0x80000000.class == Long

assert (-0x80000000).class == Integer

assert (-0x80000001).class == Long

We can force an integer (including hexadecimals and octals) to have a specific type by giving a suffix (I for Integer, L for Long, G for BigInteger),
either uppercase or lowercase:

assert 42i.class == Integer //lowercase i more readable
assert 123L.class == Long //uppercase L more readable
assert 456g.class == BigInteger

assert OxFFi.class == Integer

Fixed-Size Integers

The fixed-size integers, Integer and Long, each have size limits but are more efficient in calculations.

There are also the less common Byte and Short types of integer, which act like the Integer type in math operations.

assert Short.MAX VALUE == 32767

assert Short.MIN_VALUE == -32768
assert Byte.MAX VALUE == 127

assert Byte.MIN VALUE == -128

def a= new Byte('34'), b= new Byte('2"'")
assert (a+b).class == Integer

We can enquire the bit-size of each type of fixed-size integer:

assert Integer.SIZE == 32
assert Long.SIZE == 64
assert Short.SIZE == 16
assert Byte.SIZE == 8

The class Integer can often be written int. The classes Long, Short, and Byte can each also often be written uncapitalized, ie, long, short, and
byte. We can enquire these alternative (aka "primitive type") names:

assert Integer.TYPE == int
assert Long.TYPE == long
assert Short.TYPE short
assert Byte.TYPE == byte

The fixed-size integer classes can be converted to one another:

assert 45L as Integer == 45i

assert 45L as int == 45i //example of using 'int' for Integer
assert 45L.toInteger() == 45i //alternative syntax

assert 23L.intValue() == 23i //another alternative syntax
assert 451 as Long == 45L

assert 451 as long == 45L

assert 23i.toLong() == 23L

assert 45i.longValue() == 45L

//if converted number too large for target, only lowest order bits returned...
assert 2561 as Byte 0
assert 200i as byte == -56 //...and this may result in a negative number

We can create new fixed-sized integers from strings:

assert '42'.tolInteger () == 42i
assert '56'.tolLong() == 56L
try{ 'moo'.toLong(); assert false }

catch(e){ assert e instanceof NumberFormatException }

assert new Integer('45') == 45i
assert new Byte('45') == 45 as byte
try{ new Integer('oink'); assert false }

catch(e){ assert e instanceof NumberFormatException }

To convert from a fixed-size integer to a string in various bases:

//second character is the base/radix...
assert Integer.toString(29, 16) == '1d'

//Long version behaves just like Integer version...
assert Long.toString(29L, 16) == '1d'

//if number is negative, so is first character of returned string...
assert Integer.toString(-29, 16) == '-1d'

//only time result begins with zero is if it is zero...
assert Integer.toString(0) == '0'

assert Integer.toString(29, 16).toUpperCase() == '1D'

//second argument defaults to 10...
assert Integer.toString(29) == '29'

//Short version only accepts one parameter, only allowing base 10...
assert Short.toString(29 as short) == '29'

If the base/radix isn't between Character.MIN_RADIX and Character. MAX_RADIX, base 10 is used instead:

assert Integer.toString(999, Character.MIN RADIX - 1) ==
Integer.toString(999, 10)

assert Integer.toString(999, Character.MAX RADIX + 1) ==
Integer.toString(999, 10)

assert Character.MAX RADIX == 36
//the symbols letters 0123456789abcdefghijklmnopgrstuvwxyz are used

The common bases have similar methods which always return an unsigned integer:

assert Integer.toHexString(29) == '1ld' //return unsigned base-16 integer
assert Integer.toHexString(0) == '0'

assert Integer.toHexString(-17) == 'ffffffef’

assert Long.toHexString(-17L) == 'ffffffffffffffef"

//same as toString(,16) when number positive...
assert Integer.toHexString(29) == Integer.toString(29,16)

//...but different when number negative

assert Integer.toHexString(-17) != Integer.toString(-17,16
assert Integer.toOctalString(29) == '35'

assert Integer.toOctalString(0) == '0°'

assert Integer.toOctalString(-17) == '37777777757"'

assert Integer.toBinaryString(29) == '11101'

We can convert a string representation to an integer, using a specified base/radix:

assert Integer.parselnt("0", 10) == 0

assert Integer.parselnt("473", 10) == 473

assert Long.parselLong("473", 10) == 473L //Long type has similarly-acting method
assert Integer.parselnt("473") == 473 //base 10 is the default base/radix

assert Integer.parseInt("-0", 10) == 0

assert Integer.parselnt("-FF", 16) == -255

assert Integer.parselnt("2147483647", 10) == 2147483647

(
(=
assert Integer.parseInt("1100110", 2) == 102
(
assert Integer.parselnt("-2147483648", 10) == -2147483648

assert Integer.parselnt("Kona", 27) == 411787
assert Long.parselong("Hazelnut", 36) == 1356099454469L
assert Short.parseShort ("-FF", 16) == -255

A NumberFormatException may be thrown:

[{ Integer.parselnt("2147483648", 10) }, //number too large

{ Integer.parseInt("99", 8) }, //digit 9 not octal

{ Integer.parseInt("Kona", 10) }, //digits not decimal

{ Integer.parseInt("1111", Character.MIN RADIX - 1) }, //radix too small
{ Integer.parseInt("1111", Character.MAX RADIX + 1) }, //radix too large
{ Integer.parseInt('@#$%') }, //invalid number

{ Integer.parseInt('') }, //invalid number

].each{ c->

try{ c(); assert false }

catch(e) {assert e instanceof NumberFormatException}

An alternative method name is:

assert Integer.valueOf('l2af', 16) == Oxl1l2af
//same as: Integer.parselnt('l2af', 16)

assert Long.valueOf ('123') == 123
//same as: Long.parseInt('123')

assert Short.valueOf (027 as short) == 027

We can convert a string to a fixed-size integer, similar to parselnt() etc, but with the radix instead indicated inside the string:

assert Integer.decode('0xff') == OxFF

assert Integer.decode('#FF') == OxFF

assert Long.decode('#FF') == OXFFL //long, short, and byte also can be decoded
assert Short.decode('#FF') == OxFF as short

assert Byte.decode('#F') == O0xF as byte

assert Integer.decode('-077') == -077

assert Integer.decode('2345') == 2345

try{ Integer.decode('7 @8'); assert false }

catch(e){ assert e instanceof NumberFormatException }

We can return an integer representing the sign:

assert Integer.signum(45i) == 1
assert Integer.signum(0i) == 0
assert Integer.signum(-431i) == -1
assert Long.signum(-43L) == -1

We can compare fixed-size integers with each other:

assert 45i.compareTo(47L) < 0O
assert (45 as byte).compareTo

(43 as short) > 0
assert 45.compareTo(45) == 0

Calculations with Fixed-Size Integers

We can perform addition, subtraction, multiplication, exponents, modulos, and negations on Integers and Longs, using both an operator syntax
and a method syntax:

assert 34 + 33 == 67 && 34.plus(33 67
assert 34L - 21L == 13L && 34L.minus(2 == 13L
assert 3 * 31 == 93 && 3.multiply(== 93

2 && 23.mod(3)
&& 3.power(2

assert 23 %
assert 3**2 =

Not all calculations have a special operator symbol:

assert 22.intdiv(5) == 4
assert (-22).intdiv(5) == -4
assert (-34).abs() == 34
assert (-34L).abs() == 34L

We can increment and decrement variables, using operators, either before and after evaluation:

def a= 7
assert a++ == 7 && a == 8 && a-- == 8 &&
++a == 8 && a == 8 && --a == 7 &&

~N 9

a
a

def b = 7, ¢ = 7 //These operators use methods next () and previous ()

assert (++b) == (c = c.next())

assert b == ¢

assert (--b) == (¢ = c.previous())

assert b == ¢

assert (b++) == { def z = ¢c; ¢ = c.next(); z }()
assert b == ¢

def b= Integer.MAX VALUE
assert ++b == Integer.MIN VALUE && --b == Integer.MAX VALUE

Rules of parentheses and precedence apply to these operators. The operators have the same precedence irrespective of what type of values they
operate on.

assert 3*(4+5) != 3*4+5 //parenthesized expressions always have highest precedence
assert -3**2 == -(3%**2) //power has next highest precedence

assert (2¥3**2 == 2% (3%¥*2)) && (2%¥3**2 1= (2*%3)**2)

assert -3+42 != -(3+2) //unary operators have next highest precedence

assert -~234 == - (~234) //unary operators group right-to-left

//multiplication and modulo have next highest precedence
assert 3*%*4%5 == (3%4)%5 //multiplication and modulo have equal precedence
assert 3%4*5 == (3%4)*5

//addition and subtraction have equal precedence, lower than mult/etc
assert 4+5-6 ==
assert 5+3%4 == 5+ (3%4)

Integers often convert their types during math operations. For + - *, a Long with an Integer converts the Integer to a Long:

assert (23i+45L).class == Long

Because the fixed-sized integers have fixed width, they might overflow their boundaries during math operations, so we need to be aware of the
range of values we'll use a fixed-size integer for:

//each 256 is an int, so final product also an int, and calc overflowed...
assert 256*256*256*256 ==

//we can fix this problem by using a long at the beginning of the calculation...
assert 256L*256*256%*256 == 4294967296L

We can compare fixed-size integers using < <= > >= operators, of lower precedence than addition/etc:

assert 14 > 7 && 14 .compareTo(7) > 0
assert 14 >= 8 && 14 .compareTo(8) >= 0
assert -4 < 3 && (-4) .compareTo(3) < 0
assert -14 <= -9 && (-14) .compareTo(-9) <= 0

The operators == != <=> are of lower precedence than the other comparison operators:

def a =4, b =4, c=5
assert a b && a.equals(b)
assert a != ¢ && ! a.equals(c)

(>

(>

(>

assert (4 <=> 7) == -1 && 4.compareTo(7) == -1
assert (4 <=> 4) == 0 && 4.compareTo(4) == 0
assert (4 <=> 2) == 1 && 4.compareTo(2) == 1

Bit-Manipulation on Fixed-Sized Integers

We can examine and manipulate the individual bits on the fixed-sized integers.

To return an int or long with a single 1-bit in the position of the highest-order 1-bit in the argument:

assert Integer.highestOneBit(45)
assert Integer.highestOneBit(27)
assert Integer.highestOneBit(0) == 0

assert Integer.highestOneBit(-1) == -128%256*256%256

assert Long.highestOneBit(-1L) == -128%256%256%*256 * 256*256%*256%256

assert Integer.lowestOneBit(45i) == 1 //match lowest order 1l-bit in argument
assert Integer.lowestOneBit(461) == 2
assert Integer.lowestOneBit(48i) == 16

To return the number of zero bits preceding the highest-order 1-bit:

[0:32, 1:31, 2:30, 4:29].each{ k, v->

assert Integer.numberOfLeadingZeros(k) == v
//returns the number of zero-bits preceding the highest-order 1-bit
assert Long.numberOfLeadingZeros(k as long) == v + 32

}

[0:32, 45:0, 46:1, 48:4].each{ k, v->
assert Integer.numberOfTrailingZeros(k) == v
//returns the number of 0-bits following the lowest-order 1-bit

}

//returns the number of 1l-bits in the binary representation...
assert Integer.bitCount(7) == 3

assert Integer.bitCount(-1) == 32

We can perform a bitwise complement of the bits in a fixed-size integer using the ~ operator:

def x= 0x333333331
assert ~x == -x - 1
//how bitwise complement and negation are related under 2's-complement

We can shift the bits of a fixed-size integer to the left or right. This is of lower precedence than addition/etc, but higher than the comparison
operators.

//shift 4 bits to the left...
assert 0xB4F<<4 == 0xB4F0 && OxB4F.leftsShift(4) == 0xB4F0

//shift 4 bits to the right, dropping off digits...
assert 0xD23C>>4 == 0xD23 && 0xD23C.rightsShift(4) == 0xD23

//sign-extension performed when right-shifting...
assert -O0xFFF>>4 == -0x100 && (-O0XFFF) .rightShift(4) == -0x100

//...unless triple >>> used
assert -O0xFFF>>>4 == OXFFFFF00 && (-0xXFFF).rightShiftUnsigned(4) == OxFFFFF00
[0xABC, -0x98765].each{

it << 8 == it >> -8

Wi

[0)

can rotate the bits in an integer or long:

assert Integer.rotateLeft(0x456789AB, 4) == 0x56789AB4
//we use multiples of 4 only to show what's happening easier

assert Integer.rotateLeft(0x456789AB, 12) ==
Integer.rotateRight (0x456789AB, Integer.SIZE - 12)
//rotating left and right are inverse operations

assert Integer.rotateLeft(0x456789AB, 32) == 0x456789AB //no change here

assert Long.rotateRight (0x0123456789ABCDEF, 40) == 0x6789ABCDEF012345

We can perform bitwise 'and', 'or', and 'xor' operations on fixed-size integers. This is of lower precedence than the comparison operators.

assert (0x33 & 0x11l) == 0x11 && 0x33.and(0x11l) == 0x11
assert (0x33 | 0x11l) == 0x33 && 0x33.0r(0x11l) == 0x33
assert (0x33 * 0x11) == 0x22 && 0x33.xor (0x1l) == 0x22

We can reverse the bits or bytes of the binary representation of an int or long:

assert Integer.toString(123456, 2) == '11110001001000000"'

assert Integer.toString(Integer.reverse(123456), 2) ==
'10010001111000000000000000"' //reverse bits

assert Integer.reverseBytes(0x157ACE42) == 0x42CE7Al5 //also works for bytes

Boolean, Conditional, and Assignment Operators with Fixed-Sized Integers

The boolean, conditional, and assignment operators are of even lower precedence than the bitwise operators.

When using an integer with boolean operators !, &&, and ||, 0 evaluates to false, while every other integer evaluates to true:

assert ! 0; assert 1; assert 2; assert -1; assert -2

assert (! 1 & 0) != (! (1 && 0))
// the unary ! has the same, high, precedence as the other unary operators
assert (1 || 0 & 0) != ((1 || 0) & 0) // && has higher precedence than |

The boolean operators && and || only have their operands evaluated until the final result is known. This affects operands with side effects, such as
increment or decrement operators:

def x =0

0 && X++

assert x ==

//x%x++ wasn't performed because falsity of (0 && x++) was known when 0 evaluated

1 || x++
assert x == 0
//%x++ wasn't performed because truth of (1 || x++) was known when 1 evaluated

We can use the conditional operator ?:, of lower precedence than the boolean operators, to choose between two values:

def x= 1? 7: -5
assert x == 7

We can put the assignment operator = within expressions, but must surround it with parentheses because its precedence is lower than the

conditional:

def x, vy = (x=3) && 1

assert (x == 3) && y
def 1 =2, j = (i=3) * i

//in the multiplication, lefthand (i=3) evaluated before righthand i
assert j == 9

Of equal precedence as the plain assignment operator = are the quick assignment *= += -= %= **= <<= >>= >>>= &= = |= operators:

def a = 7
a += 2 //short for a = a + 2
assert a ==
a += (a = 3) //expands to a = a + (a = 3) before any part is evaluated
assert a == 12
Bigintegers

The Biginteger has arbitrary precision, growing as large as necessary to accommodate the results of an operation.

We can explicitly convert fixed-sized integers to a BigInteger, and vice versa:

assert 451 as BigInteger == 45g
assert 45L.toBigInteger() == 45g

assert 45g as Integer == 45i
assert 45g.intValue() == 45i //alternate syntax
assert 45g as Long == 45L
assert 45g.longValue() == 45L
assert 256g as Byte == 0
//if converted number too large for target, only lowest order bits returned
assert 200g as byte == -56 //...and this may result in a negative number

A method and some fields that give a little more efficiency:

assert BigInteger.valueOf(45L) == 45g
//works for longs only (not for ints, shorts, or bytes

assert BigInteger.ZERO == 0g
assert BigInteger.ONE == 1lg
assert BigInteger.TEN == 10g

We can construct a Biglnteger using an array of bytes:

assert new BigInteger([1,2,3] as byte[]) == 1g*256%*256 + 2*256 + 3
//big-endian 2's complement representation

try{new BigInteger([] as byte[]l); assert 0}

catch(e) {assert e instanceof NumberFormatException} //empty array not allowed

assert new BigInteger(-1, [1,2] as bytel[]) == -258g
//we pass in sign as a separate argument

assert new BigInteger(1, [1,2] as bytel[]l) == 258g

assert new BigInteger(0, [0,0] as bytel[]l) == 0g

assert new BigInteger(1, [] as byte[l) == 0 //empty array allowable
try{ new BigInteger(2, [1,2,3] as bytel]); assert 0 }

catch(e){ assert e instanceof NumberFormatException}
//sign value must be -1, 0, or 1

We can convert a BigInteger back to an array of bytes:

def ba= (1g*256%*256 + 2*256 + 3) .toByteArray ()
//big-endian 2's complement representation
assert ba.size() == 3 && bal 0] == 1 && bal[1] == 2 && bal 2] == 3

def bb= 255g.toByteArray ()
assert bb.size() == 2 && bb[0] == 0 && bb[1] == -1
//always includes at least one sign bit

def bec= (-(2g*256 + 3)).toByteArray ()
assert bc.size() == 2 && bc[0] == -3 && bc[1] == -3

We can pass in a string in a certain base/radix:

assert '27'.toBigInteger() == 27g

assert new BigInteger("27", 10) == 27g

assert new BigInteger("27") == 27g //default radix is 10
assert new BigInteger("110", 2) == 6g

assert new BigInteger("-1F", 16) == -31g

[{ new BigInteger(" 27", 10) }, //no whitespace allowed in string
{ new BigInteger("z", Character.MAX RADIX + 1) }, //radix out of range
{ new BigInteger("0", Character.MIN RADIX - 1) }, //radix out of range
] .each{
try{ it(); assert 0 }catch(e){ assert e instanceof NumberFormatException }

We can convert the Biglnteger back to a string:

assert 6g.toString(2) == '110'
assert (-31g).toString(16) == '-1f'

assert 27g.toString() == '27' //default radix is 10
assert 27g.toString(Character.MAX RADIX + 1) == '27'

//radix is 10 if radix argument invalid

We can construct a randomly-generated BigInteger:

assert new BigInteger(20, new Random()).toString(2).size() == 20
//20 is max bit length, must be >= 0
assert new BigInteger(20, new Random()) >= 0

Arithmetic with Bigintegers

We can perform the usual arithmetic operations + - * using either methods or operations:

assert 34g.plus(33g) == 34g + 33g

assert 34g.add(33g) == 34g + 33g //alternative name for plus
assert 34g.minus(21g) == 34g - 21g

assert 34g.subtract(21g) == 34g - 21g //alternative name for minus
assert 3g.multiply(31g) == 3g * 31g

assert 7g.negate() == -7g //unary operation/method

assert (-7g).negate() == 79

For + - *, a BigInteger causes any fixed-width integers in the calculation to be converted to a Biginteger:

assert (45L + 123g).class == BigInteger
assert (23 - 123g).class == BigInteger
assert (3g * 31).class == BiglInteger
assert (3 * 31g).class == BiglInteger
assert 3g.multiply(31).class == BigInteger
assert 3.multiply(31g) .class == BigInteger

We can introduce a Biginteger into an expression with Integers or Longs if overflow may occur. But make sure the Biginteger is introduced before
an intermediate value that may overflow, for example, the first-used value in a calculation:

assert 256L*256*256%256 * 256%*256*256*256 ==
//the first 256 is a Long, so each intermediate and final product also Long,
//and calc overflowed

assert 256g*256*256*256 * 256*256*256*256 == 18446744073709551616
//no overflow here because BigInteger introduced in first value

We can also increment and decrement Biglntegers:

def a= 7g
assert a++ == 79 && a == 89 && a-- == 89 && a == 79 &&
++a == 89 && a == 89 && --a == 79 && a == 7g

We can find out the quotient and remainder:

assert 7g.divide(4g) == 1lg
assert 7g.remainder(4g) == 3g
def a= 7g.divideAndRemainder(4g)
assert al[0] == 1lg //quotient, same result as divide()
assert al[l] == 3g //remainder, same result as remainder ()
assert 7g.divide(-4g) == -1lg
assert 7g.remainder(-4g) == 3g
assert (-7g).divide(4g) == -1g
assert (-7g).remainder(4g) == -3g
//division of a negative yields a negative (or zero) remainder
assert (-7g).divide(-4g) == 1g
assert (-7g).remainder(-4g) == -3g

Other methods for arithmetic:

assert 22g.intdiv(5g) == 4g
assert (-22g).intdiv(5g) == -4g

assert 7g.abs() == 7g //absolute value
assert (-7g).abs() == 7g

assert 28g.gcd(35g) == 79
//greatest common divisor of absolute value of each number

assert (-28g).gcd(35g) == 79

assert 28g.gcd(-35g) == 79

assert (-28g).gcd(-35g) == 79

assert 0g.gcd(9g) == 9g

assert 0g.gcd(0g) == 0g

assert 4g**3 == 64g //raising to the power
assert (4g**3) .class == Integer

//raising to the power converts a BigInteger to an integer

assert 4g.power (3) == 64g //using method
assert 4g.pow(3) == 64g
//pow () is different to, and sometimes slower than, power ()
assert (-4g) .power (3) == -64g
assert 4g.power(0) == 1g //exponent must be integer >=0
assert 79 % 49 == 3g && 7g.mod(4g) == 3g
//modulo arithmetic, using operator or method
assert 89 % 4g == 0g
assert -7g % 4g == 1g

//result of mod is between 0 and (modulus - 1) inclusive
try{ 79 % -4g; assert 0 }catch(e){ assert e instanceof ArithmeticException }
//mod value must be positive

assert 4g.modPow(3g, 99) == 1
//calculates as ((4**3) mod 9), result always zero or positive
assert 4g.modPow(-2g, 99) == 4

//negative exponents allowed, but mod value must be positive

assert 4g.modInverse(3g) == 1 //calculates as ((4**-1) mod 3)
//mod must be positive, and value must have a multiplicative inverse mod m
// (ie, be relatively prime to m)

assert 7g.max(5g) == 79 //maximum and minimum
assert 4g.min(5g) == 4g
def a=5g, b=5g, c=a.min(b)
assert [a,bl.any{ c.is(it) }
//either a or b may be returned if they're both equal

assert (-45g <=> -43g) && ((-45g).compareTo(-43g) == -1)
//comparing two BigIntegers

assert 14g >= 8g && 1l4g.compareTo(8g) >= 0

assert 45g.signum() == 1 //return sign as -1,0, or 1

assert 0g.signum() == 0

assert (-43g).signum() == -1

We can construct a randomly generated positive Biglnteger with a specified bit length (at least 2 bits), that is probably prime to a specific certainty.
The probability the Biginteger is prime is >(1 - (1/2)**certainty). If the certainty <=0, true always returned. The execution time is proportional to the
value of this parameter. We must pass in a new Random object:

100.times{
def primes= [17g, 19g, 23g, 29g, 319]
//bitlength is 5, so primes from 16 to 31 incl
assert new BigInteger(5, 50, new Random()) in primes
//5 is bit-length, 50 is certainty (must be integer)

def pp= BigInteger.probablePrime(20, new Random())
//if we don't want to specify certainty
//20 is bit-length; there's <1.0e-30 chance the number isn't prime

def pn= pp.nextProbablePrime ()
//this is probably next prime, but definitely no primes skipped over
((pp+1) ..<pn) .each{
assert ! it.isProbablePrime (50)
//we can test for primality to specific certainty (here, 50).
//True if probably prime, false if definitely composite

}
assert 10g.nextProbablePrime() == 11
assert 0g.nextProbablePrime() == 2

Bit-Manipulation on Bigintegers

All operations behave as if Bigintegers were represented in two's-complement notation.

Bit operations operate on a single bit of the two's-complement representation of their operand/s. The infinite word size ensures that there are
infinitely many virtual sign bits preceding each Biglnteger. None of the single-bit operations can produce a BigInteger with a different sign from the
BigInteger being operated on, as they affect only a single bit.

assert 0x33g.testBit (1)
//true if bit is 1, indexing beginning at 0 from righthand side
assert | 0x33g.testBit(2)
(2..100) .each{
assert (-0x3g) .testBit(it)
//negative BigIntegers have virtual infinite sign-extension

Unlike with fixed-width integers, Biglntegers don't have a method to show the hex, octal, or binary representation of a negative number. We can
use this code instead to look at the first 16 lowest-order virtual bits:

def binRepr={n->
(15..0) .inject (' ') {flo,it->
flo<< (n.testBit(it)? 1: 0)
}
}
assert 0x33g.toString(2) == '110011"'
assert binRepr (0x33g) as String == '0000000000110011"'
assert (-0x33g).toString(2) == '-110011' //not what we want to see
assert binRepr (-0x33g) as String == '1111111111001101"'
//notice the negative sign bit extended virtually

More bit-manip methods:

assert 0x33g.setBit(6) == 0x73g //0x33g is binary 110011
assert 0x33g.clearBit (4) == 0x23g
assert 0x33g.flipBit(1l) == 0x31lg
assert 0x33g.flipBit(2) == 0x37g

assert 0xlg.getLowestSetBit () == 0
//index of the rightmost one bit in this BigInteger
assert 0x2g.getLowestSetBit () == 1
assert 0x8g.getLowestSetBit () == 3
assert 0x33g.bitLength() == 6
//number of bits in minimal representation of number
assert (-0x33g).bitLength() == 6 //exclude sign bit
assert 0x33g.bitCount () == 4 //number of bits that differ from sign bit
assert (-0x33g).bitCount() == 3

Setting, clearing, or flipping bit in virtual sign makes that bit part of the number:

assert (-0x33g).clearBit(9) == -0x233g

We can perform bit-shifting on BigIntegers. The shortcut operators >> and << can't be used, only the method names can be (they're also spelt
differently to the fixed-size integer versions of the names, eg, "shiftLeft" instead of "leftShift"). There's no shift-right-unsigned method because this
doesn't make sense for Biglntegers with virtual infinite-length sign bits.

assert O0xB4Fg.shiftLeft(4) == 0xB4F0g //shift 4 bits to the left
assert 0xD23Cg.shiftRight(4) == 0xD23g

//shift 4 bits to the right, dropping off digits
assert (-0xFFFg).shiftRight(4) == -0x100g

//sign-extension performed when right-shifting
[0XABCg, -0x98765g] .each{
it.shiftLeft(8) == it.shiftRight(-8)

}

We can perform 'not', 'and', 'or', and 'xor' bitwise operations on BigIntegers:

assert 123g.not() == -124g //in 2's-complement, negate and add 1
assert -0xFFg.not() == 0x100g

assert ((0x33g & 0Ox1llg) == 0x1llg) && 0x33g.and(0xllg) == 0xllg
assert ((0x33g | 0x1lg) == 0x33g) && 0x33g.or(0xllg) == 0x33g
assert ((0x33g ~ 0x1lg) == 0x22g) && 0x33g.xor (0x1llg) == 0x22g
assert 0x33g.andNot (0x1lg) == 0x22g && (0x33g & (~ 0x1llg)) == 0x22g

//convenience operation

For negative numbers:

//and returns a negative if both operands are negative...
assert (-1g & -1g) == -1g

//or returns a negative number if either operand is negative...
assert (lg | -1g) == -1g

//xor returns a negative number if exactly one operand is negative...
assert (1g ~ -1g) == -2g
assert (-1g -2g) == 1lg

N

When the two operands are of different lengths, the sign on the shorter of the two operands is virtually extended prior to the operation:

assert llg.and(-2g) == 10g //01011 and 11110 is 01010, ie, 10g

JN0525-Decimals

We can only use base-10 notation to represent decimal numbers, not hexadecimal or octal. Decimals are written with a decimal part and/or an
exponent part, each with an optional + -. The leading zero is required.

[1.23e-23, 4.56, -1.7El, 98.7e2, -0.27e-54].each{ assert it } //decimals
assert (-1.23).class == BigDecimal
assert (-1.23g).class == BigDecimal

//BigInteger 'g' suffix after a decimal-formatted number means BigDecimal

Such BigDecimals are arbitrary-precision signed decimal numbers. They consist of an unscaled infinitely-extendable value and a 32-bit Integer
scale. The value of the number represented by it is (unscaledValue x 10**(-scale)). This means a zero or positive scale is the number of digits to
the right of the decimal point; a negative scale is the unscaled value multiplied by ten to the power of the negation of the scale. For example, a
scale of -3 means the unscaled value is multiplied by 1000.

We can construct a BigDecimal with a specified scale:

assert new BigDecimal(0, 1) == 0.0

assert new BigDecimal(123, 0) == 123

assert new BigDecimal(123) == 123 //default scale is 0
assert new BigDecimal(-123, 0) == -123

assert new BigDecimal(123, -1) == 1.23e3

assert new BigDecimal(12, -3) == 12000.0

assert new BigDecimal(120, 1) == 12.0

assert new BigDecimal(123, 5) == 0.00123

assert new BigDecimal(-123, 14) == -1.23e-12

assert (2 as BigDecimal) .unscaledValue() == 2

assert (2 as BigDecimal) .scale() == 0

assert (2 as BigDecimal) .scale == 0 //parens optional
assert 2.0.unscaledvalue() == 20

assert 2.0.scale == 1

All methods and constructors for this class throw NullPointerException when passed a null object reference for any input parameter.

We can enquire the scale of a BigDecimal:

assert (1234.567) .unscaledvValue() == 12345679
//returns the unscaled portion of a BigInteger

assert (1234.567).scale() == 3 //returns the scale

The precision of a BigDecimal is the number of digits in the unscaled value. The precision of a zero value is 1.

assert 7.7.precision/()
assert (-7.7).precision
assert 1.000.precision(

We can construct a BigDecimal from a string. The value of the resulting scale must lie between Integer.MIN_VALUE and Integer. MAX_VALUE,
inclusive.

assert '23.45'.toBigDecimal () == 23.45

assert new BigDecimal('23.45') == 23.45

assert new BigDecimal('-32.8e2') == -32.8e2

assert new BigDecimal('+.9E-7') == 0.9e-7

assert new BigDecimal('+7.E+8') == 7e8

assert new BigDecimal('0.0') == 0.0

try{ new BigDecimal(' 23.45'); assert 0 }

catch(e){ assert e instanceof NumberFormatException } //whitespace in string

If we have the String in a char array and are concerned with efficiency, we can supply that array directly to the BigDecimal:

def cal= ['1', '2', '.', '5'] as char/[]

assert new BigDecimal(cal) == 12.5

def ca2= ['a', 'b', '9', '3', '.', '4', '5' x', y', 'z'] as char(]
assert new BigDecimal(ca2, 2, 5) == 93.45

//use 5 chars from the array beginning from index 2

There are some different ways of displaying a BigDecimal:

assert 1.2345e7.toString() == '1.2345E+7'
//one digit before decimal point, if exponent used

assert 1.2345e7.toPlainString() == '12345000' //no exponent portion
assert 1.2345e7.toEngineeringString() == '12.345E+6' //exponent divisible by 3

From Java 5.0, every distinguishable BigDecimal value has a unique string representation as a result of using toString(). If that string
representation is converted back to a BigDecimal, then the original value (unscaled-scale pair) will be recovered. This means it can be used as a
string representation for exchanging decimal data, or as a key in a HashMap.

[1.2345e7, 98.76e-3, 0.007, 0.000e4].each{
assert new BigDecimal (it.toString()) == it

}

Conversions

We can construct a BigDecimal from integers:

assert new BigDecimal(45i) .scale ==
assert new BigDecimal(45L) .scale == 0

If we want to buffer frequently-used BigDecimal values for efficiency, we can use the valueOf() method:

def a= BigDecimal.valueOf(12L, -3)
assert a == 12000.0g && a.scale == -3

def b= BigDecimal.valueOf (12L)
assert b == 12.0 && b.scale == 0 //default scale is 0

assert BigDecimal.ZERO == 0.0 //These commonly-used values are pre-supplied
assert BigDecimal.ONE == 1.0
assert BigDecimal.TEN == 10.0

The BigDecimal can be converted between the Biglnteger, Integer, Long, Short, and Byte classes. Numbers converted to fixed-size integers may
be truncated, or have the opposite sign.

assert 123g as BigDecimal == 123.0

assert 451 as BigDecimal == 45.0

assert 73L as BigDecimal == 73.0

assert 73L.toBigDecimal() == 73.0 //alternative syntax

assert 123.456 as BiglInteger == 123g //lost information about the precision
assert 123.456.toBigInteger () == 123g //alternative syntax

assert 73.0 as Long == 73g

assert 73.0 as long == 73g

assert 73.0.toLong() == 73g

assert 73.0.longValue() == 73g //another alternative syntax

assert 45.6789.intValue() == 45g //truncated

assert 259.0.bytevValue() == 3 //truncated, only lowest 8 integral bits returned
assert 200.789.bytevalue() == -56

//truncated, only lowest 8 integral bits returned, with opposite sign

By appending 'Exact' to the asLong()-style method names, we can ensure an ArithmeticException is thrown if any information would be lost in the
conversion:

assert 123.0.toBigIntegerExact () == 123g //lost information about the precision
try{ 123.456.toBigIntegerExact (); assert false }
catch(e){ assert e instanceof ArithmeticException }

assert 73.0.longValueExact() == 73g

{ 73.21.longValueExact ('
{ 45.6789.intvalueExact () },
{ 73.21.shortvalueExact () }

{
{

}

.

)

(

(
259.0.bytevalueExact () },
200.789.byteValueExact () },
] .each{

try{ it(); assert false }catch(e){ assert e instanceof ArithmeticException }

BigDecimal Arithmetic

We can use the same methods and operators on BigDecimal we use with Biglnteger:

assert 3.4.plus(3.3) == 3.4 + 3.3

assert 3.4.add(3.3) == 3.4 + 3.3 //alternative name for plus

assert 3.4.minus(2.1) 3.4 - 2.1

assert 3.4.subtract(2. == 3.4 - 2.1 //alternative name for minus

assert 3.0.multiply(3 3.0 * 3.1

assert 3.0.multiply(3g) == 3.0 * 3g

assert 7.7.negate() == -7.7 //unary operation/method

assert (-7.7).negate() == -(-7.7)

assert (-7.7).plus() == +(-7.7) //this method provided for symmetry with negate

try{ 3.4.multiply(null); assert 0 }
catch(e){ assert e instanceof NullPointerException }
//all BigDecimal methods throw NullPointerException if passed a null

The scale resulting from add or subtract is the maximum scale of each operand; that resulting from multiply is the sum of the scales of the
operands:

def a 3.414, b
assert a.scale()
assert

assert

3.3

== 3 && b.scale() 1
(a+b) .scale() == 3 //max of 3 and 1
(a*b) .scale() == 4 //sum of 3 and 1

For + - and *, a BigDecimal with any integer type converts it to a BigDecimal:

assert (123.45g * 789) .class == BigDecimal
assert (123.45g * 789L) .class == BigDecimal
assert (123.45g * (89 as byte)) .class == BigDecimal

We can use a MathContext to change the precision of operations involving BigDecimals:

def mc= new java.math.MathContext(3)
//precision of 3 in all constructors and methods where used

assert new BigDecimal(123456, 0, mc) == 123000g
assert new BigDecimal(-12345, 14, mc) == -1.23e-10
assert new BigDecimal('23.4567', mc) == 23.5
assert new BigDecimal (
[r2v, '3', '.v, '4', 's5', '6', '7'] as char[], mc) == 23.5
assert new BigDecimal (
[r2r, '3', +.v, rar, 5 1gr, v7'] as char[], 1, 5, mc) == 3.46
assert new BigDecimal(12341, mc) 1230
assert new BigDecimal(1234L, mc) == 1230
assert 3.45678.add(3.3, mc) == 6.76
assert 0.0.add(3.333333, mc) == 3.33
assert 3.4567.subtract(2.1, mc) == 1.36
assert 0.0.subtract(2.12345, mc) -2.12
assert 3.0.multiply(3.1234, mc) == 9.37
assert (-7.77777) .negate(mc) == 7.78
assert (-7.77777) .plus(mc) == -7.78
//effect identical to that of round(MathContext) method

Division

We can create BigDecimals by dividing integers, both fixed-size and BigInteger, for which the result is a decimal number:

assert 7g / 49 == 1.75
assert (-7g) / 4g == -1.75
assert (1 / 2).class == BigDecimal
assert (1L / 2L).class == BigDecimal
assert (1g / 2g).class == BigDecimal
assert (1.5 * 2g).class == BigDecimal
//an expression with a BigDecimal never converts to an integer
assert 1.0.div(2).class == BigDecimal
//we can use a method instead of the operator
try{ 17g / 0; assert 0 }catch(e){ assert e instanceof ArithmeticException }
//division by 0 not allowed

Sometimes, the division can return a recurring number. This leads to a loss of exactness:

assert 1/3 == 0.3333333333
//BigDecimals with recurring decimals round their result to 10 places...

assert ((1/3) * 3) !=1

//...which leads to inaccuracy in calculations
assert (1/3).precision() == 10
assert 100000/3 == 33333.3333333333

//accuracy before the decimal point is always retained

When the scales of both operands in division are quite different, we can lose precision, sometimes even completely:

assert (1.0 / 7.0) == 0.1428571429

//instead of "0.142857 with last 6 digits recurring"
assert (le-5 / 7.0) == 0.0000014286 //precision is 10
assert (le-9 / 7.0) == 0.0000000001
assert (le-11 / 7.0) == 0.0

//difference in scale of operands can cause full loss of precision

The ulp() of a BigDecimal returns the "Units of the Last Place", the difference between the value and next larger having the same number of
digits:

assert 123.456.ulp() == 0.001 //always 1, but with same scale
assert 123.456.ulp() == (-123.456) .ulp()
assert 0.00.ulp() == 0.01

Another way of dividing numbers is to use the divide() method, different to the div() method and / operator. The result must be exact when using
divide(), or an ArithmeticException is thrown.

assert 1.0.divide(4.0) == 0.25

try{ 1.0.divide(7.0); assert 0 }
catch(e){ assert e instanceof ArithmeticException }
//result must be exact when using divide ()

assert 1.234.divide(4.0) == 0.3085

assert 1.05.divide(1.25)

assert 1.234.scale() == 3 && 4.0.scale() == 1 && 0.3085.scale() == 4
//scale of result unpredictable

assert 1.05.scale() == 2 && 1.25.scale() == 2 && 0.84.scale() == 2

We can change the precision of divide() by using a MathContext:

assert (1.0).divide(7.0, new java.math.MathContext (12)) == 0.142857142857
//precision is 12

assert (1.0).divide(7.0, new java.math.MathContext (10)) == 0.1428571429
assert (1.0).divide(7.0, new java.math.MathContext(5)) == 0.14286
try{ 1.0.divide(7.0, new java.math.MathContext (0)); assert 0 }

catch(e){ assert e instanceof ArithmeticException }
//precision of 0 same as if no MathContext was supplied

MathContext Rounding Modes

As well as specifying required precision for operations in a MathContext, we can also specify the rounding behavior for operations discarding
excess precision. Each rounding mode indicates how the least significant returned digit of a rounded result is to be calculated.

If fewer digits are returned than the digits needed to represent the exact numerical result, the discarded digits are called "the discarded fraction",
regardless their contribution to the value of the number returned. When rounding increases the magnitude of the returned result, it is possible for a
new digit position to be created by a carry propagating to a leading 9-digit. For example, the value 999.9 rounding up with three digits precision
would become 1000.

We can see the behaviour of rounding operations for all rounding modes:

import java.math.MathContext
import java.math.RoundingMode

//so we don't have to qualify these with java.math when we refer to them
import static java.math.RoundingMode. *

//so we don't have to qualify UP, DOWN, etc with java.math.RoundingMode

def values= [+5.5, +2.5, +1.6, +1.1, +1.0, -1.0, -1.1, -1.6, -2.5, -5.5]
def results= [

(Up) : [6, 3, 2, 2, 1, -1, -2, -2, -3, -6 1,

(DOWN) : [5, 2, 1, 1, 1, -1, -1, -1, -2, -5 1,

(CEILING) : [6, 3, 2, 2, 1, -1, -1, -1, -2, -5 1,

(FLOOR) : [5, 2, 1, 1, 1, -1, -2, -2, -3, -6 1,

(HALF _UP) : [6, 3, 2, 1, 1, -1, -1, -2, -3, -6 1,

(HALF_DOWN) : [5, 2, 2, 1, 1, -1, -1, -2, -2, -5 1,

(HALF_EVEN) : [6, 2, 2, 1, 1, -1, -1, -2, -2, -6 1,

results.keySet () .each{ roundMode->
def mc= new MathContext (1, roundMode)
results[roundMode].eachWithIndex{ it, i-»>

assert new BigDecimal(values[i], mc) == it
}
}
def mcu= new MathContext (1, UNNECESSARY)
assert new BigDecimal(1.0, mcu) == 1
assert new BigDecimal(-1.0, mcu) == -1
[+5.5, +2.5, +1.6, +1.1, -1.1, -1.6, -2.5, -5.5].each{
try{ new BigDecimal(it, mcu); assert 0 }

catch(e){ assert e instanceof ArithmeticException }

}

We can thus see:

UP rounds away from zero, always incrementing the digit prior to a non-zero discarded fraction.

DOWN rounds towards zero, always truncating.

CEILING rounds towards positive infinity (positive results behave as for UP; negative results, as for DOWN).

FLOOR rounds towards negative infinity (positive results behave as for DOWN; negative results, as for UP).

HALF_UP rounds towards nearest neighbor; if both neighbors are equidistant, rounds as for UP. (The rounding mode commonly taught in US
schools.)

HALF_DOWN rounds towards nearest neighbor; if both neighbors are equidistant, rounds as for DOWN.

HALF_EVEN rounds towards the nearest neighbor; if both neighbors are equidistant, rounds towards the even neighbor. (Known as "banker's
rounding.")

UNNECESSARY asserts that the operation has an exact result; if there's an inexact result, throws an ArithmeticException.

There are some default rounding modes supplied for use:

import java.math.*
//imports all such classes, including both MathContext and RoundingMode

MathContext . UNLIMITED

//for unlimited precision arithmetic (precision=0 roundingMode=HALF_UP)
MathContext .DECIMAL32

//for "IEEE 754R" Decimal32 format (precision=7 roundingMode=HALF EVEN)
MathContext .DECIMAL64

//Decimalé4 format (precision=16 roundingMode=HALF_EVEN)
MathContext .DECIMAL128

//Decimall28 format (precision=34 roundingMode=HALF EVEN)

assert MathContext .DECIMAL32.precision == 7

assert MathContext .DECIMAL32.roundingMode == RoundingMode.HALF_ EVEN
//precision and roundingMode are properties

assert new BigDecimal(123456789, 0, MathContext.DECIMAL32) == 1234568009

Other constructors for MathContext are:

import java.math.*
def mcl= new MathContext (3)

//by default, uses RoundingMode.HALF_UP rounding mode
assert mcl.roundingMode == RoundingMode.HALF UP

def mc2= new MathContext (3, RoundingMode.HALF UP)
assert mc2.toString() == 'precision=3 roundingMode=HALF_UP'
def mc3= new MathContext (mc2.toString())

//we can initialize a MathContext from another's string
assert mc3.precision == 3
assert mc3.roundingMode == RoundingMode.HALF UP

The rounding mode setting of a MathContext object with a precision setting of 0 is not used and thus irrelevant.

Cloning BigDecimals but with different scale

We can create a new BigDecimal with the same overall value as but a different scale to an existing one:

import java.math.*

def num= 2.2500

assert num.scale == 4 && num.unscaledValue() == 22500
def num2= num.setScale(5)
assert num2 == 2.25000 && num2.scale == 5 && num2.unscaledValue() == 225000

//usual use of changing scale is to increase the scale
def num3= num.setScale(3)

assert num3 == 2.25000 && num3.scale == 3 && num3.unscaledvValue() == 2250
assert num.setScale(2) == 2.25

//only BigDecimal returned from method call has changed scale...
assert num.scale == 4 //...while original BigDecimal still has old scale...
num.scale= 3 //...so there's no point using the allowable property syntax
assert num.scale == 4
try(

num.setScale(l) //we can't change the value when we reduce the scale...
assert false
}catch(e){ assert e instanceof ArithmeticException }

assert 1.125.setScale (2, RoundingMode.HALF_UP) == 1.13
//...unless we use a rounding mode
assert 1.125.setScale(2, BigDecimal.ROUND HALF_UP) == 1.13 //pre-Java-5 syntax

These 8 BigDecimal static fields are older pre-Java-5.0 equivalents for the values in the RoundingMode enum:
BigDecimal.ROUND_UP

BigDecimal. ROUND_DOWN

BigDecimal. ROUND_CEILING

BigDecimal. ROUND_FLOOR

BigDecimal. ROUND_HALF_UP

BigDecimal. ROUND_HALF_DOWN

BigDecimal. ROUND_HALF_EVEN

BigDecimal. ROUND_UNNECESSARY

There's two methods that let us convert such older names to the newer RoundingMode constants (enums):

import java.math.RoundingMode
assert RoundingMode.valueOf ('HALF_UP') == RoundingMode.HALF UP

assert RoundingMode.valueOf (BigDecimal.ROUND_ HALF DOWN) ==
RoundingMode . HALF_DOWN

Further operations

For the other arithmetic operations, we also usually have the choice of supplying a MathContext or not.

There's two main ways to raise a number to a power. Using ** and power() returns a fixed-size floating-point number, which we'll look at in the
next topic on Groovy Floating-Point Math.

assert (4.5**3).class == Double
assert 4.5.power(3).class == Double //using equivalent method instead

We can raise a BigDecimal to the power using the pow() method instead, which always returns an exact BigDecimal. However, this method will be
very slow for high exponents. The result can sometimes differ from the rounded result by more than one ulp (unit in the last place).

assert 4.5.pow(3) == 91.125 //pow() is different to power ()

assert (-4.5).pow(3) == -91.125

assert 4.5.pow (0) .0

assert 0.0.pow (0) .0

try{ 4.5.pow(-1); assert 0 }catch(e){ assert e instanceof ArithmeticException }
//exponent must be integer >=0

try{ 1.1.pow(1000000000); assert 0 }

catch(e){ assert e instanceof ArithmeticException }
//exponent too high for Java 5

1
i
(S

//println(1.1.pow(999999999))
//warning: this runs for a VERY LONG time when uncommented

When we supply a MathContext, the "ANSI X3.274-1996" algorithm is used:

import java.math.MathContext

assert 4.5.pow(3, new MathContext (4)) == 91.13 //can supply a MathContext

assert 4.5.pow(-1, new MathContext (10))
//negative exponents allowed when MathContext supplied

try{ 4.5.pow(-1, new MathContext (0)); assert 0 }

catch(e){ assert e instanceof ArithmeticException }
//ArithmeticException thrown if mc.precision == 0 and n < 0

try{ 4.5.pow(123, new MathContext (2)); assert 0 }

catch(e){ assert e instanceof ArithmeticException }
//ArithmeticException thrown if mc.precision > 0 and

//n has more than mc.precision decimal digits

Instead of giving a precision via the MathContext, we can give the desired scale directly:

import java.math.RoundingMode

assert 25.497.divide(123.4567, 5, RoundingMode.UP) == 0.20653
//specify desired scale of 4, and rounding mode UP

assert 25.497.divide(123.4567, 5, BigDecimal.ROUND_UP) == 0.20653
//cater for pre-Java-5.0 syntax

assert 25.497.divide(123.4567, RoundingMode.UP) == 0.207
//if no scale given, use same one as dividend (here, 25.497)

assert 25.497.divide(123.4567, BigDecimal.ROUND UP) == 0.207

We can divide to an integral quotient, and/or find the remainder. (The preferred scale of the integral quotient is the dividend's less the divisor's.)

import java.math.*
mc= new MathContext (9, RoundingMode.HALF_UP)
assert 25.5.divide(2.4, mc) == 10.625

assert 25.5.divideToIntegralvValue(2.4) == 10 //rounding mode always DOWN...
assert 25.5.remainder(2.4) == 1.5
assert 25.5.divideToIntegralvValue(2.4, mc) == 10

//...even when a MathContext says otherwise
assert 25.5.remainder(2.4, mc) == 1.5
assert (-25.5).divideToIntegralvValue(2.4, mc) == -10
assert (-25.5) .remainder(2.4, mc) == -1.5

try{ 25.5.divideToIntegralvValue(0); assert 0 }
catch(e){ assert e instanceof ArithmeticException }

try{ 25.5.remainder(0); assert 0 }
catch(e){ assert e instanceof ArithmeticException }

assert 25.525.remainder(2.345, new MathContext (1)) == 2.075
//MathContext's precision only affects quotient calculation;
//remainder always exact so may have more decimal digits

[[25.5, 2.4], [-27.1, 3.3]]l.each{ x, y->
assert x.remainder(y) ==
x.subtract (x.divideToIntegralvalue(y).multiply(y))

try(
2552.0.divideToIntegralvalue(2.4, new MathContext (2))
assert 0
}catch(e) { assert e instanceof ArithmeticException }
//if result needs more decimal digits than supplied MathContext's precision

try(
2552.0.remainder (2.4, new MathContext (2))
assert 0
}catch(e){ assert e instanceof ArithmeticException }
//throw if implicit divideToIntegralValue () result needs more decimal digits
//than supplied MathContext's precision

def gr= 25.5.divideAndRemainder(2.4)
assert gr[0] == 10 && gr[l] == 1.5
//same results as divideTolIntegralValue() and remainder (), but more efficient

We can find the absolute value of a BigDecimal:

import java.math.*
assert 7.89.abs()

assert (-7.89).a
assert (-7.89).a

== 7.89 //same scale if no MathContext
() == 7.89
(

bs
bs (new MathContext (2)) == 7.9

The round() operation only has a version with a MathContext parameter. Its action is identical to that of the plus(MathContext) method.

assert 7.89.round(new MathContext (2)) =
assert 7.89.round(new MathContext (0)) ==

7.9
7.89 //no rounding if precision is 0

Operations without a MathContext

Not all BigDecimal operations have a MathContext.

Auto-incrementing and -decrementing work on BigDecimals:

def a= 12.315

a++
assert a == 13.315
--a

assert a == 12.315

The signum method:

assert 2.34.signum() ==
assert (-2.34) .signum() == -1
assert 0.0.signum() == 0

As with integers, we can compare BigDecimals:

assert (2.50 <=> 2.5) == 0 && 2.50.compareTo(2.5) == 0

assert (-3.45 <=> 1.23) == -1 && (-3.45) .compareTo(1.23) == -1
assert (1.23 <=> -0.12) == 1 && 1.23.compareTo(-0.12) == 1
assert (1.23 > -0.12) && 1.23.compareTo(-0.12) > 0

The equals() method and == operator are different for BigDecimals. (So we must be careful if we use BigDecimal objects as elements in a
SortedSet or keys in a SortedMap, since BigDecimal's natural ordering is inconsistent with equals().)

assert ! (2.00.equals(2.0))

//considers whether both unscaledvValue and scale are equal
assert 2.00 == 2.0 //only considers the sequence of the two numbers on a line
assert 0.0 == -0.0 && 0.0.equals(-0.0)

We can find the minimum and maximum of two BigDecimals:

assert (-2.0).min(7.3) == -2.0
assert 3.5.max(4.2) == 4.2

We can move the decimal point to the left or right:

import java.math.*

def num= 123.456

assert num.scale ==

def mpl= num.movePointLeft(2)

assert mpl.scale == 5 //scale should be max(number.scale + movement, 0)
assert mpl == 1.23456
def mpr= num.movePointRight (4)
assert mpr.scale == 0 //scale should be max(number.scale - movement, 0)
assert mpr == 1234560
assert(3.456.movePointLeft (2) == 0.03456)
[-2, -1, 0, 1, 2].each{
assert 123.456 .movePointLeft(it) == 123.456.movePointRight(-it)
}

try{ //throw ArithmeticException if scale will overflow on moving decimal point
new BigDecimal (123456, 128*256%256*256 - 1).movePointLeft(1)

assert 0
}catch(e) { assert e instanceof ArithmeticException }

Another method for moving the decimal point, but by consistent change to the scale:

import java.math.*

def num= 123.456

assert num.scale ==

def mpl= num.scaleByPowerOfTen(16)
assert mpl == 1.23456el8

assert mpl.scale == -13 //num.scale - 16

We can strip trailing zeros:

assert 45.607000.stripTrailingZeros() == 45.607
assert 600.0.stripTrailingZeros() == 6e2
assert new BigDecimal(6000, 1).stripTrailingZeros() == new BigDecimal(6, -2

JNO0535-Floats

As well as BigDecimal, decimals can have type Float or Double. Unlike BigDecimal which has no size limit, Float and Double are fixed-size, and
thus more efficient in calculations. BigDecimal stores its value as base-10 digits, while Float and Double store their values as binary digits. So
although using them is more efficient in calculations, the result of calculations will not be as exact as in base-10, eg, 3.1f + 0.4f computes to
3.499999910593033, instead of 3.5.

We can force a decimal to have a specific type other than BigDecimal by giving a suffix (F for Float, D for Double):

assert 1.200065d.class == Double
assert 1.234f.class == Float
assert (-1.23E23D) .class == Double
assert (1.167g) .class == BigDecimal
//although g suffix here is optional, it makes examples more readable

We can enquire the minimum and maximum values for Floats and Doubles:

assert Float.MIN_VALUE == 1.4E-45f

assert Float.MAX VALUE == 3.4028235E38f

assert Double.MIN VALUE == 4.9E-324d

assert Double.MAX VALUE == 1.7976931348623157E308d

We can represent infinities by using some predefined constants (prefixed by either Float or Double):

assert (1f / 0f) == Double.POSITIVE INFINITY
assert (-1f / 0f) == Double.NEGATIVE INFINITY
assert Double.POSITIVE_INFINITY == Float.POSITIVE_INFINITY

assert 0.0f != -(0.0f)

//positive and negative zeroes not equal, when negative is written -(0.0f)
assert 0.0f == -0.0f

//but when negative is written -0.0f, it's evaluated as positive

If a nonzero Double literal is too large or too small, it's represented by Double.POSITIVE_INFINITY or Double. NEGATIVE_INFINITY or 0.0:

assert Double.MAX VALUE * Double.MAX VALUE == Double.POSITIVE_INFINITY
assert Double.MIN VALUE * Double.MIN VALUE == 0.0d
assert -Double.MAX VALUE * Double.MAX VALUE == Double.NEGATIVE_INFINITY

assert -Double.MAX VALUE * -Double.MAX VALUE == Double.POSITIVE_INFINITY

Classes Float and Double can both be written uncapitalized, ie, float and double.

assert Float.TYPE == float
assert Double.TYPE double

There's a special variable called Double.NaN (and Float.NaN), meaning "Not a Number", which is sometimes returned from math calculations.

Once introduced into a math calculation, the result will (usually) be NaN.

Conversions

The Float and Double classes, along with BigDecimal, BigInteger, Integer, Long, Short, and Byte, can all be converted to one another.

Converting numbers to integers may involve rounding or truncation:

assert 45.76f as int == 45i //truncated

assert 45.76d as int == 45i

assert 45.76f.toInteger() == 45i //method name

assert 45.76f.toLong() == 45L

assert 200.8f as byte == -56 as byte //sign reversed after truncation
assert 45.76f.toBigInteger() == 45

Converting from integers to float or double (may involve rounding):

assert 789g as Float == 789f

assert 45i.toFloat () == 45f //method name

assert 789g.toFloat() == 789f

assert 789g.floatValue() == 789f //alternative method name
assert 45i as double == 45d

assert 6789g.toDouble () 6789d //method name

6789g.doublevalue ()

//precision lost on conversion

== Float.POSITIVE_INFINITY

1.2345679e29f

assert == 6789d //alternative method name
assert new BigInteger('l' + '0'*40).floatValue()

//one with 40 zeroes after it
assert new BigInteger('1234567890' * 3) .floatValue() ==

Converting from BigDecimal to float or double (may involve rounding):

assert 89.980 as float == 89.98f

assert 1.432157168 as float == 1.4321572f //rounded

assert 78.9g.toFloat() == 78.9f

assert 456.789g.floatValue() == 456.789f

assert 6.789g.toDouble() == 6.789d

assert 2345.6789g.doubleValue() == 2345.6789d

assert new BigDecimal('-' + '1l' *45).floatValue() == Float

assert new BigDecimal('O.' + '0'*45 + '1') .floatValue() ==

assert new BigDecimal('0.' + '1234567890' *3) .floatValue()
//precision

.NEGATIVE_ INFINITY
0.0f

0.12345679f
lost on conversion

We can convert a double to a float. but there's no Double() constructor accepting a float as an argument.

assert 23.45e37d as float == 23.45e37f
assert new Float(23.45e37d) == 23.45e37f
assert new Float(23.45e67d) == Float.POSITIVE INFINITY

assert 123.45el2f as double //conversion inexact

We can create a Float or Double from a string representation of the number, either base-10 or hex:

['77', '1.23e-23', '4.56', '-1.7E1l', '98.7e2', '-0.27e-30"'].each{
assert it.toFloat ()
assert new Float (it)
assert it.toDouble ()
assert new Double(it)

}

assert new Float(' 1.23e-23 ') //leading and trailing whitespace removed
try{ new Float(null); assert 0 }
catch(e){ assert e instanceof NullPointerException }
['NaN', '-NaN', 'Infinity', '-Infinity', '+Infinity’].each{

assert new Float (it)
}
assert new Float(' -0Xabc.defP7')

//we can have hexadecimal mantissa, with P indicating exponent

assert new Float(' OxABC.DEFpl7 ')

//part after P must be base-10, not more hex
assert new Float('0X.defP-3f \n')

//any whitespace OK (spaces, tabs, newlines, carriage returns, etc)
try{ new Float(' @0X6azQ/3d'); assert 0 }
catch(e){ assert e instanceof NumberFormatException }

//because the string doesn't contain a parsable number in the form of a Float
assert Float.valueOf ('OxABpl7')

//alternate means of contructing float from string representation
assert Float.parseFloat('OxABpl7')

//another alternate means of contructing float from string
assert new Double('0x12bc.89aP7d ')

The string is first converted to a double, then if need be converted to a float.

Converting from double to BigDecimal is only exact when the double has an exact binary representation, eg, 0.5, 0.25. If a float is supplied, it's
converted to a double first, then given to the BigDecimal constructor. The scale of the returned BigDecimal is the smallest value such that
(10**scale * val) is an integer.

assert new BigDecimal(0.25d) == 0.25
//exact conversion because 0.25 has an exact binary representation

assert new BigDecimal (0.1d) ==
0.1000000000000000055511151231257827021181583404541015625

(0.1d) .toBigDecimal () == new BigDecimal (0.1d) //alternative method name

assert new BigDecimal (0.1f) == 0.100000001490116119384765625
//inexact conversion as 0.1 has a recurring decimal part in binary

assert (0.1f as BigDecimal) == 0.100000001490116119384765625

assert new BigDecimal (0.1d, new java.math.MathContext (25)) ==
0.1000000000000000055511151 //rounds to 25 places as specified

A more exact way to convert a double to a BigDecimal:

assert BigDecimal.valueOf(0.25d) == 0.25

assert BigDecimal.valueOf(0.1d) == 0.1
//always exact, because converts double to a string first
assert new BigDecimal(Double.toString(0.1d)) == 0.1
//explicitly convert double to string, then to BigDecimal
assert BigDecimal.valueOf(-23.456e-17d) == -2.3456E-16
assert BigDecimal.valueOf (-23.456e-17f) == -2.3455999317674643E-16

//result inexact because float converted to double first

try{ BigDecimal.valueOf (Double.POSITIVE INFINITY); assert 0 }
catch(e){ assert e instanceof NumberFormatException }

try{ BigDecimal.valueOf(Double.NaN); assert 0 }
catch(e){ assert e instanceof NumberFormatException }
//however, infinities and NaN won't convert that way

We can convert a float or double to a unique string representation in base-10. There must be at least one digit to represent the fractional part, and
beyond that as many, but only as many, more digits as are needed to uniquely distinguish the argument value from adjacent values of type float.
(The returned string must be for the float value nearest to the exact mathematical value supplied; if two float representations are equally close to
that value, then the string must be for one of them and the least significant bit of the mantissa must be 0.)

assert Float.toString(3.0e6f) == '3000000.0' //no leading zeros

assert Float.toString(3.0e0f) == '3.0' //at least one digit after the point
assert Float.toString(3.0e-3f) == '0.0030"'

assert Float.toString(3.0e7f) == '3.0E7'

//exponent used if it would be > 6 or < -3
assert Float.toString(3.0e-4f) == '3.0E-4' //mantissa >= 1 and < 10

We can also convert a float or double to a hexadecimal string representation:

[0.0f: '0x0.0p0",

(-0.0f): '0x0.0p0', //no negative sign in hex string rep'n of -0.0f
1.0f: '0x1.0p0', //most returned strings begin with '0x1.' or '-0x1.
2.0f: '0x1.0pl',

3.0f: 'Ox1.8pl"',
5.0f: '0x1.4p2',

(-1.0f): '-0x1.0p0"',

0.5f: '0x1.0p-1"',
0.25f: '0x1.0p-2',

(Float .MAX_VALUE): 'Oxl.fffffepl27',
(Float .MIN_VALUE) : '0x0.000002p-126",
//low values beginning with '0x0.' are called 'subnormal'
(Float .NEGATIVE_INFINITY) : '-Infinity',
(Float.NaN) : 'NaN',

].each{ k, v->
assert Float.toHexString (k) == v

}

We can format integers and decimals using String.format():

//Integers ('d')

assert String.format('$d', 45) == '45'
assert String.format('%5d,%1$50"', 46L) == ' 46, 56"

//octal format; each minimum 5 chars wide; use an argument twice
assert String.format('$%-4d,%<-5x', 47g) == '47 ,2f '

//hex format without leading 'Ox'; left-justified with '-';
//shortcut ('<') for using argument again
assert String.format('%2d,%<1X', 123) == '123,7B'
//hex in uppercase with capital 'X'
assert String.format('%04d', 34) == '0034' //zero-pad
assert String.format('$%,5d', 12345) == '12,345' //use grouping-separators

assert String.format('%+3d,%2$ 3d', 123L, 456g) == '+123, 456"

//always use plus sign; always use a leading space
assert String.format('$%(3d', -789 as short) == '(789)' //parens for negative
assert String.format('$(30,%2$(3x,%3$(3X', 123g, 456g, -789g) == '173,1c8, (315)"

//neg octal/hex only for BigInteger

//Floating-Point ('f', 'a', 'e', 'g")

assert String.format('e = %f', Math.E) == 'e = 2.718282"
//default 'f' format is 7.6

assert String.format('e=%+6.4f', Math.E) == 'e=+2.7183"
//precision is digits after decimal point

assert String.format('$ %(,6.2f', -6217.58) == 'S (6,217.58)"'
//' (' flag gives parens, ',' uses separators

assert String.format('%a, $%$A', 2.7182818f, Math.PI) ==
'0x1.5bf0a8pl, 0X1.921FB54442D18P1' //'a' for hex
assert String.format('%+010.4a', 23.25d) == '+0x001.7400p4"'
//'+' flag always includes sign; '0' flag zero-fills
assert String.format('$e, %10.4e', Math.E, 12345.6789) ==
'2.718282e+00, 1.2346e+04' //'e' for scientific format
assert String.format('$(10.5E', -0.0000271) == '(2.71000E-05)"
assert String.format('$g, %10.4G', Math.E, 12345.6789) == '2.71828, 1.235E+04'
//'f' or 'e', depending on input

Floating-Point Arithmetic

We can perform the same basic operations that integers and BigDecimal can:

assert 3.4f.plus(3.3f) == 3.4f + 3.3f

assert 3.4f .minus(2.1f) == 3.4f - 2.1f

assert 3.0f.multiply(3.1f) == 3.0f * 3.1f

assert 3.0f.multiply(3f) == 3.0f * 3f

assert 3.0.multiply(3f) == 3.0 * 3f

assert 7.7f.negate() == -7.7f //unary operation/method
assert (-7.7f) .negate() == -(-7.7f)

assert +(7.7f) == 7.7f

try{ 3.4f.multiply(null); assert false }
catch(e){ assert e instanceof NullPointerException }
//methods throw NullPointerException if passed a null

For + - and *, anything with a Double or Float converts both arguments to a Double:

assert (23.4f + 7.998d).class == Double
assert (23.4f - 123.45g) .class Double
assert (7.998d * 123.45g) .class == Double
assert (23.4f - 1=789).class == Double

We can divide using floats and doubles:

assert
assert

assert

2.4f.div(1.6f) == (
(2.5£ / 1i).class ==

//produces double result

(2.5£ / 1.25).class

2.4f / 1.6f)

Double

if either operand is float or double
Double

We can perform mod on floats and doubles:

def a= 34.56f % 5

assert a == 34.56f.mod(5) && a < 5.0f && a >= 0.0f

def b= 34.56f % 5.1f

assert b == 34.56f.mod(5.1f) && b < 5.0f && b >= 0.0f

def c= -34.56f % 5.1f

assert ¢ == (-34.56f) .mod(5.1f) && ¢ <= 0.0f && ¢ > -5.0f

IEEEremainder resembles mod in some ways:

def Infinity=Double.POSITIVE_INFINITY, NaN=Double.NaN, Zero=0.0d

assert Math.IEEEremainder(33d, 10d) == 3d
//give remainder after rounding to nearest value
assert Math.IEEEremainder(37d, 104) == -3d
assert Math.IEEEremainder(-33d, 10d) -3d
assert Math.IEEEremainder(-37d, 10d) == 3d
assert Math.IEEEremainder(35d, 10d) == -5d
//when two values equally near, use even number
assert Math.IEEEremainder(45d, 10d) == 5d
assert Math.IEEEremainder(Zero, 10d) Zero
assert Math.IEEEremainder(-Zero, 10d) -Zero
assert Math.IEEEremainder(Infinity, 10d) == NaN
assert Math.IEEEremainder(35d, Zero) == NaN
assert Math.IEEEremainder(35d, Infinity) == 35d
We can perform other methods:
assert (-23.4f).abs() == 23.4f
assert (-23.414d) .abs() == 23.4144d
assert 14.49f.round() == 141
assert 14.5f.round() == 15i
assert (-14.5f).round() == -141i
assert 14.555d.round() == 15L
We can raise a float or double to a power:
assert 4.5f**3 == 91.125d //double returned

assert 4.5f.power(3) == 4.5f**3 //using equivalent method instead
assert 1.1.power(1000000000) == Double.POSITIVE_INFINITY

We can test whether a float or double is a number and whether it's an infinite number:

def Infinity=Double.POSITIVE_INFINITY, NaN=Double.NaN, Zero=0.0d
assert NaN.isNaN()

assert Double.isNaN(NaN)

assert Infinity.isInfinite()

assert (-Infinity).isInfinite()

assert Double.isInfinite(Infinity)

assert Double.isInfinite(-Infinity)

assert Float.isInfinite(Float.NEGATIVE_INFINITY)

We can test whether two floats or doubles have equal values using operators or methods:

assert 345f.equals(3.45e2f) && 345f == 3.45e2f

//equals () and == behave the same in all cases
assert ! 34.5f.equals(13.4f) && 34.5f != 13.4f //equivalent
assert Float.NaN.equals(Float.NaN) && Float.NaN == Float.NaN
assert 0.0f == -0.0f && 0.0f.equals(-0.0f)

//-0.0f is evaluated as positive zero
assert 0.0f != -(0.0f) && ! 0.0f.equals(-(0.0f))

//negative zero must be written -(0.0f)
assert 345d.equals(3.45e2d) && 345d == 3.45e2d

assert Float.POSITIVE INFINITY.equals(Float.POSITIVE_INFINITY) &&

Float .POSITIVE_INFINITY == Float.POSITIVE_INFINITY
assert ! Float.POSITIVE_ INFINITY.equals(Float.NEGATIVE_INFINITY) &&
! (Float.POSITIVE_INFINITY == Float .NEGATIVE INFINITY)

We can compare floats and doubles using the <=> operator, the compareTo() method, and the compare() static method:

assert (2.50f <=> 2.5f) == 0 && 2.50f.compareTo(2.5f) ==

assert (-3.45f <=> 1.23f) == -1 && (-3.45f) .compareTo(1.23f) == -1
assert (1.23d <=> -0.12d) == 1 && 1.23d.compareTo(-0.12d) == 1
assert (-1.23d < -0.12d) && (-1.23d).compareTo(-0.12d) < 0

assert (Float.NaN > Float.POSITIVE INFINITY) &&
Float.NaN.compareTo (Float.POSITIVE_INFINITY) > 0

assert (0.0f <=> -0.0f) == 0

assert (Float.NaN <=> Float.NaN) == 0 && Float.NaN.compareTo (Float.NaN) == 0
assert Float.compare(3.4f, 7.9f) == -1

assert Double.compare(3.4d, -7.9d) == 1

Auto-incrementing and -decrementing work on floats and doubles:

def a= 12.315d

a++
assert a == 13.315d
--a
assert a == 12.315d

Non-zero floats and doubles evaluate as true in boolean contexts:

assert (1.23d? true: false)
assert ! (0.0f? true: false)

Bitwise Operations

We can convert a float to the equivalent int bits, or a double to equivalent float bits. For a float, bit 31(mask 0x80000000) is the sign, bits 30-23
(mask 0x7f800000) are the exponent, and bits 22-0 (mask 0x007fffff) are the mantissa. For a double, bit 63 is the sign, bits 62-52 are the
exponent, and bits 51-0 are the mantissa.

assert Float.floatToIntBits(0.0f) == 0

assert Float.floatToIntBits(15.15f) == 0x41726666

assert Float.floatToIntBits(Float.NaN) == 0x7£c00000

assert Float.floatToIntBits(Float.POSITIVE_INFINITY) == 0x7£800000

assert Float.floatToIntBits(Float.NEGATIVE_INFINITY) == (0xff800000 as int)
assert Double.doubleToLongBits(15.15d) == 0x402e4ccccccccced

The methods floatToRawIntBits() and doubleToRawLongBits() act similarly, except that they preserve Not-a-Number (NaN) values. So If the
argument is NaN, the result is the integer or long representing the actual NaN value produced from the last calculation, not the canonical
Float.NaN value to which all the bit patterns encoding a NaN can be collapsed (ie, 0x7f800001 through Ox7fffffff and 0xff800001 through Oxffffffff).

The intBitsToFloat() and longBitsToDouble() methods act oppositely. In all cases, giving the integer resulting from calling Float.floatTolntBits() or
Float.floatToRawIntBits() to the intBitsToFloat(int) method will produce the original floating-point value, except for a few NaN values. Similarly with
doubles. These methods are the only operations that can distinguish between two NaN values of the same type with different bit patterns.

assert Float.intBitsToFloat (0x7fc00000) == Float.NaN

assert Float.intBitsToFloat (0x7£800000) == Float.POSITIVE_INFINITY

assert Float.intBitsToFloat (0xff800000 as int) == Float.NEGATIVE INFINITY
assert Float.intBitsToFloat(0) == 0.0f

assert Float.intBitsToFloat (0x41726666) == 15.15f

assert Double.longBitsToDouble(0x402e4ccccccccced) == 15.15d

assert Float.intBitsToFloat (Float.floatToIntBits(15.15f)) == 15.15f

As well as infinities and NaN, both Float and Double have other constants:

assert Float.MAX VALUE == Float.intBitsToFloat (0x7f7fffff)
assert Float .MIN_NORMAL == Float.intBitsToFloat (0x00800000)
//the smallest positive nonzero normal value
assert Float.MIN_VALUE == Float.intBitsToFloat (0x1)
//the smallest positive nonzero value, including subnormal values
assert Float.MAX EXPONENT == Math.getExponent (Float.MAX VALUE)
assert Float .MIN_EXPONENT == Math.getExponent (Float.MIN_NORMAL)
assert Float .MIN_EXPONENT == Math.getExponent (Float.MIN_VALUE) + 1
//for subnormal values

Floating-Point Calculations

There are two constants of type Double, Math.PI and Math.E, that can't be represented exactly, not even as a recurring decimal.

The trigonometric functions behave as expected with the argument in radians, but 0.0 isn't represented exactly. For example, sine:

assert Math.sin(0.0) == 0.0

assert Math.sin(0.5 * Math.PI) == 1.0

assert Math.sin(Math.PI) < le-15 //almost 0.0, but not quite
assert Math.sin(1.5 * Math.PI) == -1.0

assert Math.sin(2 * Math.PI) > -le-15 //almost 0.0
assert Math.sin(-0.5 * Math.PI) == -1.0

assert Math.sin(-Math.PI) > -le-15 //almost 0.0

assert Math.sin(-1.5 * Math.PI) == 1.0

assert Math.sin(-2 * Math.PI) < le-15 //almost 0.0
assert Math.sin(Double.POSITIVE_INFINITY) == Double.NaN
assert Math.sin(Double.NEGATIVE_INFINITY) == Double.NaN

Other trig functions are:

assert Math.cos(Double.POSITIVE_INFINITY) == Double.NaN
assert Math.tan(Double.NEGATIVE_INFINITY) == Double.NaN
assert Math.asin(0.0) == 0.0

assert Math.asin(1.0) == 0.5 * Math.PI

assert Math.asin(1.001) == Double.NaN

assert Math.acos(-1.0) == Math.PI

assert Math.acos(-1.001) == Double.NaN

assert Math.atan(0.0) == 0.0

Some logarithmic functions:

def Infinity= Double.POSITIVE_INFINITY, NaN= Double.NaN, Zero= 0.0d

assert Math.exp(Infinity)

[(Infinity): Infinity,
10000: 4,
10: 1,
1: 0,
0.1: -1,
0.00001: -5,
0.0: -Infinity,
(-0.001) : NaN,
].each{ k, v -> assert Math.logl0(k) == v } //returns base-10 logarithm
[(Infinity): Infinity,
(Math.E): 1,
1: 0,
0.0: -Infinity,
(-0.001) : NaN,
].each{ k, v -> assert Math.log(k) == v } //returns natural logarithm

== Infinity //returns Math.E raised to a power

assert Math.exp(-Infinity) 0.0

Math.ulp(d) returns the size of the units of the last place for doubles (the difference between the value and the next larger in magnitude).

assert Math.ulp(123.456d) == Math.ulp(-123.456d)
assert Math.ulp(0.123456789d) != Math.ulp(0.123456789f)

//if Float, a different scale is used
assert Math.ulp(Double.POSITIVE INFINITY) == Double.POSITIVE INFINITY
assert Math.ulp(Double.NEGATIVE INFINITY) == Double.POSITIVE INFINITY
assert Math.ulp(0.0d) == Double.MIN_VALUE
assert Math.ulp(Double.MIN_VALUE) == Double.MIN_ VALUE

assert Double.MAX VALUE > Math.ulp(Double.MAX VALUE)

Accuracy of the Math methods is measured in terms of such ulps for the worst-case scenario.lf a method always has an error less than 0.5 ulps,
the method always returns the floating-point number nearest the exact result, and so is always correctly rounded. However, doing this and
maintaining floating-point calculation speed together is impractical. Instead, for the Math class, a larger error bound of 1 or 2 ulps is allowed for
certain methods. But most methods with more than 0.5 ulp errors are still required to be semi-monotonic, ie, whenever the mathematical function
is non-decreasing, so is the floating-point approximation, and vice versa. Not all approximations that have 1 ulp accuracy meet the monotonicity
requirements. sin, cos, tan, asin, acos, atan, exp, log, and log10 give results within 1 ulp of the exact result that are semi-monotonic.

Further Calculations

We can find the polar coordinate of two (x,y) coordinates. The result is within 2 ulps of the exact result, and is semi-monotonic.

def Infinity= Double.POSITIVE_INFINITY, NaN= Double.NaN, Zero= 0.0d

[[1d, 1d]: 0.25d * Math.PI,
[1d, -1d]1: 0.75d * Math.PI,
[-1d, 1d]: -0.25d * Math.PI,
[-1d4, -1d]: -0.75d * Math.PI,
[0od, 1d]: o4,
[-(0d), 1d 1: -(0d),
[od, -14] Math.PI,
[-(0d), -1d 1: -Math.PI, // -(0d) gives huge difference in result to 0d

[1d, 0d]: 0.5d4 * Math.PI,
[14, -(0d) 1: 0.5d * Math.PI,
[-1d, 0d 1: -0.5d4 * Math.PI,
[-1d, -(0d) 1: -0.5d * Math.PI,

[Double.NaN, 1d]: Double.NaN, //NaN returned if either argument is NaN

[1d, Infinity

[1d, -Infinity
[-1d, Infinity
[-1d, -Infinity
[Infinity, 14 0.5d * Math.PI,

[Infinity, -14 0.5d * Math.PI,

1: od,
1
1
1
1
1
[-Infinity, 1d 1: -0.5d * Math.PI,
1
1
1
1
1

Math.PI,
-(0d),
-Math.PI,

[-Infinity, -14 -0.5d * Math.PI,

[Infinity, Infinity 0.25d * Math.PI,

[Infinity, -Infinity 0.75d4 * Math.PI,

[-Infinity, Infinity -0.25d * Math.PI,

[-Infinity, -Infinity -0.75d * Math.PI,

].each{k,v->

if (Math.atan2(k[0], k([1]) != v)
println "(${k[0]}, ${k[1]}): ${Math.atan2(k[0],k[1])}; Sv"

We can perform the hyperbolic trigonometric functions:

assertClose= {itl,it2,ulp->
assert itl > it2 - ulp*Math.ulp(it2) && itl < it2 + ulp*Math.ulp(it2)

}
def Infinity=Double.POSITIVE_INFINITY, Zero=0d, NaN=Double.NaN, E=Math.E
assertClose Math.sinh(2d), 0.5d* (Ex*2d - E**-2d), 2.5d

//sinh() result will be with 2.5 ulp of exact value
assert Math.sinh(Infinity) == Infinity
assert Math.sinh(-Infinity) == -Infinity
assert Math.sinh(Zero) == Zero
(

assert Math.sinh(-Zero) == -Zero

assertClose Math.cosh(2d), 0.5d* (Ex*2d + E**-2d), 2.5d
assert Math.cosh(Infinity) == Infinity

assert Math.cosh(-Infinity) == Infinity

assert Math.cosh(Zero) == 1d

assert Math.cosh(-Zero) == 1d

assertClose Math.tanh(2d), Math.sinh(2d)/Math.cosh(2d), 2.5d
assert Math.tanh(Infinity) == 1d

assert Math.tanh(-Infinity) == -1d

assert Math.tanh(Zero) == Zero

assert Math.tanh(-Zero) == -Zero

//once the exact result of tanh is within 1/2 of an ulp of
//the limit value of +/- 1, a correctly signed +/- 1.0 will be returned

We can convert between degrees and radians. The conversion is generally inexact.

assert Math.toDegrees(Math.PI)
assert Math.toRadians(90.0)

== 180.0
0.5 * Math.PI

We can calculate (E**x)-1 (1 + x) in one call. For values of x near 0, Math.expm1(x) + 1d is much closer than Math.exp(x) to the true result of
e**x. The result will be semi-monotonic, and within 1 ulp of the exact result. Once the exact result of e**x - 1 is within 1/2 ulp of the limit value -1,
-1d will be returned.

assertClose= {itl,it2,ulp->
assert itl > it2 - ulp*Math.ulp(it2) && itl < it2 + ulp*Math.ulp(it2)

}

def Infinity=Double.POSITIVE_INFINITY, NaN=Double.NaN, Zero= 0d, E= Math.E

assertClose Math.expml(123.4d), E**123.4d - 1, 31
assertClose Math.expml(23.4d), E**23.4d - 1, 10
assertClose Math.expml(3.4d), E**3.4d - 1, 3
assert Math.expml(Infinity) == Infinity

assert Math.expml(-Infinity) == -1d

assert Math.expml(Zero) == Zero

assert Math.expml(-Zero) == -Zero

We can also calculate In(1 + x) in one call. For small values of x, Math.log1p(x) is much closer than Math.log(1d + x) to the true result of In(1 +
x). The result will be semi-monotonic, and within 1 ulp of the exact result.

def Infinity=Double.POSITIVE_INFINITY, NaN=Double.NaN, Zero= 0d
assert Math.loglp(123.4d) == Math.log(1ld + 123.4d)

assert Math.loglp(23.4d) == Math.log(ld + 23.4d)

assert Math.loglp(3.4d) == Math.log(ld + 3.4d)

assert Math.loglp(-1.1d) == NaN

assert Math.loglp(Infinity) == Infinity

assert Math.loglp(-1d) == -Infinity

assert Math.loglp(Zero) == Zero

assert Math.loglp(-Zero) == -Zero

Scale binary scalb(x,y) calculates (x * y**2) using a single operation, giving a more accurate result. If the exponent of the result would be larger
than Float/Double. MAX_EXPONENT, an infinity is returned. If the result is subnormal, precision may be lost. When the result is non-NaN, the
result has the same sign as x.

def Infinity= Double.POSITIVE_INFINITY, NaN= Double.NaN, Zero= 0.0d

assert Math.scalb(5, 3) == 5 * 2%%3

assert Math.scalb(NaN, 3) == NaN

assert Math.scalb(Infinity, 3) == Infinity //same sign
assert Math.scalb(Zero, 3) == Zero //same sign

We have square root and cube root methods. For cbrt, the computed result must be within 1 ulp of the exact result.

def ten= Math.sqgrt(10) * Math.sqrt(10)
def error= le-14
assert ten > 10 - error && ten < 10 + error

assert Math.sqgrt(-0.001) == Double.NaN
assert Math.sqgrt(0) == 0
assert Math.sqgrt (Double.POSITIVE_INFINITY) == Double.POSITIVE_INFINITY

def ten= Math.cbrt(10) * Math.cbrt(10) * Math.cbrt(10)
def error= le-14
assert ten > 10 - error && ten < 10 + error

assert Math.cbrt(-123.456) == -Math.cbrt(123.456)

assert Math.cbrt(0) ==

assert Math.cbrt (Double.POSITIVE_INFINITY) == Double.POSITIVE_INFINITY
assert Math.cbrt (Double.NEGATIVE_INFINITY) == Double.NEGATIVE_INFINITY

We can find the ceiling and floor of doubles:

assert Math.ceil(6.77) == 7 && Math.floor(6.77) == 6

assert Math.ceil(-34.43) == -34 && Math.floor(-34.43) == -35

assert Math.ceil(0.73) == 1.0 && Math.flooxr(0.73) == 0.0

assert Math.ceil(-0.73) == -0.0d && Math.floor(-0.73) == -1.0
//sign required for -0.0d

assert Math.ceil(13.0) == 13.0 && Math.floor(13.0) == 13.0

assert Math.ceil(0.0) == 0.0 && Math.flooxr(0.0) == 0.0

assert Math.ceil(23.45) == -Math.floor(-23.45)
//Math.ceil (x) always equals -Math.floor (-x)

We can round doubles to the nearest long (or floats to the nearest integer). The calculation is Math.floor(a + 0.5d) as Long, or Math.floor(a + 0.5f)
as Integer

[7.45: 7,
7.5: 8,

(-3.95): -4,

(-3.5 -3,

)
(Double.NaN) : 0,

(Double .NEGATIVE_ INFINITY): Long.MIN_VALUE,

(Long.MIN_VALUE as Double): Long.MIN_VALUE,

(Double.POSITIVE INFINITY): Long.MAX VALUE,

(Long.MAX VALUE as Double): Long.MAX VALUE,

].each{ k, v -> assert Math.round(k) == v }

Unlike the numerical comparison operators, max() and min() considers negative zero to be strictly smaller than positive zero. If one argument is
positive zero and the other negative zero, the result is positive zero.

assert Math.max(7i, 91) == 91 //returns the same class as its arguments
assert Math.min(23L, 19L) == 19L
assert Math.min(1.7f, 0.3f) == 0.3f

-6.7d

(
(
(

assert Math.min(-6.7d, 1.3d) =
(71, 9L) == 7L
(
(

assert Math.min = //converts result to most precise type of argument
assert Math.min(1L, 3.3f) == 1f
assert Math.min(-6.7f, 1.3d) == -6.699999809265137d

Some other methods:

[7.49d: 7.04,

7.5d: 8.0d,
8.5d: 8d,
(-7.5d): -8d,
7d: 74,
od: od,
(Double.POSITIVE_INFINITY): Double.POSITIVE_INFINITY,
].each{ k, v-> assert Math.rint(k) == v }

//round to nearest integer (or even integer)

assert Math.abs(-231) == 231

assert Math.abs(234L) == 234L

assert Math.abs(0i) == 0i

assert Math.abs(Integer.MIN VALUE) == Integer.MIN_VALUE
//WARNING: this result not intuitive

assert Math.abs(Long.MIN_VALUE) == Long.MIN_VALUE

assert Math.abs(-23.45f) == 23.45f

assert Math.abs(-123.4d) == 123.4d

assert Math.abs(-0.0f) == 0.0f

(
(

assert Math.abs(0.0f) == 0.0f
(

assert Math.abs(FlOat.NEGATIVE_INFINITY) == Float.POSITIVE_INFINITY

-23.45f, 781.23f, Float.NEGATIVE_INFINITY].each{
assert Math.abs(it) ==
Float.intBitsToFloat (Ox7fffffff & Float.floatToIntBits (it))
assert Math.abs(it) ==
Float.intBitsToFloat ((Float.floatToIntBits (it)<<1)>>>1)
} //there's related assertions for doubles

The pow() method returns the value of the first argument raised to the power of the second argument. If both arguments are integers, then the
result is exactly equal to the mathematical result of raising the first argument to the power of the second argument if that result can in fact be
represented exactly as a double value. Otherwise, special rules exist for processing zeros and infinities:

def Infinity= Double.POSITIVE_INFINITY, NaN= Double.NaN
[

[34, od]1: 14,

[34, -(0od) 1: 1d,

[34, 1d 1: 34,

[3d, Infinity]: Infinity,

[-3d, Infinity]: Infinity,

[0.3d, -Infinity]: Infinity,

[-0.3d, -Infinity]: Infinity,

[3d, -Infinity]1: 0d,

[-3d, -Infinity]: 04,

[0.3d, Infinity]: 04,

[-0.3d, Infinity]: 04,

[1d, Infinity]: Double.NaN,

[0od, 1d]1: od,

[Infinity, -1d]: 0d,

[0d, -1d 1: Infinity,

[Infinity, 14]: Infinity,

[

-(0d), 2d]1: 0d, //exponent >0 but not finite odd integer

[-Infinity, -2d]: 0d, //exponent <0 but not finite odd integer

[-(0od), 3@ 1: -(0d), //exponent is positive finite odd integer

[-Infinity, -3d]: -(0d), //exponent is negative finite odd integer

[-(0d), -2d]: Infinity, //exponent <0 but not finite odd integer

[-Infinity, 2d]: Infinity, //exponent >0 but not finite odd integer

[-(0od), -3d]1: -Infinity, //exponent is negative finite odd integer

[-Infinity, 3d]: -Infinity, //exponent is positive finite odd integer
[

-3d, 4i 1: {-> def a= Math.abs(-3d); a*a*a*a }(),

//exponent is finite even integer
{-> def a= Math.abs(-3d); -a*a*a*a*a }(),

//exponent is finite odd integer
-3d, 2.5]: NaN, //exponent is finite and not an integer
NaN, 0d]: 1d //exception to the NaN ripple rule
].each{k, v->
assert Math.pow(k[0],

[-3d, 51 1:

k[1]) == v

More methods:

assert Math.random() >= 0d //this method uses new Random() when first called
assert Math.random() < 1d

assert Math.signum(17.75d) == 1d

assert Math.signum(17.75f) == 1f

assert Math.signum(-19.5d) == -1d

assert Math.signum(04) == 0d

assert Math.signum(-(0d)) == -(0d)

We can use copySign() to return a first argument with the sign of the second argument.

assert Math.copySign(34.4f,

-2.1f) == -34.4f

assert Math.copySign(-1234.4d,

2.23d

)

1234.4d

We can compute the hypotenuse with risk of intermediate overflow (or underflow). The computed result is within 1 ulp of the exact result. If one

parameter is held constant, the results will be semi-monotonic in the other parameter.

def Infinity=Double.POSITIVE_INFINITY, NaN=Double.NaN

assert Math.hypot(9d, 16d) == Math.sqgrt(9d**2 + 16d**2)
assert Math.hypot(Infinity, 234d) == Infinity

assert Math.hypot(NaN, 234d) == NaN

assert Math.hypot(Infinity, NaN) == Infinity

We can get the exponent from the binary representation of a double or float:

def Infinity:Double.POSITIVE_INFINITY, Zero=0d, NaN=Double.NaN, E=Math.E
assert Math.getExponent (2.345e31d) <= Double.MAX EXPONENT
assert Math.getExponent (2.345e31d) >= Double.MIN_EXPONENT
assert Math.getExponent (NaN) == Double.MAX EXPONENT + 1
(

assert Math.getExponent (Infinity) == Double.MAX EXPONENT + 1
assert Math.getExponent (Zero) == Double.MIN_ EXPONENT - 1

//this is also the value of subnormal exponents

assert Math.getExponent (12.3e4f) <= Float.MAX EXPONENT &&
Math.getExponent (12.3e4f) >= Float.MIN_EXPONENT

We can return the floating point number adjacent to the first arg in the direction of the second arg:

def Infinity=Double.POSITIVE_INFINITY, NaN=Double.NaN, Zero= 0d

assert Math.nextAfter(12.34d, 999d) == 12.34d + Math.ulp(12.34d)
assert Math.nextAfter(12.34d, -999d) == 12.34d - Math.ulp(12.34d)
assert Math.nextAfter(12.34f, 999f) == 12.34f + Math.ulp(12.34f)
assert Math.nextAfter(12.34d, 12.34d) == 12.34d

//if numbers equal, return second one
assert Math.nextAfter(Zero, -Zero) == -Zero

//numbers are 'equal', and second one returned
assert Math.nextAfter(Double.MIN_VALUE, -12d) == Zero
assert Math.nextAfter(-Double.MIN_ VALUE, 12d) == -Zero
assert Math.nextAfter(Double.MAX VALUE, Infinity) == Infinity
assert Math.nextAfter(-Double.MAX VALUE, -Infinity) == -Infinity
assert Math.nextAfter(Infinity, 12d) == Double.MAX VALUE
assert Math.nextAfter(-Infinity, 12d) == -Double.MAX VALUE
assert Math.nextAfter(Zero, Infinity) == Double.MIN VALUE
assert Math.nextAfter(Infinity, Infinity) == Infinity
assert Math.nextUp(12.34d) == Math.nextAfter(12.34d, Infinity)

//shortcut method for both doubles and floats

The result is NaN if the argument is NaN for ulp, sin, cos, tan, asin, acos, atan, exp, log, log10, sqrt, cbrt, IEEEremainder, ceil, floor, rint, atan2,

abs, max, min, signum, sinh, cosh, tanh, expm1, log1p, nextAfter, and nextUp.
But not so with pow, round, hypot, copySign, getExponent, and scalb.

There's another math library called StrictMath that's a mirror of Math, with exactly the same methods. However, some methods (eg, sin, cos, tan,
asin, acos, atan, exp, log, log10, cbrt, atan2, pow, sinh, cosh, tanh, hypot, expm1, and log1p) follow stricter IEEE rules about what values must be
returned. For example, whereas the Math.copySign method usually treats some NaN arguments as positive and others as negative to allow

greater performance, the StrictMath.copySign method requires all NaN sign arguments to be treated as positive values.

JN0545-Dates

We use class Date for simple date processing:

def today= new Date() //represents the date and time when it is created
println today

//we can add to and subtract from a date...
def tomorrow= today + 1,
dayAfter= today + 2,
yesterday= today - 1,
dayBefore= today - 2
println "\n$dayBefore\n$yesterday\nstoday\n$tomorrow\n$dayAfter\n"
assert today + 7 == today.plus(7) && today - 15 == today.minus (15)
//equivalent methods

//we can increment and decrement a date...
def d= today.clone ()

d++; assert d == tomorrow
d= d.next(); assert d == dayAfter //equivalent method
d--; assert == tomorrow
d= d.previous(); assert d == today //equivalent method

//we can compare dates...

assert tomorrow.after (today)

assert yesterday.before (today)

assert tomorrow.compareTo(today) > 0
assert tomorrow.compareTo (dayAfter) < 0
assert dayBefore.compareTo(dayBefore) == 0

def n= today.time //we can convert a Date to a Long

println n

today.time = 0 //long 0 is beginning of 1 Jan 1970 GMT

println today

def sometimeAgo= new Date(0) //we can construct a date with a Long argument
assert sometimeAgo == today

Other date and time processing can be done using the GregorianCalendar class:

System.setProperty ('user.timezone', 'GMT') //we'll look at timezones later

def c= new GregorianCalendar ()
println c.time //'time' property gives a Date class
c= Calendar.instance

assert c.class == GregorianCalendar //another way to create a GregorianCalendar
println c.time
assert c.timeInMillis == c.time.time

//we can get the time in milliseconds after 1 Jan 1970 at 0:00:00am GMT

println System.currentTimeMillis () //another way to get the current time
println System.nanoTime (
//time in nano-seconds: good for measuring elapsed computation times

c= new GregorianCalendar (2009, Calendar.JULY, 22) //creates 22 July 2009
c= new GregorianCalendar (2009, Calendar.JULY, 22, 2, 35)

//creates 22 July 2009 at 2:35am GMT
c= new GregorianCalendar (2009, Calendar.JULY, 22, 2, 35, 21)

//creates 22 July 2009 at 2:35:2lam GMT

c.clear() //if we clear the fields, we get...

assert c.get(Calendar.ERA) == GregorianCalendar.AD &&

c.get (Calendar.YEAR) == 1970 &&

c.get (Calendar .MONTH) == 0 &&

//dates range from 0 to 11, so this is January

c.get (Calendar.WEEK OF MONTH) == 1 && //should be: 0
c.get (Calendar.DAY OF MONTH) == 1 &&

c.get (Calendar.DATE) == 1 && //same as DAY OF MONTH
c.get (Calendar.DAY OF_WEEK) == 5 &&

c.get (Calendar .DAY OF_WEEK IN_MONTH) == 1 &&

c.get (Calendar.AM _PM) == Calendar.AM &&

c.get (Calendar .HOUR) == 0 &&

c.get (Calendar .HOUR_OF DAY) == 0 &&

c.get (Calendar .MINUTE) == 0 &&

c.get (Calendar.SECOND) == 0 &&

c.get (Calendar .MILLISECOND) == 0 &&

c.get (Calendar .WEEK_OF YEAR) == 1 &&

c.get (Calendar .DAY OF_YEAR) == 1

def d= new GregorianCalendar ()
d.timeInMillis= 0
//we can set the 'time', here 1 Jan 1970 at 00:00:00.000 GMT (Gregorian)
d.time= new Date (0) //alternative syntax
assert d == ¢

GregorianCalendar supports both the Julian and Gregorian calendar systems, supporting one discontinuity, which by default is when the
Gregorian calendar was first instituted in some countries, ie, 4 October 1582 (Julian) followed by 15 October, 1582 (Gregorian). The only
difference between the calendars is the leap year rule: the Julian specifies leap years every four years, whereas the Gregorian omits century
years which are not divisible by 400. Because dates are computed by extrapolating the current rules indefinitely far backward and forward in time,
this calendar generates consistent results for all years, although dates obtained are historically accurate only from March 1, 4 AD onward, when
modern Julian calendar rules were adopted. Although New Year's Day was March 25 prior to the institution of the Gregorian calendar, to avoid
confusion, this calendar always uses January 1.

From Groovy 1.5.7 / 1.6.x, you may use Date.format() directly. Refer to GROOVY-3066 for details.

Alternatively, Dates and times can be formatted easily with String.format(). The first character is 't' or 'T' for each item:

def cl= new GregorianCalendar (1995, Calendar.SEPTEMBER, 5, 19, 35, 30, 750)

//dates. ..
assert String.format ('$tY/%<tm/%<td', cl) == '1995/09/05"'
assert String.format ('$tA %$<te %<tB %<ty', cl) == 'Tuesday 5 September 95'

assert String.format ('century:%tC, month:%<tb, day:%<te', cl) ==
'century:19, month:Sep, day:5'

assert String.format ('month:%th, day of year:%<tj, day of week:%<ta', cl) ==
'month:Sep, day of year:248, day of week:Tue' //'h' same as 'b'

//times. ..

assert String.format ('$tH:%<tM:%<tS.%<tL', cl) == '19:35:30.750"'

assert String.format ('$tI%<tp, %$<tl%<tp, nanoseconds:%<tN', cl) ==
'07pm, 7pm, nanoseconds:750000000"'

assert String.format('$ts', cl) == '810300930'
//seconds since start of 1-Jan-1970 GMT
assert String.format('$tQ', cl) == '810300930750"

//milliseconds since start of 1-Jan-1970 GMT
assert String.format('$tk',
new GregorianCalendar (1995, Calendar.SEPTEMBER, 5, 6, 35)) == '6'

//shortcut formats...

assert String.format('$tF', cl) == '1995-09-05' //date as '%tm/%td/%ty’'
assert String.format('%tD', cl) == '09/05/95' //date as '%tY-%tm-%td'
'19:35:30' //time as '$tH:%tM:%tS'

assert String.format R', cl '19:35' //time as '$tH:%tM

(st

(st
assert String.format ('$tT', cl

(st

(st

assert String.format('$tr', cl) == '07:35:30 PM' //time as '%tI:%tM:%tS $Tp'
//additionally. ..
assert String.format('$tF', new Date(0)) == '1970-01-01"'

//we can supply a Date instead of a Calendar
assert String.format('$tF', OL) == '1970-01-01' //we can also supply a long
assert String.format('...%15tF...', OL) == '... 1970-01-01...' //width 15
assert String.format('...%-15tF...', OL) == '...1970-01-01 .

// '-' flag to left-justify

After setting fields, we must call any get(), add(), or roll() method, or access the 'timelnMillis' or 'time' properties, to cause other relevant fields to
update themselves:

System.setProperty ('user.timezone', 'GMT')

def c= new GregorianCalendar ()

c.set (Calendar.ERA, GregorianCalendar.AD)

c.set (Calendar.YEAR, 1949)

c.set (Calendar.MONTH, Calendar.OCTOBER)

c.set (Calendar.DATE, 31)

assert String.format ('$tF %$<ta', c¢) == '1949-10-31 Mon'

//properties for calculating WEEK OF_YEAR and WEEK_OF_MONTH fields...
c.firstDayOfWeek = Calendar.SUNDAY //Sunday in most countries, Monday in others
c.minimalDaysInFirstWeek = 1

assert c.get(Calendar.ERA) == GregorianCalendar.AD &&
c.get (Calendar.YEAR) == 1949 &&
c.get (Calendar .MONTH) == 9 && //dates range from 0 to 11, so October
c.get (Calendar.MONTH) == Calendar.OCTOBER && //alternatively
c.get (Calendar.DAY OF_MONTH) == 31 &&
c.get (Calendar .WEEK_OF YEAR) == 45 && //range from 1 to 53
c.get (Calendar.WEEK _OF MONTH) == 6 && //range from 1 to 6
c.get (Calendar.DAY OF_YEAR) == 304 &&
c.get (Calendar .DAY OF_WEEK) == 2 && //Monday

c.get (Calendar.DAY OF_WEEK IN_MONTH) == 5

//changing the month uses the same year and day of month...

c.set (Calendar.MONTH, Calendar.AUGUST)
c.time //cause other fields to update themselves
assert String.format ('$tF %$<ta', c) == '1949-08-31 Wed'

c.set (Calendar.MONTH, Calendar.APRIL)

//...but may cause adjustment to roll into following month
c.time
assert String.format('$tF %$<ta', c¢) == '1949-05-01 Sun'

c.set (Calendar.DATE, 31)
c.set (Calendar.MONTH, Calendar.FEBRUARY)
c.set (Calendar.MONTH, Calendar.SEPTEMBER)

//rolling into following month only occurs when other fields update themselves,
//call this method to trigger it...
c.time

assert String.format ('$tF %$<ta', c¢) == '1949-10-01 Sat'
//...so0 Feb-28 DIDN'T roll into Mar-03

//changing the day of month uses the same month and year...
c.set (Calendar.DATE, 1); c.time
assert String.format ('$tF %$<ta', c¢) == '1949-10-01 Sat'

//changing the day of year adjusts the month, day, and other date fields...
c.set (Calendar.DAY OF_YEAR, c.get(Calendar.DAY OF YEAR) + 2); c.time
assert String.format ('$tF %$<ta', c¢) == '1949-10-03 Mon'

//changing the week of year keeps the same day of week, but adjusts
//the other date fields...

c.set (Calendar.WEEK OF YEAR, c.get (Calendar.WEEK OF_YEAR) + 3); c.time
assert String.format('$tF %$<ta', c¢) == '1949-10-24 Mon'

//changing the week of month keeps both the same month and day of week...
c.set (Calendar.WEEK OF MONTH, c.get (Calendar.WEEK OF MONTH) - 2); c.time
assert String.format ('$tF %$<ta', c¢) == '1949-10-10 Mon'

//changing the day of week in month also keeps both the
//same month and day of week...

c.set (Calendar.DAY OF WEEK IN_MONTH, c.get(Calendar.DAY OF WEEK IN_MONTH) - 1)
c.time
assert String.format('$tF %$<ta', c¢) == '1949-10-03 Mon'

//changing the day of week keeps the same week in year...
c.set (Calendar.DAY OF WEEK, Calendar.SATURDAY); c.time
assert String.format ('$tF %$<ta', c¢) == '1949-10-08 Sat'

c.set (Calendar.DAY OF WEEK, Calendar.SUNDAY); c.time
assert String.format ('$tF %$<ta', c¢) == '1949-10-02 Sun'

We can also set the time in this way:

System.setProperty ('user.timezone', 'GMT')
def c= new GregorianCalendar(1949, Calendar.OCTOBER, 2)

c.set (Calendar.AM PM, Calendar.AM)

c.set (Calendar.HOUR, 6) //set the AM_PM and HOUR fields...
c.set (Calendar.MINUTE, 30)

c.set (Calendar.SECOND, 15); c.time

assert String.format ('$tF %$<tT', c) == '1949-10-02 06:30:15"

assert c.get(Calendar.HOUR OF_DAY) ==
//...and the HOUR_OF DAY field is updated...

c.set (Calendar .HOUR_OF DAY, 19); c.time
assert String.format ('$tF %$<tT', c) == '1949-10-02 19:30:15"
assert c.get(Calendar.HOUR) == 7 && c.get(Calendar.AM PM) == Calendar.PM
//...and vice versa
c.set (Calendar.AM PM, Calendar.AM); c.time
assert String.format ('$tF %<tT', c) == '1949-10-02 07:30:15' &&
c.get(Calendar.AM PM) == Calendar.AM
c.set (Calendar.HOUR, 18); c.time
//if we set the HOUR with a 24-hr value, it self-adjusts
assert c.get(Calendar.HOUR) == 6 && c.get(Calendar.AM PM) == Calendar.PM

//there's no 24:00, only 00:00 which is 'am', on the following day...
c= new GregorianCalendar (1950, Calendar.JANUARY, 26, 23, 59)

assert String.format ('$tF %<tT %$<tp', c) == '1950-01-26 23:59:00 pm'
c.add(Calendar.MINUTE, 1)
assert String.format ('$tF %<tT %$<tp', c) == '1950-01-27 00:00:00 am'

//12:00 noon is 'pm'...
c= new GregorianCalendar (1950, Calendar.JANUARY, 27, 12, 00)
assert String.format ('$tF %<tT %$<tp', c) == '1950-01-27 12:00:00 pm'

More field manipulations:

System.setProperty ('user.timezone', 'GMT')

//we can set common fields using terser syntax...
def c= new GregorianCalendar ()
c.set(1947, Calendar.AUGUST, 11); c.time

assert String.format('$tF %$<ta', c¢) == '1947-08-11 Mon'
c.set(1947, Calendar.AUGUST, 12, 6, 30); c.time
assert String.format ('$tF %$<ta', c) == '1947-08-12 Tue'
c.set (1947, Calendar.AUGUST, 15, 6, 30, 45); c.time
assert String.format('$tF %$<ta', c¢) == '1947-08-15 Fri'

//we can clear individual fields, and check if they're set...
assert c.isSet(Calendar.YEAR) && c.isSet(Calendar.MONTH)
c.clear(Calendar.YEAR)

assert ! c.isSet(Calendar.YEAR) && c.isSet(Calendar.MONTH)

//we can check different maximums and minimums of a field...

c.set(1947, Calendar.APRIL, 11); c.time

assert c.getMinimum(Calendar.DATE) == 1 &&
c.getMaximum(Calendar.DATE) == 31

assert c.getActualMinimum(Calendar.DATE) == 1 &&
c.getActualMaximum(Calendar.DATE) == 3

assert c.getGreatestMinimum(Calendar.DATE) == 1 &&
c.getLeastMaximum(Calendar.DATE) == 28

//the first week in a year may be numbered as part of the previous year,
//and in a month as 0...

c.firstDayOfWeek = Calendar.SUNDAY

c.minimalDaysInFirstWeek = 1

c.set (1954, Calendar.JANUARY, 1); c.time

assert String.format ('$tF %$<ta', c¢) == '1954-01-01 Fri'

assert c.get(Calendar.WEEK OF_YEAR) == 1

assert c.get(Calendar.WEEK OF_MONTH) == 1

assert c.firstDayOfWeek == Calendar.SUNDAY &&
c.minimalDaysInFirstWeek == 1

c.firstDayOfWeek = Calendar.MONDAY
c.minimalDaysInFirstWeek = 4 //trigger different week numbering

assert c.get(Calendar.WEEK OF YEAR) == 53

assert c.get(Calendar.WEEK_OF MONTH) == 0

c.set (1956, Calendar.DECEMBER, 31); c.time

assert String.format ('$tF %$<ta', c¢) == '1956-12-31 Mon'
assert c.get(Calendar.WEEK OF_YEAR) == 1

//last week of year may be numbered as first of next

We can compare dates:

cl= new GregorianCalendar (2008, Calendar.AUGUST, 8)
c2= new GregorianCalendar (2009, Calendar.JULY, 22)
assert cl.before(c2) && c2.after(cl)
assert cl.compareTo(c2) < 0 &&

c2.compareTo(cl) > 0 &&

cl.compareTo(cl) == 0

As well as using set(), calendar fields can be changed using add() and roll(), both of which force all fields to update themselves:

Wi

[0)

def c= new GregorianCalendar (1999, Calendar.AUGUST, 31)

assert String.format ('$tF %$<ta', c¢) == '1999-08-31 Tue'
c.add (Calendar.MONTH, 13)
assert String.format('$tF %$<ta', c¢) == '2000-09-30 Sat'

//we DON'T roll to Oct-01

c= new GregorianCalendar (1999, Calendar.AUGUST, 31)
c.roll(Calendar.MONTH, 13) //rolls a field without changing larger fields

assert String.format ('$tF %$<ta', c¢) == '1999-09-30 Thu'
c.roll (Calendar .MONTH, true) //rolls +1

assert String.format ('$tF %$<ta', c¢) == '1999-10-30 Sat'
c.roll (Calendar .MONTH, false) //rolls -1

assert String.format('$tF %$<ta', c¢) == '1999-09-30 Thu'

can turn off the lenient mode for field updates to force us to give calendars precisely correct values:

System.setProperty ('user.timezone', 'GMT')

def c= new GregorianCalendar (2002, Calendar.JUNE, 30)
assert c.lenient

c.set (Calendar.DATE, 31); c.time

assert String.format('$tF %$<ta', c¢) == '2002-07-01 Mon'

c= new GregorianCalendar (2002, Calendar.JUNE, 30)

c.lenient= false

c.set (Calendar.DATE, 31)

try{ c.time; assert 0 }catch(e){ assert e in IllegalArgumentException }

Durations

We can use durations:

import groovy.time.*

class Extras({
static toString(BaseDuration it) {
def list= []

if (it.years != 0) list<< "$it.years yrs"

if (it.months != 0) list<< "$it.months mths"

if (it.days != 0) list<< "sit.days days"

if (it.hours != 0) list<< "$it.hours hrs"

if (it.minutes != 0) list<< "$it.minutes mins"

if (it.seconds != 0 || it.millis != 0) list<< "$it.seconds.$it.millis secs"
list.join(', ")

//enable utility methods for duration classes using 'category' syntax,
//introduced in a later tutorial...
use (Extras) {
[{new TimeDuration(12, 30, 0, 0)}: '12 hrs, 30 mins',
{new TimeDuration(4, 12, 30, 0, 0)}:'4 days, 12 hrs, 30 mins',
{new Duration(4, 12, 30, 0, 500)}: '4 days, 12 hrs, 30 mins, 0.500 secs',
{new DatumDependentDuration(7, 6, 0, 12, 30, 0, 0)}:
'7 yrs, 6 mths, 12 hrs, 30 mins',
] .each{
assert it.key().toString() == it.value
}
}

def convertToMilliseconds= { yr, mth, day, hr, min, sec, mil->
mil + 1000g*(sec + 60g*(min + 60g*(hr + 24g*(
day + 30g*(mth + 12g*yr)
))))

assert new TimeDuration(12, 30, 0, 0).toMilliseconds() ==
convertToMilliseconds(0, 0, 0, 12, 30, 0, 0)
//ignores 61l-second leap minutes

assert new Duration(114, 12, 30, 0, 0).toMilliseconds() ==
convertToMilliseconds(0, 0, 114, 12, 30, 0, 0)
//ignores 25-hour daylight-saving days

assert new DatumDependentDuration(5, 1, 14, 12, 30, 0, 0).toMilliseconds() !=
convertToMilliseconds(5, 1, 14, 12, 30, 0, 0)
//considers 31-day months and leap-years

These durations can be created more easily within the TimeCategory:

import groovy.time.*

//reuse Extras category from a previous example...
use([Extras, org.codehaus.groovy.runtime.TimeCategory]) {
assert 10.years.class == DatumDependentDuration

assert 10.years.toString() ==

new DatumDependentDuration(10, 0, 0, 0, 0, 0, 0).toString()
assert 4.months.toString() ==

new DatumDependentDuration(0, 4, 0, 0, 0, 0, 0).toString()

assert 7.weeks.toString() == new Duration(49, 0, 0, 0, 0).toString()
assert 5.days.toString() == new Duration(5, 0, 0, 0, 0).toString()
assert 12.hours.toString() == new TimeDuration(12, 0, 0, 0).toString()
assert 15.minutes.toString() == new TimeDuration(0, 15, 0, 0).toString()
assert 13.seconds.toString() == new TimeDuration(0, 0, 13, 0).toString()

assert 750.milliseconds.toString() ==
new TimeDuration(0, 0, 0, 750).toString()

assert 1l.day.toString() == new Duration(1, 0, 0, 0, 0).toString()
//we can use the singular name for any of these...
assert 25.minute.toString() == new TimeDuration(0, 25, 0, 0).toString()

//...even when not grammatical in English

We can add and subtract durations of different types together:

import groovy.time.*

//reuse Extras category from a previous example...
use([Extras, org.codehaus.groovy.runtime.TimeCategory]) {

assert (10.years + 4.months).class == DatumDependentDuration
assert (10.years + 4.months).toString() ==
new DatumDependentDuration(10, 4, 0, 0, 0, 0, 0).toString()

assert (10.years.plus(4.months)).toString() ==
(10.years + 4.months).toString() //alternative method name
assert (4.months + 10.years).toString() == (10.years + 4.months).toString()

//all duration operations are commutative

assert (10.years + 4.weeks) .class == DatumDependentDuration
assert (5.days + 7.weeks).class == Duration

assert (5.days + 17.hours).class == TimeDuration

assert (10.minutes + 5.seconds).class == TimeDuration

//adding a DatumDependentDuration and a TimeDuration gives a
//specially-defined TimeDatumDependentDuration. ..
assert (10.years + 12.hours).toString() ==
new TimeDatumDependentDuration(10, 0, 0, 12, 0, 0, 0).toString()
assert (10.years + 12.hours).class == TimeDatumDependentDuration

assert (10.years + new TimeDatumDependentDuration(0, 0, 0, 12, 0, 0, 0)

) .class == TimeDatumDependentDuration

assert (10.days + new TimeDatumDependentDuration(0, 0, 0, 12, 0, 0, 0)
) .class == TimeDatumDependentDuration

assert (10.minutes + new TimeDatumDependentDuration(O, 0, 0, 12, 0, 0, 0)
) .class == TimeDatumDependentDuration

assert (new TimeDatumDependentDuration(0, 0, 0, 12, 0, 0, O
new TimeDatumDependentDuration(0, 0, 0, 0, 10, 0, 0)
) .class == TimeDatumDependentDuration

//subtracting durations...
assert (10.years - 4.months).class == DatumDependentDuration
assert (10.years - 4.months).toString() ==
new DatumDependentDuration(10, -4, 0, O,
assert (10.years.minus (4.months)).toString() ==
(10.years - 4.months).toString() //alternative method name

0, 0).toString()

assert (10.years - 12.hours).class == DatumDependentDuration
assert (5.days - 7.weeks).class == Duration

assert (5.days - 17.hours).class == TimeDuration

assert (10.minutes - 5.seconds).class == TimeDuration

assert (10.years - 4.weeks) .class == DatumDependentDuration

We can add a Date to a duration to give another Date. A TimeDuration takes leap minutes into account, a Duration also takes daylight saving into
account, and a DatumDependentDuration considers 31-day months and leap-years:

import groovy.time.*

//reuse Extras category from a previous example...
use([Extras, org.codehaus.groovy.runtime.TimeCategory]) {

def today= new Date(),
tomorrow= today + 1,
dayAfter= today + 2,
nextWeek= today + 7 //days-only Date arithmetic

assert (today + 7.days).toString() == nextWeek.toString()
//use Date and duration together

assert (today.plus(7.days)).toString() == (today + 7.days) .toString()
//alternative method name

assert (7.days + today).toString() == nextWeek.toString()
//commutative

assert (nextWeek - 6.days).toString() == tomorrow.toString()

assert (nextWeek.minus(6.days)).toString() == tomorrow.toString()

//alternative method name

assert (nextWeek - dayAfter).toString() == 5.days.toString()

//subtract two dates to get a duration

//some handy operations...
[2.days.ago, 3.days.from.now, 3.days.from.today].each{
assert it.class == java.sql.Date
}
}

Time Zones

We can retrieve lists of all time zones on a system:

//we can get all available time zone ID's, and get the time zone for an ID...
TimeZone.availableIDs.toList () .groupBy{ TimeZone.getTimeZone (it).rawOffset }.
entrySet () .sort{it.key}.reverse() .each{
println String.format('$6.2f hrs: %2d',
it.key / (60%60%1000), it.value.size())
it.value.each{
def tz= TimeZone.getTimeZone (it)
println "${' '*8}Stz.displayName ($tz.ID): " +
"${tz.DSTSavings / (60%60%*1000)}, ${tz.useDaylightTime()}"

//we can get all the available time zone ID's for a specific offset...

TimeZone.getAvailableIDs(12 * (60%60*1000)).toList () .each{
def tz= TimeZone.getTimeZone (it)
println "Stz.displayName ($tz.ID): " +

"${tz.DSTSavings / (60%60*1000)}, ${tz.useDaylightTime()}"

We can access various time zones individually:

def tz= TimeZone.'default' //look at the default time zone
println "S$tz.displayName (Stz.ID): offset $tz.rawOffset, " +
"dstSaving $tz.DSTSavings, useDST ${tz.useDaylightTime() }"

TimeZone.'default'= TimeZone.getTimeZone ('GMT') //set the default time zone

//get a specific time zone from the system...
tz = TimeZone.getTimeZone ('America/Los_Angeles')

assert tz.displayName == 'Pacific Standard Time' &&
tz.rawOffset == -8 * (60*%60*1000) &&
tz.useDaylightTime() &&
tz.DSTSavings == 1 * (60*60*1000)

//we can fetch a custom time zone, without any daylight saving, by
//supplying a string...
['GMT-8': 'GMT-08:00"',
'GMT+11': 'GMT+11:00', //hours must be less than 24
'GMT+0300': 'GMT+03:00',
'GMT-3:15': 'GMT-03:15"',
'moo': 'GMT', //syntax errors give GMT
] .each{ assert TimeZone.getTimeZone(it.key).ID == it.value }

We can create a time zone with custom daylight-saving time rules:

//in the constructor, we can encode the rules for starting or ending
//Daylight Saving time...
def stz= new SimpleTimeZone (-8* (60*60%*1000), //base GMT offset: -8:00
"America/Death Valley",
Calendar.MARCH, 1, 0, //DST starts on 1 March exactly

2*(60*60*1000), SimpleTimeZone.STANDARD_ TIME,

//...at 2:00am in standard time (wall time)
Calendar.OCTOBER, 1, -Calendar.SUNDAY,

//ends first Sun on/after 1 Oct (first Sun in Oct)...
2*(60*60*1000), SimpleTimeZone.WALL TIME,

//...at 2:00am in daylight time (wall time)
1* (60*60*1000)) // save 1 hour

//leave out last parameter which defaults to 'save 1 hour', ie, 1*(60*60%*1000)
stz= new SimpleTimeZone (15* (60*60*1000), //base GMT offset: +15:00
"Pacific/Happy Isle"
Calendar.AUGUST, -21, -Calendar.FRIDAY,
//starts on last Friday on or before 21 August...

2% (60%*60*1000) , //...at 2:00am in standard time (wall time, the default)
Calendar .APRIL, 1, -Calendar.SUNDAY,

//ends first Sun on/after 1 Apr (first Sun in Apr)...
2% (60*%60*1000)) //...at 2:00am in daylight time (wall time, the default)

//two extra optional parameters (if present, both must be)...
stz= new SimpleTimeZone(1*(60*60*1000), //base GMT offset: +1:00
"Europe/Alps",
Calendar.JUNE, 8, -Calendar.MONDAY,
//starts first Mon on/after 8 Jun (second Mon in Jun)...
1* (60*60*1000), SimpleTimeZone.UTC_TIME, //...at 1:00am in UTC time
Calendar .OCTOBER, -1, Calendar.SUNDAY,
//ends on the last Sunday in October. ..
1* (60*60*1000), SimpleTimeZone.UTC_TIME, //...at 1:00am in UTC time
1* (60*60*1000)) // save 1 hour

//we can instead encode the rules in the same way using methods...
stz= new SimpleTimeZone (-8*(60*60*1000), //base GMT offset: -8:00
"America/Death Valley") //no daylight-saving schedule in constructor
stz.setStartRule (Calendar.APRIL, 1, -Calendar.SUNDAY, 2 * 60*60*1000)

//first Sun in Apr
stz.setEndRule (Calendar.OCTOBER, -1, Calendar.SUNDAY, 2 * 60*60*1000)

//last Sun in Oct

assert stz.dSTSavings == 60*60*1000 //the default
stz.dSTSavings= 2 * 60*60*1000
assert stz.dSTSavings == 2 * 60*60*1000
assert stz.getDSTSavings () == 2 * 60%60%*1000
//unusually-cased property name 'dSTSavings' has equivalent method names
//'getDSTSavings () ' and 'setDSTSavings()'

stz.setStartRule(Calendar.MAY, 1, 2 * 60*60%*1000)
//shortcut method for fixed date in month

stz.setStartRule (Calendar.MAY, 10, Calendar.SUNDAY, 2 * 60*60*1000, true)
//shortcut for first Sunday on or after 10 May; true means 'after'

stz.setEndRule (Calendar.OCTOBER, 20, Calendar.SATURDAY, 2 * 60*60*1000, false)
//shortcut for first Saturday on or before 20 October; false means 'before'

(Coordinated universal time, UTC, being based on an atomic clock, enables an extra second, a "leap second", to be added as the last second of
the day on December 31 or June 30.)

We can use time zones in many various ways:

System.setProperty ('user.timezone', 'GMT') //we can set the default time zone

def tz= new SimpleTimeZone (-8* (60*60*1000), 'Somewhere',
Calendar.MARCH, 1, 0, 2*(60*60%*1000),
Calendar.OCTOBER, 31, 0, 2*(60*60%*1000))

def cal= new GregorianCalendar(tz)

//create a calendar with today's date in a specified time zone
cal= Calendar.getInstance(tz) //another way

cal= new GregorianCalendar (2009, Calendar.JULY, 22)
//we can create a calendar with the default time zone...
cal.timeZone= tz //...then set the time zone

assert cal.timeZone == tz

assert cal.get (Calendar.ZONE_OFFSET) == -8%* (60*60%*1000)
assert cal.get (Calendar.DST_OFFSET) == (60*60*1000)
assert Calendar.FIELD_COUNT == 17

//the number of fields such as DAY OF_YEAR and ZONE OFFSET in Calendar

//we can test whether two time zones have the same rules...
assert tz.hasSameRules (
new SimpleTimeZone(-8%(60*60*1000), 'Somewhere Else',
Calendar .MARCH, 1, 0, 2*(60*60%*1000),
Calendar.OCTOBER, 31, 0, 2*(60*60%1000)
))
assert ! tz.hasSameRules (
new SimpleTimeZone(-8%(60*60*1000), 'Somewhere Else',
Calendar .APRIL, 1, 0, 2*(60*60*1000),
Calendar .OCTOBER, 31, 0, 2*(60*60%1000)

//some methods available within TimeCategory...
use (org.codehaus.groovy.runtime.TimeCategory) {

cal= new GregorianCalendar(tz)

def today= cal.time

println today.timeZone

println today.daylightSavingsOffset //returns a duration
def nextWeek= today + 7

println((nextWeek - today) .daylightSavingsOffset)

//a duration also has a daylight savings time offset

println(nextWeek.getRelativeDaylightSavingsOffset (today))

}

//we can test if a certain date is in daylight saving time for a time zone...
assert tz.inDaylightTime (new GregorianCalendar (1990, Calendar.MAY, 5).time)
assert ! tz.inDaylightTime (

new GregorianCalendar (1990, Calendar.NOVEMBER, 5).time)

//we can set the first year daylight savings time operates...
tz.startYear= 1973
assert ! tz.inDaylightTime(new GregorianCalendar (1971, Calendar.MAY, 5).time

//some extra format codes for dates...
println String.format ('$tz', cal)

//to see a string representing the time zone, eg, GMT-07:00
println String.format('$tz', cal) //numeric offset from GMT, eg, -0800
assert String.format('$tc', cal) ==

String.format ('$ta %$<tb %<td %<tT %<tZ %<tY', cal)

//we can view the Gregorian changeover date...

assert String.format('$ta %<td %$<tb %<tY', cal.gregorianChange)
'Fri 15 Oct 1582' //default for GMT time zone

cal= new GregorianCalendar ()

cal.set (1582, Calendar.OCTOBER, 15)

cal.time

assert String.format('$ta %<td %$<tb %<tY', cal.time - 1) ==
'Thu 04 Oct 1582' //the day before the big change

//check for leap years (this instance method acts like a static method) ...
[1999, 1998, 1997, 1900, 1800, 1700].each{ assert ! cal.isLeapYear(it) }

[2000, 1996, 1992, 1600, 1500, 1400].each{ assert cal.isLeapYear (it) }
//1500 and before use Julian calendar rules

JN1015-Collections

Lists

A list is an ordered collection of objects:

def list = [5, 6, 7, 8]

assert list.size == 4

assert list.size() == 4

assert list.class == ArrayList //the specific kind of list being used
assert list[2] == 7 //indexing starts at 0

assert list.getAt(2) == 7 //equivalent method to []

assert list.get(2) == 7 //alternative method

list[2] = 9
assert list == [5, 6, 9, 8,] //trailing comma OK

list.putAt(2, 10) //equivalent method to [] when value being changed

assert list == [5, 6, 10, 8]

assert list.set(2, 11) == 10 //alternative method that returns old value
assert list == [5, 6, 11, 8]

assert ['a', 1, 'a', 'a', 2.5, 2.5f, 2.5d, 'hello', 7g, null, 9 as byte]

//objects can be of different types; duplicates allowed

assert [1,2,3,4,5][-1] == 5 //use negative indices to count from the end
assert [1,2,3,4,5][-2] == 4

try{ [1,2,3,4,5].get(-2 assert 0 } //...but not get()
catch(e){ assert e instanceof ArrayIndexOutOfBoundsException }

assert [1,2,3,4,5].getAt(-2) == 4 //getAt() available with negative index...
)i

Lists can be evaluated as a boolean value:

assert ! [] //an empty list evaluates as false
assert [1] && ['a'l && [0] && [0.0] && [false] && [nulll
//all other lists, irrespective of contents, evaluate as true

We can use [] to assign a new empty list and << to append items to it:

def list = []; assert list.size() == 0

list << 5; assert list.size() ==

list << 7 << 'i' << 11; assert list == [5, 7, 'i', 11]

list << ['m', 'o']; assert list == [5, 7, 'i', 11, ['m', 'o']]

assert ([1,2] << 3 << [4,5] << 6) == [1,2,3, [4, 5], 6]
//first item in chain of << is target list

assert ([1,2,3] << 4) == ([1,2,3].leftShift (4)

//using this method is equivalent to using <<

We can add to a list in many ways:

assert [1,2] + 3 + [4,5] + 6 == [1, 2, 3, 4, 5, 6]

assert [1,2].plus(3).plus([4,5]).plus(6) == [1, 2, 3, 4, 5, 6]
//equivalent method for +
def a= [1,2,3]; a += 4; a += [5,6]; assert a == [1,2,3,4,5,6]
assert [1, *[222, 333], 456] == [1, 222, 333, 456]
assert [*[1,2,3] 1 == [1,2,3]
assert [1, [2,3,[4,5]1,61, 7, [8,9]]1.flatten() == [1, 2, 3, 4, 5, 6, 7, 8, 9]

def list= [1,2]
list.add(3) //alternative method name
list.addAall([5,4]) //alternative method name

assert list == [1,2,3,5,4]

list= [1,2]

list.add(1,3) //add 3 just before index 1

assert list == [1,3,2]

list.addAll(2, [5,4]) //add [5,4] just before index 2

assert list == [1,3,5,4,2]

list = ['a', 'b', 'z', 'e', 'u', 'v', 'g'l

list[8] = 'x'

assert list == ['a', 'b', 'z', 'e', 'u', 'v', 'g', null, 'x']

//nulls inserted if required

We can use the each and eachWithindex methods to execute code on each item in a list:

[1, 2, 3].each{ println "Item: $it" }
['a', 'b', 'c'].eachWithIndex{ it, i -> println "$i: $it" }

We can construct a list using another's elements as a template:

def listl= ['a','b','c']
def list2 = new ArrayList(listl)
//construct a new list, seeded with the same items as in listl

assert list2 == listl // == checks that each corresponding element is the same
def 1list3 = listl.clone()
assert list3 == listl

We can perform a closure on each item of a list and return the result:

assert [1, 2, 3].collect{ it * 2 } == [2, 4, 6]
//simple call gives single result
assert [1, 2, 3]*.multiply(2) == [1, 2, 3].collect{ it.multiply(2) }

//shortcut syntax instead of collect

def list= []

assert [1, 2, 3].collect(list){ it * 2 } == [2, 4, 6]
//this style of call gives two identical results
assert list == [2, 4, 6]

Other methods on a list return a value:

assert [1, 2, 3].find{ it > 1 } == 2
assert [1, 2, 3].findAll{ it > 1 } == [2, 3]
assert ['a','b','c','d','e'].findIndexOf{ it in ['c','e','g'] } == 2

//find first item that satisfies closure
assert [1, 2, 3].every{ it < 5 }

assert ! [1, 2, 3].every{ it < 3 }
assert [1, 2, 3].any{ it > 2 }
assert ! [1, 2, 3].any{ it > 3 }

// sum anything with a plus() method
assert [1,2,3,4,5,6].sum() == 21
assert ['a','b','c','d', 'e'].sum{
it=='a'?l: it=='"b'?2: it=='c'?3: it=='d'?4: it=='e'?5: 0

} == 15
assert ['a','b','c','d','e'].sum{ (char)it - (char)'a' } == 10
assert ['a','b','c','d','e'].sum() == 'abcde’
assert [['a','b'], ['c','d']].sum() == ['a','b','c','d"]
// an initial value can be provided
assert [].sum(1000) == 1000
assert [1, 2, 3].sum(1000) == 1006
assert [1, 2, 3].join('-') == '1-2-3!'
assert [1, 2, 3].inject('counting: '){ str, item -> str + item } ==
'counting: 123
assert [1, 2, 3].inject(0){ count, item -> count + item } == 6

We can find the maximum and minimum in a collection:

def list= [9, 4, 2, 10, 5]
assert list.max() == 10
assert list.min() ==

assert Collections.max(list) == 10
assert Collections.min(list) == 2
assert ['x', 'y', 'a', 'z']l.min() == 'a’'

//we can also compare single characters

def list2= ['abc', 'z', 'xyzuvw', 'Hello', '321']
assert list2.max{ it.size() } == 'xyzuvw'

//we can use a closure to spec the sorting behaviour
assert list2.min{ it.size() } == 'z’

We can use a "Comparator" to define the comparing behaviour:

def mc= [compare:{a,b-> a.equals(b)? 0: a<b? -1: 1}] as Comparator
//this syntax to be explained in a later tutorial
def list= [7,4,9,-6,-1,11,2,3,-9,5,-13]

assert list.max(mc) 11
assert list.min(mc) == -13
assert Collections.max(list, mc) == 11
assert Collections.min(list, mc) == -13

def mc2= [
compare: {a,b-> a.equals(b)? 0: Math.abs(a)<Math.abs(b)? -1: 1 }
] as Comparator
//we should always ensure a.equals(b) returns 0, whatever else we do,
//to avoid inconsistent behaviour in many contexts

assert list.max(mc2) == -13
assert list.min(mc2) == -1
assert list.max{a,b-> a.equals(b)? 0: Math.abs(a)<Math.abs(b)? -1: 1 } == -
assert list.min{a,b-> a.equals(b)? 0: Math.abs(a)<Math.abs(b)? -1: 1 } == -

We can remove elements from a list by referring to the element/s to be removed:

assert ['a','b','c','b','b'] - 'c' == ['a','b','b','b']
//remove 'c', and return resulting list
assert ['a','b','c','b','b'] - 'b' == ['a','c']
//remove all 'b', and return resulting list
assert ['a','b','c','b','b'] - ['b','c'] == ['a']
//remove all 'b' and 'c', and return resulting list
assert ['a','b','c','b','b'] .minus('b') == ['a','c']
//equivalent method name for -
assert ['a','b','c','b','b'] .minus(['b','c']) == ['a'l]
def list= [1,2,3,4,3,2,1]
list -= 3
assert list == [1,2,4,2,1] //use -= to remove 3, permanently
assert (list -= [2,4]) == [1,1] //remove 2's and 4's, permanently

We can remove an element by referring to its index:

def list= [1,2,3,4,5,6,2,2,1]
assert list.remove(2) == 3 //remove the third element, and return it
assert list == [1,2,4,5,6,2,2,1]

We can remove the first occurrence of an element from a list:

def list= ['a','b','c','b','b']

assert list.remove('c') //remove 'c', and return true because element removed
assert list.remove('b')

b', and return true because element removed

(
\

//remove first 'b',
'z') //return false because no elements removed
\

assert ! list.remove

assert list == ['a','b', 'b']
We can clear a list of all elements:

def list= ['a',2,'c',4]

list.clear()

assert list == []

We can pop the last item from a list, and use the list as a simple stack:

def stack= [1,2,4,6]
stack << 7

assert stack == [1,2,4,6,7]
assert stack.pop() ==
assert stack == [1,2,4,6]

Other useful operators and methods:

assert 'a' in ['a','b','c']
assert ['a','b','c'].contains('a')
assert [1,3,4].containsAll([1,4])

assert [].isEmpty ()
assert [1,2,3,3,3,3,4,5] .count(3) == 4

assert [1,2,4,6,8,10,12] .intersect([1,3,6,9,12]) == [1,6,12]
assert [1,2,3].disjoint([4,6,9])

assert ! [1,2,3].disjoint([2,4,6])
assert Collections.disjoint([1,2,3], [4,6,9]) //alternative method name

There's various ways of sorting:

assert [6,3,9,2,7,1,5].sort() == [1,2,3,5,6,7,9]
def list= ['abc', 'z', 'xyzuvw', 'Hello', '321']
assert list.sort{ it.size() } == ['z', 'abc', '321', 'Hello', 'xyzuvw']

def list2= [7,4,-6,-1,11,2,3,-9,5,-13]
assert list2.sort{a,b-> a.equals(b)? 0: Math.abs(a)<Math.abs(b)? -1: 1 } ==
[-1, 2, 3, 4, 5, -6, 7, -9, 11, -13]
def mc= [
compare: {a,b-> a.equals(b)? 0: Math.abs(a)<Math.abs(b)? -1: 1 }
] as Comparator
assert list2.sort(mc) == [-1, 2, 3, 4, 5, -6, 7, -9, 11, -13]

def list3= [6,-3,9,2,-7,1,5]
Collections.sort (list3)

assert list3 == [-7,-3,1,2,5,6,9]
Collections.sort (list3, mc)
assert list3 == [1,2,-3,5,6,-7,9]

We can repeat a list or element:

assert [1,2,3] * 3 == [1,2,3,1,2,3,1,2,3]
assert [1,2,3].multiply(2) == [1,2,3,1,2,3]
assert Collections.nCopies(3, 'b') == ['b', 'b', 'b']
//nCopies works differently
assert Collections.nCopies(2, [1,2]) == [[1,2], [1,2] 1 //not [1,2,1,2]

We can find the first or last index of items in a list:

assert ['a','b','c','d','c','d'].indexOf ('c') == 2 //index returned
assert ['a','b','c','d','c','d'].index0f ('z') == -1

//index -1 means value not in list
assert ['a','b','c','d','c','d'] .lastIndexOf('c') == 4

Some very common methods are:

def list= [], list2= []

[1,2,3,4,5] .each{ list << it*2 }

assert list == [2,4,6,8,10]

[1,2,3,4,5] .eachWithIndex{item, index-> list2 << item * index }
//closure supplied must have 2 params

assert list2 == [0,2,6,12,20]

A list may contain itself, but equals() may not always be consistent. Consider this:

def list, list2, list3
list= [1, 2, list, 4]
list2= [1, 2, list2, 4]
assert list.equals(list2)
list3= [1, 2, list, 4]
assert ! list.equals(list3)

Ranges and List-Slicing

Ranges are consecutive lists of sequential values like Integers, and can be used just like a List:

assert 5..8 == [5,6,7,8] //includes both values
assert 5..<8 == [5, 6, 7] //excludes specified top value

They can also be used with single-character strings:

assert ('a'..'d') == ['a','b','c','d"]

Ranges are handy with the each method:

def n=0
(1..10) .each{ n += it }
assert n == 55

We can define lists using a range or ranges within a list. This is called slicing:

assert [*3..

51 == [3,4,5]
assert [1, *3.

.5, 7, *9..<12] == [1,3,4,5,7,9,10,11]

Lists can be used as subscripts to other lists:

assert ('a'..'g')[3..5] == ['d','e','f']
assert ('a'..'g').getAt(3..5) == ['d','e','f'] //equivalent method name
assert ('a'..'g")[1, 3, 5, 6 1 == ['b','d",'"E£',"'g"']
assert ('a'..'g')[1, *3..5] == ['b','d','e','f']
assert ('a'..'g')[1, 3..5] == ['b','d','e',"£']
//range in subscript flattened automatically
assert ('a'..'g')[-5..-2] == ['c','d','e',"f']
assert ('a'..'g').getAt([1, *3..5]1) == ['b','d','e','f']
//equivalent method name
assert ('a'..'g').getAt([1, 3..5]1) == ['b','d','e',"f']

We can view a sublist of a list:

def list=[1,2,3,4,5], sl= list.subList(2,4)

sl[0]l= 9 //if we change the sublist...

assert list == [1,2,9,4,5] //...backing list changes...
list[3]= 11

assert sl == [9,11] //...and vice versa

We can perform the same methods on the subscripted lists as we can on the lists they're produced from:

assert ['a','b','c','d','e'][1..3].indexOf('c') == 1
//note: index of sublist, not of list

We can update items using subscripting too:

def list = ['a','b','c','d','e','f','g"]

list[2..3] = 'z’

assert list == ['a', 'b', 'z', 'e', 'f', 'g'l //swap two entries for one
list([4..4]= ['u','v']

assert list == ['a', 'b', 'z', 'e', 'u', 'v', 'g']l //swap one entry for two
def list= ['a', 'b', 'z', 'e', 'u', 'v', 'g'l]

list[0..1]= []

assert list == ['z', 'e', 'u', 'v', 'g'l //remove entries from index range
list([1l..1]= []

assert list == ['z', 'u', 'v', 'g'l //remove entry at index

We can also use a method instead of [] with ranges:

def list = ['a','b','c','d','e','f','g"]
list.putAt(2..3, 'z')

assert list == ['a', 'b', 'z', 'e', 'f', 'g']
list.putAt(4..4, ['u','v'])

assert list == ['a', 'b', 'z', 'e', 'u', 'v', 'g'l]
list.putAt(1l..<3, [])

assert list == ['a', 'e',6 'u', 'v', 'g'l
list.putAt(0..<0, 'm') //

assert list == ['m', 'a', 'e', 'u', 'v', 'g'l]
list.removeRange (1,3) //another method to do similar, means: list[1l..<3]1= []
list[1..2].clear()

assert list == ['m', 'g']

More List Utilities

To reverse a list:

assert [1,2,3].reverse() == [3,2,1]

def list= ['a','b','c','d','e']
Collections.reverse(list)
assert list == ['e','d','c','b','a']
use (Collections){ list.reverse() }
//alternative syntax for null-returning Collections.reverse (List)
assert list == ['a',6'b','c','d','e']

def list2= []
[1,2,3,4,5] .reverseEach{ list2 << it*2 }

//same as, but more efficient than: [...].reverse().each{...}
assert list2 == [10,8,6,4,2]
assert [1,2,3,4,5,6]1[3..1] == [4,3,2]

//use backwards range to reverse returned sublist

def 1list3 = [1, 2, -3, 5, 6, -7, 9]
def rmc= Collections.reverseOrder ()
Collections.sort (list3, rmc)

assert list3 == [9, 6, 5, 2, 1, -3, -7]
def list4 = [1, 2, -3, 5, 6, -7, 9]
def mc= [

compare: {a,b-> a.equals(b)? 0: Math.abs(a)<Math.abs(b)? -1: 1}
] as Comparator
def rmc2= Collections.reverseOrder (mc)
Collections.sort (list4, rmc2)
assert list4 == [9, -7, 6, 5, -3, 2, 1]

We can perform a binary search on a sorted list:

assert Collections.binarySearch(I[2,5,6,7,9,11,13,26,31,33], 26) == 7
//1list must already be sorted
assert Collections.binarySearch(I[2,5,6,7,9,11,13,31,33], 26) == -8

//if key not there, give negative of one plus the index before which key
//would be if it was there

def mc= [
compare: {a,b-> a.equals(b)? 0: Math.abs(a)<Math.abs(b)? -1: 1 }
] as Comparator
assert Collections.binarySearch([2,-5,-6,7,9,-11,13,26,31,-33], 26, mc) == 7
//give comparator list sorted by

We can remove or retain elements in bulk. retainAll() gives the intersection of two lists; removeAll() gives the assymmetric difference.

def list= ['a','b','c','b','b', 'e','e']

assert list.removeAll(['b','z'])

//remove 'b' and 'z', return true because list changed
assert list == ['a','c', 'e',K 'e']
assert ! list.removeAll(['b','z'])

//return false because list didn't change
assert list == ['a','c', 'e',K 'e']
assert list.retainAll(['a','e'])

//retain only 'a' and 'e', return true because list changed
assert list == ['a','e', 'e']
assert ! list.retainAll(['a','e']l)

//retain only 'a' and 'e', return true because list didn't change
assert list == ['a','e', 'e']

Some miscellaneous methods:

def list= ['a', 7, 'b', 9, 7, 7, 2.4, 7]
Collections.replaceAll(list, 7, 55)

assert list == ['a', 55, 'b', 9, 55, 55, 2.4, 55]
list= ['a', 7, 'b', 9, 7, 7, 2.4, 7]
use(Collections){ list.replaceAll(7, 55) } //alternative syntax
assert list == ['a', 55, 'b', 9, 55, 55, 2.4, 55]
list= ['a',2,null,4,'zyx',2.5]
use (Collections){ list.fill('g') } //or: Collections.fill(list, 'g')
assert list == ['g', 'g', 'g', 'g', 'g', 'g'l]
list= ['a', 'e', 'i', 'o', 'u', 'z']
use(Collections){ list.swap(2, 4) } //or: Collections.swap(list, 2, 4)
assert list == ['a', 'e', 'u', 'o', 'i', 'z']
assert Collections.frequency(['a',6 'b','a','c','a','a','d','e']l, 'a') == 4
use (Collections) {
assert ['a','b','a','c','a','a','d",'e'] .frequency('a') == 4
}
list= ['a','b','c','d','e"]
Collections.rotate (list, 3)
assert list == ['c','d','e','a','b"']
use (Collections){ list.rotate(-2) }
assert list == ['e','a','b','c','d"]

list= [1,2,3,4,5]
Collections.shuffle(list, new Random())

//we can supply our own random number generator...
assert list != [1,2,3,4,5]

list= [1,2,3,4,5]
Collections.shuffle(list) //...or use the default one

assert list != [1,2,3,4,5]
assert [3,5,5,5,2] .unique() == [3,5,2]
def mc= [compare:
{a,b-> a.equals(b) || a.equals(-b)? 0: Math.abs(a)<Math.abs(b)? -1: 1 }

] as Comparator

assert [3,5,5,-5,2,-7].unique(mc) == [3,5,2,-7]
//remove subsequent items comparator considers equal
assert [3,5,5,-5,2,-7].unique{a, b->
a ==Db || a == -b? 0: Math.abs(a)<Math.abs(b)? -1: 1
} == 1[3,5,2,-7]

list= [1,2,3]

Collections.copy(list, [9,8,7])

assert list == [9,8,7] //overwrites original data

Collections.copy(list, [11,12]) //source list shorter...

assert list == [11,12,7] //...which leaves remaining entries unchanged

try{ Collections.copy(list, [21,22,23,24]); assert 0 } //source list too long
catch(e){ assert e instanceof IndexOutOfBoundsException }

list= [1,8,8,2,3,7,6,4,6,6,2,3,7,5]

assert Collections.indexOfSubList(list, [2,3,7])

assert Collections.lastIndexOfSubList(list, [2,3,7

assert Collections.indexOfSubList(list, [9,9,13]) == -1
//if sublist doesn't exist

=l
1]
]

[

o

Sets

A set is an unordered collection of objects, with no duplicates. It can be considered as a list with restrictions, and is often constructed from a list:

def s1= [1,2,3,3,3,4] as Set,
s2= [4,3,2,1] as Set,
s3= new HashSet([1,4,2,4,3,4])

assert sl.class == HashSet && s2.class == HashSet
//the specific kind of set being used

assert sl == s2

assert sl == s3

assert s2 == s3

assert sl.asList() && sl.toList()
//a choice of two methods to convert a set to a list
assert (([] as Set) << null << null << null) == [null] as Set

A set should not contain itself as an element.

Most methods available to lists, besides those that don't make sense for unordered items, are available to sets.

[{ itl1] }, { it.getAt(1) }, { it.putAt(1,4) }, { it.reverse() }].each{
try{ it([1,2,3] as Set); assert 0 }
catch(e){ assert e instanceof MissingMethodException }

}

The add() and addAll() methods return false if the set wasn't changed as a result of the operation:

def s= [1,2] as Set

assert s.add(3)

assert ! s.add(2)

assert s.addAll([5,4])
assert s.addAll([5,4])
assert s == [1,2,3,5,4] as Set

Examples with Lists and Sets

For small numbers of items, it's common in Groovy to use a list for set processing, and only convert it to a set when necessary, eg, for output.

Though the uniqueness of set items is useful for some processing, for example, if we want to separate the unique and duplicating items in a list:

list=1[1,2,7,2,2,4,7,11,5,2,5]
def uniques= [] as Set, dups= [] as Set

list.each{ uniques.add(it) || dups.add(it) }
uniques.removeAll (dups)
assert uniques == [1,4,11] as Set && dups == [2,5,7] as Set

To calculate the symmetric set difference of two sets non-destructively:

def s1=[1,2,3,4,5,6], s2=[4,5,6,7,8,9]
def diff = (sl as Set) + s2

tmp = sl as Set

tmp.retainAll (s2)

diff.removeAll (tmp)

assert diff == [1,2,3,7,8,9]

Sorted Sets

A sorted set is one with extra methods that utilize the sorting of the elements. It's often more efficient than doing the same with lists.

def list= [3,2,3,3,1,7,5]

assert new TreeSet (list) == new TreeSet([1,1,1,2,5,7,3,1])
assert new TreeSet (list) .toList() == list.unique() .sort()
assert new TreeSet (list) .first() == list.unique().min()
assert new TreeSet (list) .last() == list.unique() .max()

We can construct a TreeSet by giving a comparator to order the elements in the set:

def c= [compare:
{a,b-> a.equals(b)? 0: Math.abs(a)<Math.abs(b)? -1: 1 }
] as Comparator
def ts= new TreeSet(c)
ts<< 3 << -7 << 9 << -2 << -4
assert ts == new TreeSet([-2, 3, -4, -7, 9])
assert ts.comparator() == ¢ //retrieve the comparator

The range-views, headSet() tailSet() and subSet(), are useful views of the items in a sorted set. These range-views remain valid even if the
backing sorted set is modified directly. The sorted set returned by these methods will throw an lllegalArgumentException if the user attempts to
insert an element out of the range.

def ss= new TreeSet(['a','b',6'c','d', 'e'])

def hs= ss.headSet('c')
assert hs == new TreeSet(['a','b'])
//return all elements < specified element
hs.remove('a')
assert ss == new TreeSet(['b','c','d','e'])
//headset is simply a view of the data in ss

def ts= ss.tailSet('c')

assert ts == new TreeSet(['c','d','e'])
//return all elements >= specified element

ts.remove ('d")

assert ss == new TreeSet(['b','c','e'])
//tailset is also a view of data in ss

def bs= ss.subSet('b','e')
assert bs == new TreeSet (['b','c'])
//return all elements >= but < specified element
bs.remove ('c')
assert ss == new TreeSet (['b','e'])
//subset is simply a view of the data in ss

ss << 'a' << 'd!'

assert hs == new TreeSet(['a','b'])

//if backing sorted set changes, so do range-views
assert ts == new TreeSet (['d','e'])
assert bs == new TreeSet (['b','d'])

For a SortedSet of strings, we can append "\0' to a string to calculate the next possible string:

def dic= new TreeSet (

['aardvark', 'banana', 'egghead',6 'encephalograph', 'flotsam',6 'jamboree']
)
assert dic.subSet ('banana', 'flotsam').size() == 3

//incl 'banana' but excl 'flotsam'

assert dic.subSet ('banana', 'flotsam\0').size() == 4 //incl both
assert dic.subSet ('banana\0', 'flotsam').size() == 2 //excl both
dic.subSet('e', 'f').clear()
assert dic == new TreeSet (

[taardvark', 'banana', 'flotsam', 'jamboree']
)//clear all words beginning with 'e'

To go one element backwards from an element elt in a SortedSet:

Object predecessor = ss.headSet(elt).last()

Immutable Collections

We can convert a list or set into one that can't be modified:

def imList= ['a', 'b', 'c'].asImmutable()
try{ imList<< 'd'; assert 0 }
catch(e){ assert e instanceof UnsupportedOperationException }

imList= Collections.unmodifiableList(['a', 'b', 'c']l) //alternative way
try{ imList<< 'd'; assert 0 }
catch(e){ assert e instanceof UnsupportedOperationException }

def imSet= (['a', 'b', 'c']l as Set).asImmutable ()
try{ imSet<< 'd'; assert 0 }
catch(e){ assert e instanceof UnsupportedOperationException }

imSet= Collections.unmodifiableSet(['a', 'b', 'c'] as Set) //alternative way
try{ imSet<< 'd'; assert 0 }
catch(e){ assert e instanceof UnsupportedOperationException }

def imSortedSet= (new TreeSet(['a', 'b', 'c'])).asImmutable()
try{ imSortedSet<< 'd'; assert 0 }
catch(e){ assert e instanceof UnsupportedOperationException }

imSortedSet= Collections.unmodifiableSortedSet(new TreeSet(['a', 'b', 'c'l))
//alternative way

try{ imSortedSet<< 'd'; assert 0 }

catch(e){ assert e instanceof UnsupportedOperationException }

We can create an empty list or set that can't be modified:

def list= Collections.emptyList ()

assert list == []

try{ list<< 'a'; assert 0 }

catch(e){ assert e instanceof UnsupportedOperationException }
list= Collections.EMPTY_ LIST

assert list == []

try{ list<< 'a'; assert 0 }

catch(e){ assert e instanceof UnsupportedOperationException }

def set= Collections.emptySet ()

assert set == [] as Set

try{ set<< 'a'; assert 0 }

catch(e){ assert e instanceof UnsupportedOperationException }
set= Collections.EMPTY_SET

assert set == [] as Set

try{ set<< 'a'; assert 0 }

catch(e){ assert e instanceof UnsupportedOperationException }

We can create a single-element list that can't be modified:

def singList= Collections.singletonList('a')

assert singList == ['a']

try{ singList<< 'b'; assert 0 }

catch(e){ assert e instanceof UnsupportedOperationException }

def singSet = Collections.singleton('a')

assert singSet == ['a'] as Set

try{ singSet<< 'b'; assert 0 }

catch(e){ assert e instanceof UnsupportedOperationException }

JN1025-Arrays

An object array is a fixed-size sequence of objects:

def a= new Object[4] //we must specify the size of the fixed-size array
assert a.size() == 4

assert a.length == 4 //field alternative to size()

a.each{ assert it == null } //default value is null

assert a instanceof Object[]

assert a.class == Object[]

alol= 'a’

alll= 2 //elements can be any value

a.putAt (2, 'c') //alternative method name syntax
a[3]= false

assert a[0] == 'a' && al[l] == 2 && a.getAt(2) == 'c' && a.getAt(3) == false
//either subscript or method name
assert al[-4] == 'a' && al[-3] == 2 && al[-2] == 'c' && al[-1] == false

//subscripts can be negative

try{ al4]; assert 0 }
catch(e){ assert e instanceof ArrayIndexOutOfBoundsException }
try{ al-5]; assert 0 }
catch(e){ assert e instanceof ArrayIndexOutOfBoundsException }

assert a[l..2] == [2, 'c'] //we can use the same subscripting as for lists
assert a[2..2] == ['c']
assert a0, 2..3] == ['a', 'c', false]

assert a.toList() [ta', 2, 'c', falsel
assert a as List == ['a', 2, 'c', false]

assert a.toArrayString() == '{"a", 2, "c", false}

The subscript used in constructing object arrays is evaluated as an integer:

assert new Object[0x100000003].size() == 3
//index coerced to integer, positive or negative
try{ new Object[0x80000000]; assert 0 }
catch(e){ assert e instanceof NegativeArraySizeException }

We can specify the initial collection of contained objects when we construct the array. Those objects can be any other entity in Groovy, eg,
numbers, boolean values, characters, strings, regexes, lists, maps, closures, expandos, classes, class instances, or even other object arrays:

assert [
14.25,
17g,
[1,2,3],
'Hello, world',
[ta', false, null, 5] as Object|[],
new Object [200],
{ it*it },
ArrayList,
1 as Object[]

We can make a shallow copy using clone():

def ag= [1,2]
assert ([ag, 3] as Objectl[]).clone() [0].is(ag)
//clone() makes a shallow copy only

We have a special syntax for constructing multi-dimensional object arrays with null initial values:

assert [new Object[3], new Object[2], new Object[1l]] as Object|[]
//usual syntax

assert [new Object[3], new Object[3], new Object[3]] as Object|[]
//usual syntax when each constituent array of equal size

def m= new Object[3] [3]
//special syntax when each constituent array of equal size

(0..<m.size()).each{i->
(0..<m[i].size()).each{j->
assert m[i] [j] == null
//we can also subscript with special syntax using consecutive indexes
}
}

We must specify the size of at least the first, outermost, dimension of an object array when we first create it:

//ar= new Object[] //compile error when uncommented
ar= new Object [10] []

ar= new Object [10] [][]

ar= new Object[10] [10] []

A multidimensional array need not have arrays of the same length at each level. Thus, a triangular matrix may be created by:

def triangle= new Object[100] []
(0..<triangle.length) .each{
triangle[it] = new Object [it+1]

}

There are strict rules concerning evaluation when subscripting object arrays:

class MyException extends Exception{}
def exception(){ throw new MyException() }

def i, a, b

i= 4

a= new Object[i] [1=3] //first subscript evaluated before next one
assert a.size() == 4 && al0].size() == 3

a= [11, 12, 13, 14] as Object[]

b= [3, 2, 1, 0] as Object[]

assert al(a=b) [2]] == 12

//outside of subscript evaluated before inside, ie, al[b[2]] or all] or 12

i= 1 //if what's outside subscript throws exception, subscript isn't evaluated
try{ exception() [i=2] }catch(e){ assert i == 1 }
i= 1
a= new Object [2] [2]

//if subscript evaluation throws exception, subscripts to right not evaluated
try{ al exception()][i=2] }catch(e){ assert i == }

//index evaluated before indexing occurs (including checking whether

//what's outside subscript is null)...

a= null

try{ alexception()]; assert 0 }catch(e){ assert e instanceof MyException }
//NullPointerException never occurs here

i= 1

try{ ali=2]; assert 0 }

catch(e){ assert i == 2 && e instanceof NullPointerException }

Implementing an ArrayList with an Object Array

ArrayLists are implemented with object arrays internally. Each ArrayList instance has a capacity, the size of a fixed-size array used to store the
elements. This array is always at least as large as the list size, and its capacity grows automatically as elements are added to the list. To see the
internal capacity of lists constructed with various values:

class Extras({
static eng(List 1){ l.elementData.size() }
}
def measure= { list, times->
def sizes= []
times.times{
def size
use (Extras) { size= list.enqg() }
(size - list.size() + 1).times{ list << 'a' }
sizes << size

}

sizes

def listl= new ArrayList()
def measurel= measure (listl, 10)
assert measurel == [10, 16, 25, 38, 58, 88, 133, 200, 301, 452]

def list2= new ArrayList(10)
def measure2= measure (list2, 10)
assert measure2 == measurel

def list3= new ArrayList(5)
def measure3= measure (list3, 10)
assert measure3 == [5, 8, 13, 20, 31, 47, 71, 107, 161, 242]

def list4= []
def measure4= measure (list4, 10)
assert measure4 == [0, 1, 2, 4, 7, 11, 17, 26, 40, 61]

def list5= new ArrayList (0)
def measure5= measure (list5, 10)
assert measure5 == measure4

For efficiency, we can increase the capacity of a list before adding a large number of elements:

class Extras{ static eng(List 1) {l.elementData.size()} }
use (Extras) {

list= []
list.ensureCapacity (200)
assert list.eng() == 200
list<< 'a'<< 'b'<< 'c'
assert list.eng() == 200

list.trimToSize ()
//we can also trim the internal fixed-size array to the list size
assert list.eng() == 3

}

We can see how many times a list has been modified:

list= [l<< 'a' << 'b'; assert list.modCount == 2
list.remove('a'); assert list.modCount == 3

JN1035-Maps

A map is a mapping from unique unordered keys to values:

def map= ['id':'FX-11', 'name':'Radish', 'no':1234, 99:'Y']
//keys can be of any type, and mixed together; so can values
assert map == ['name':'Radish', 'id':'FX-11', 99:'Y', 'no':1234]
//order of keys irrelevant
assert map.size() == 4
assert [1l:'a', 2:'b', 1:'c'] == [1l:'c', 2:'b'] //keys unique
def map2= [
vid': 'FX-17',

name: 'Turnip', //string-keys that are valid identifiers need not be quoted
99: 123, //any data can be a key
(-97): 987, //keys with complex syntax must be parenthesized
"tail's": true, //trailing comma OK

1

assert map2.id == 'FX-17'

//we can use field syntax for keys that are valid identifiers
assert map2['id'] == 'FX-17' //we can always use subscript syntax
assert map2.getAt('id') == 'FX-17' //some alternative method names
assert map2.get('id') == 'FX-17'
assert map2['address'] == null //if key doesn't exist in map
assert map2.get('address', 'No fixed abode') == 'No fixed abode'

//default value for non-existent keys

assert map2.class == null

//field syntax always refers to value of key, even if it doesn't exist
//use getClass() instead of class for maps...
assert map2.getClass() == LinkedHashMap //the kind of Map being used

assert map2."tail's" == true
//string-keys that aren't valid identifiers used as field by quoting them
assert ! map2.'99' && ! map2.'-97' //doesn't work for numbers, though

map2.name = 'Potato'
map2[-107] = 'washed, but not peeled'
map2.putAt ('alias', 'Spud')
//different alternative method names when assigning value
map2.put ('address', 'underground')
assert map2.name == 'Potato' && map2[-107] == 'washed, but not peeled' &&
map2.alias == 'Spud' && map2.address == 'underground'
assert map2 == [id: 'FX-17', name: 'Potato', alias: 'Spud',
address: 'underground', 99: 123, (-97): 987,
(-107) : 'washed, but not peeled', "tail's": true]

def id= 'address'
def map3= [id: 11, (id): 22]

//if we want a variable's value to become the key, we parenthesize it
assert map3 == [id: 11, address: 22]

It's a common idiom to construct an empty map and assign values:

def map4= [:]
map4[1]= 'a!'
map4[2 1= 'b!'

map4 [true 1= 'p' //we can use boolean values as a key

map4 [false 1= 'q!'

map4 [null 1= 'x' //we can also use null as a key

map4 ['null']= 'z'

assert map4 == [l:'a', 2:'b', (true):'p', (false):'q', (null):'x', 'null':'z'

To use the value of a String as the key value of a map, simply surround the variable with parenthesis.

def foo = "test"
def map = [(foo):"bar"]

println map // will output ["test":"bar"]
map = [foo:"bar"]
println map // will output ["foo":"bar"]

We can use each() and eachWithIndex() to access keys and values:

def p= new StringBuffer ()

[1:'a', 2:'b', 3:'c'].each{ p << it.key +': '+ it.value +'; ' }
//we supply a closure with either 1 param...
assert p.toString() == 'l: a; 2: b; 3: ¢; '

def g= new StringBuffer ()
[1:'a', 2:'b', 3:'c']l.each{ k, v-> g << k +': '+ v +'; ' } //...or 2 params
assert g.toString() == 'l: a; 2: b; 3: ¢; '

def r= new StringBuffer ()
[1:'a', 2:'b', 3:'c'] .eachWithIndex{ it, i-> //eachIndex() always takes 2 params

r << it.key +'('+ i +'): '+ it.value +'; '
}
assert r.toString() == '1(0): a; 2(1): b; 3(2): c; '

We can check the contents of a map with various methods:

assert [:].isEmpty ()

assert ! [1:'a', 2:'b'].isEmpty()

assert [l:'a', 2:'b'] .containsKey (2)
assert ! [1l:'a', 2:'b'].containsKey (4)
assert [l:'a', 2:'b'].containsValue('b")
assert ! [1l:'a', 2:'b'].containsValue('z")

We can clear a map:

def m= [1l:'a', 2:'b']
m.clear ()
assert m == [:]

Further map methods:

def defaults= [1:'a', 2:'b', 3:'c', 4:'d'], overrides= [2:'z', 5:'x', 13:'x']
def result= new HashMap (defaults)

result.putAll (overrides)

assert result == [1:'a', 2:'z', 3:'c', 4:'d', 5:'x', 13:'x"']
result.remove (2)

assert result ==
result.remove (2)
assert result == [1l:'a', 3:'c', 4:'d', 5:'x', 13:'x']

[1:'a', 3:'c', 4:'d'", 5:'x', 13:'x"']

Great care must be exercised if mutable objects are used as map keys. The behavior of a map is not specified if the value of an object is changed
in a manner that affects equals comparisons while the object is a key in the map. A special case of this prohibition is that a map should not
contain itself as a key.

Collection views of a map

We can inspect the keys, values, and entries in a view:

def m2= [1:'a', 2:'b', 3:'c']

def es=m2.entrySet ()
es.each{
assert it.key in [1,2,3]
assert it.value in ['a', 'b','c']
it.value *= 3 //change value in entry set...

}

assert m2 == [1l:'aaa', 2:'bbb', 3:'ccc'] //...and backing map IS updated

def ks= m2.keySet ()

assert ks == [1,2,3] as Set

ks.each{ it *= 2 } //change key...

assert m2 == [1l:'aaa', 2:'bbb', 3:'ccc'] //...but backing map NOT updated
ks.remove(2) //remove key...

assert m2 == [l:'aaa', 3:'ccc'] //...and backing map IS updated

def vals= m2.values|()

assert vals.toList() == ['aaa', 'ccc'l]

vals.each{ it = it+'z' } //change value...

assert m2 == [l:'aaa', 3:'ccc'] //...but backing map NOT updated
vals.remove('aaa') //remove value...

assert m2 == [3:'ccc'] //...and backing map IS updated

vals.clear() //clear values...
assert m2 == [:] //...and backing map IS updated

assert es.is(m2.entrySet()) //same instance always returned
assert ks.is(m2.keySet())
assert vals.is(m2.values())

We can use these views for various checks:

def ml= [1l:'a', 3:'c', 5:'e']l, m2= [l:'a',6 5:'e']
assert ml.entrySet () .containsAll (m2.entrySet())
//true if ml contains all of m2's mappings
def m3= [1l:'g', 5:'z', 3:'x"']
ml.keySet () .equals (m3.keySet()) //true if maps contain mappings for same keys

These views also support the removeAll() and retainAll() operations:

def m= [1:'a', 2:'b', 3:'c', 4:'d', 5:'e']
m.keySet () .retainAll([2,3,4] as Set)

assert m == [2:'b', 3:'c', 4:'d']
m.values () .removeAll(['c','d','e'] as Set)
assert m == [2:'b']

Some more map operations:

def m= [1:'a', 2:'b', 3:'c', 4:'d', 5:'e']
assert [86: m, 99: 'end'].clone() [86].is(m) //clone() makes a shallow copy
def c= []
def d= ['a', 'bb', 'ccc', 'dddd', ‘'eeeee']
assert m.collect{ it.value * it.key } == d
assert m.collect(c){ it.value * it.key } == d
assert ¢ == d
assert m.findAll{ it.key == 2 || it.value == 'e' } == [2:'b', 5:'e']
def me= m.find{ it.key % 2 == 0 }
assert [me.key, me.value] in [[2,'b'], [4,'d']]
assert m.toMapString() == '[1l:"a", 2:"b", 3:"c", 4:"d", 5:"e"]"'
def sm= m.subMap([2,3,4])
sm[3]= 'z’
assert sm == [2:'b', 3:'z', 4:'d']
assert m == [1:'a', 2:'b', 3:'c', 4:'d', 5:'e'] //backing map is not modified
assert m.every{ it.value.size() == 1 }
assert m.any{ it.key % 4 == 0 }
Getting Map key(s) from a value.
def family = [dad:"John" , mom:"Jane", son:"John"]
def val = "John"
The simplest way to achieve this with the previous map:
assert family.find{it.value == "John"}?.key == "dad"
//or
assert family.find{it.value == val}?.key == "dad"

Note that the return is only the key dad. As you can see from the family Map both dad and son are keys for the same values.

So, let's get all of the keys with the value "John"
Basically, findAll returns a collection of Mappings with the value "John" that we then iterate through and print the key if the key is groovy true.

This will place your results for the keys into a List of keys

def retval [l
family.findAll{it.value == val}.each{retval << it?.key}

assert retVal ["son", "dad"]

If you just wanted the collection of Mappings:

assert family.findAll{it.value == val} == ["son":"John", "dad":"John"]

//or
def returnvalue
assert returnvValue

family.findAll{it.value == val}
["son":"John", "dad":"John"]

Special Notations

We can use special notations to access all of a certain key in a list of similarly-keyed maps:

def x = [['a':11, 'b':12], ['a':21, 'b':22]]

assert x.a == [11, 21] //GPath notation

assert x*.a == [11, 21] //spread dot notation

x = [['a':11, 'b':12], ['a':21, 'b':22], null]

assert x*.a == [11, 21, null] //caters for null values
assert x*.a == x.collect{ it?.a } //equivalent notation

try{ x.a; assert 0 }catch(e){ assert e instanceof NullPointerException }
//GPath doesn't cater for null values

class MyClass{ def getA(){ 'abc' } }

x = [['a':21, 'b':22], null, new MyClass()]

assert x*.a == [21, null, 'abc']l //properties treated like map subscripting

def cl= new MyClass(), c2= new MyClass ()

assert [cl, c2]*.getA() == [cl.getA(), c2.getA()]
//spread dot also works for method calls

assert [cl, c2]*.getA() == ['abc', 'abc'l]

assert ['z':900, *:['a':100, 'b':200], 'a':300] == ['a':300, 'b':200, 'z':900]
//spread map notation in map definition

assert [*:([3:3, *:[5:5]], 7:7] == [3:3, 5:5, 7:7]

def £O0{ [1:'u', 2:'v', 3:'w' 1 }

assert [*:f(), 10:'zz'] == [l:'u', 10:'zz', 2:'v', 3:'w']
//spread map notation in function arguments

def f£f(m){ m.c }

assert f£(*:['a':10, 'b':20, 'c':30], 'e':50) == 30

def £(m, i, 3, kK { [m, i, 3, k1 }

//using spread map notation with mixed unnamed and named arguments
assert f('e':100, *[4, 5], *:['a':10, 'b':20, 'c':30], 6) ==

[["e":100, "b":20, "c":30, "a":10], 4, 5, 6]

Grouping

We can group a list into a map using some criteria:

assert ['a', 7, 'b', [2,3]].groupBy{ it.class } == [
(String.class): ['a', 'b'],
(Integer.class): [7 1,
(ArrayList.class): [[2,3]]

]

assert [
[name: 'Clark', city:'London'], [name:'Sharma', city:'London'],
[name: 'Maradona', city:'LA'], [name:'Zhang', city:'HK'],

[name: 'Ali', city: 'HK'], [name:'Liu', city:'HK'],
].groupBy{ it.city } == [

London: [[name:'Clark', city:'London'l],
[name: 'Sharma', city:'London'] 1,

LA: [[name:'Maradona', city:'LA'] 1,

HK: [[name:'Zhang', city:'HK'],

[name:'Ali', city: 'HK'],
[name:'Liu', city:'HK'] 1],

By using groupBY() and findAll() on a list of similarly-keyed maps, we can emulate SQL:

assert ('The quick brown fox jumps over the lazy dog'.toList()*.
toLowerCase() - ' ').
findAll{ it in 'aeiou'.toList() }.
//emulate SQL's WHERE clause with f£indAll() method
groupBy{ it }.
//emulate GROUP BY clause with groupBy() method
findAll{ it.value.size() > 1 }.
//emulate HAVING clause with findAll() method after the groupBy() one
entrySet () .sort{ it.key }.reverse().
//emulate ORDER BY clause with sort() and reverse() methods
collect{ "sit.key:${it.value.size()}" }.join(', ') == 'u:2, o0:4, e:3"'

An example with more than one "table" of data:

//find all letters in the "lazy dog" sentence appearing more often than those
//in the "liquor jugs" one...

def dogLetters= ('The quick brown fox jumps over the lazy dog'.toList()*.
toLowerCase() - ' '),
jugLetters= ('Pack my box with five dozen liquor jugs'.toList()*.
toLowerCase() - ' ')

assert doglLetters.groupBy{ it }.
findall{ it.value.size() > jugletters.groupBy{ it }[it.key].size(
entrySet () .sort{it.key}.collect{ "$it.key:${it.value.size()}" }.join(', ') ==
'e:3, h:2, 0:4, r:2, t:2"'

—

HashMap Internals

A HashMap is constructed in various ways:

def mapl= new HashMap () //uses initial capacity of 16 and load factor of 0.75
def map2= new HashMap (25) //uses load factor of 0.75

def map3= new HashMap (25, 0.8f

def map4= [:] //the shortcut syntax

The capacity is the number of buckets in the HashMap, and the initial capacity is the capacity when it's created. The load factor measures how full
the HashMap will get before its capacity is automatically increased. When the number of entries exceeds the product of the load factor and the
current capacity, the HashMap is rehashed so it has about twice the number of buckets. A HashMap gives constant-time performance for lookup
(getting and putting). Iterating over collection views gives time performance proportional to the capacity of the HashMap instance plus its the
number of keys. So don't set the initial capacity too high or the load factor too low. As a general rule, the default load factor (0.75) offers a good
tradeoff between time and space costs. Higher values decrease the space overhead but increase the lookup cost. Creating a HashMap with a
sufficiently large capacity will allow mappings to be stored more efficiently than letting it perform automatic rehashing as needed to grow the table.

A HashSet is implemented with a HashMap, and is constructed with the same choices of parameters:

def setl= new HashSet () //uses initial capacity of 16 and load factor of 0.75
def set2= new HashSet (25) //uses load factor of 0.75
def set3= new HashSet (25, 0.8f)
def set4= Collections.newSetFromMap([:])
//we can supply our own empty map for the implementation

Sorted Maps

A sorted map is one with extra methods that utilize the sorting of the keys. Some constructors and methods:

def map= [3:'c', 2:'d' ,1:'e', 5:'a', 4:'b'], tm= new TreeMap (map)

assert tm.firstKey () == map.keySet().min() && tm.firstKey() == 1
assert tm.lastKey() == map.keySet () .max() && tm.lastKey() == 5
assert tm.findIndexOf{ it.key==4 } == 3

We can construct a TreeMap by giving a comparator to order the elements in the map:

def c= [compare:
{a,b-> a.equals(b)? 0: Math.abs(a)<Math.abs(b)? -1: 1 }
] as Comparator

def tm= new TreeMap(c)

tm[3]= 'a'; tm[-7]= 'b'; tm[9]= 'c'; tm[-2]= 'd'; tm[-4]= 'e'

assert tm == new TreeMap([(-2):'d', 3:'a', (-4):'e', (-7):'D', 9:'c']
assert tm.comparator() == ¢ //retrieve the comparator

def tm2= new TreeMap(tm) //use same map entries and comparator
assert tm2.comparator() == c

def tm3= new TreeMap(tm as HashMap)
//special syntax to use same map entries but default comparator only
assert tm3.comparator () == null

The range-views, headMap() tailMap() and subMap(), are useful views of the items in a sorted map. They act similarly to the corresponding
range-views in a sorted set.

def sm= new TreeMap(['a':1l, 'b':2, 'c':3, 'd':4, 'e':5])
def hm= sm.headMap('c')
assert hm == new TreeMap(['a':1l, 'b':2])
//headMap () returns all elements with key < specified key
hm.remove('a')
assert sm == new TreeMap(['b':2, 'c':3, 'd':4, 'e':5])
//headmap is simply a view of the data in sm
sm['a'l= 1; sm['f']= 6
assert sm == new TreeMap(['a':1l, 'b':2, 'c':3, 'd':4, 'e':5, 'f':6])
//if backing sorted map changes, so do range-views
def tm= sm.tailMap('c')
assert tm == new TreeMap(['c':3, 'd':4, 'e':5, 'f':6])
//tailMap() returns all elements with key >= specified element
def bm= sm.subMap('b','e')
assert bm == new TreeMap(['b':2, 'c':3, 'd':4])
//subMap () returns all elements with key >= but < specified element
try{ bm['z']= 26; assert 0 }
catch(e){ assert e instanceof IllegalArgumentException }
//attempt to insert an element out of range

Immutable Maps

We can convert a map into one that can't be modified:

def imMap= (['a':1, 'b':2, 'c':3] as Map) .asImmutable ()

try{ imMap['d']l= 4; assert 0 }

catch(e){ assert e instanceof UnsupportedOperationException }

imMap= Collections.unmodifiableMap(['a':1, 'b':2, 'c':3] as Map)
//alternative way

try{ imMap['d']l= 4; assert 0 }

catch(e){ assert e instanceof UnsupportedOperationException }

def imSortedMap= (new TreeMap(['a':1l, 'b':2, 'c':3])).asImmutable()
try{ imSortedMap(['d'l= 4; assert 0 }
catch(e){ assert e instanceof UnsupportedOperationException }
imSortedMap= Collections.unmodifiableSortedMap (
new TreeMap(['a':1, 'b':2, 'c':3])
) //alternative way
try{ imSortedMap(['d'l= 4; assert 0 }
catch(e){ assert e instanceof UnsupportedOperationException }

We can create an empty map that can't be modified:

def map= Collections.emptyMap ()

assert map == [:]

try{ map['a'l= 1; assert 0 }

catch(e){ assert e instanceof UnsupportedOperationException }
map= Collections.EMPTY_MAP

assert map == [:]

try{ map['a'l= 1; assert 0 }

catch(e){ assert e instanceof UnsupportedOperationException }

We can create a single-element list that can't be modified:

def singMap = Collections.singletonMap('a', 1)

assert singMap == ['a': 1]

try{ singMap['b'l= 2; assert 0 }

catch(e){ assert e instanceof UnsupportedOperationException }

Observable Maps

We can convert a map into an observable one with the 'as' keyword too. An observable map will trigger a PropertyChangeEvent every time a
value changes:

// don't forget the imports
import java.beans.*
def map = [:] as ObservableMap
map.addPropertyChangeListener ({ evt ->
println "${evt.propertyName}: ${evt.oldValue} -> ${evt.newValue}"
} as PropertyChangeListener)

map.key = 'value' // prints key: null -> value
map.key = 'Groovy' // prints key: value -> Groovy

We can also wrap an existing map with an ObservableMap

import java.beans.*
def sorted = [a:1,b:2] as TreeMap
def map = new ObservableMap (sorted)
map.addPropertyChangeListener ({ evt ->

println "${evt.propertyName}: ${evt.oldValue} -> ${evt.newValue}"
} as PropertyChangeListener)
map.key = 'value'
assert ['a','b', 'key
assert ['a','b', 'key

== (sorted.keySet () as List)

']
'] == (map.keySet () as List)

Lastly we can specify a closure as an additional parameter, it will work like a filter for properties that should or should not trigger a
PropertyChangeEvent when their values change, this is useful in conjunction with Expando. The filtering closure may take 2 parameters (the
property name and its value) or less (the value of the property).

import java.beans.*
def map = new ObservableMap ({! (it instanceof Closure)})
map.addPropertyChangeListener ({ evt ->
println "${evt.propertyName}: ${evt.oldvValue} -> ${evt.newValue}"
} as PropertyChangeListener)
def bean = new Expando(map)
bean.lang = 'Groovy' // prints lang: null -> Groovy
bean.sayHello = { name -> "Hello ${name}" } // prints nothing, event is skipped
assert 'Groovy' == bean.lang
assert 'Hello Groovy' == bean.sayHello(bean.lang)

JN1515-Characters

A Character is a single token from the Unicode basic multilingual plane. It can also convert to the lowermost 16 bits of an integer.

assert Character.SIZE == 16 && Character.SIZE == Short.SIZE //16 bits in size
assert Character.MIN_VALUE as int == 0x0000

assert Character.MAX VALUE as int == OXFFFF

assert Character.TYPE == char //often, we can write 'char' instead

Each Unicode character belongs to a certain category, which we can inspect using getType():

def categories= [
'LOWERCASE_LETTER',

//unicode category "L1": a lowercase letter that has an uppercase variant
'UPPERCASE LETTER',

//Lu: an uppercase letter that has a lowercase variant
'TITLECASE LETTER',

//Lt: a letter beginning a word with only the first letter capitalized
'MODIFIER LETTER',

//Lm: a special character that is used like a letter
'OTHER_LETTER',

//Lo: a letter or ideograph not having lowercase and uppercase variants

'NON_SPACING MARK',
//Mn: a combining character that doesnt take up space (eg accents, umlauts)
'COMBINING_ SPACING_MARK',
//Mc: a combining character that takes up space (eg vowel signs in the East)
'ENCLOSING MARK',
//Me: an enclosing character (eg circle, square, keycap)

'SPACE_SEPARATOR',
//Zs: an invisible whitespace character that takes up space
'LINE_SEPARATOR',
//Z1: line separator character 0x2028
' PARAGRAPH_SEPARATOR',
//Zp: paragraph separator character 0x2029

'MATH_SYMBOL', //Sm: any mathematical symbol
'CURRENCY_SYMBOL', //Sc: any currency sign
'MODIFIER SYMBOL',
//Sk: a combining character that's also a full character on its own
'OTHER_SYMBOL',
//So: various other symbols (eg dingbats, box-drawing)

'DECIMAL_DIGIT_NUMBER',
//Nd: a digit zero through nine in any script except ideographic scripts
'LETTER_NUMBER',
//N1: a number that looks like a letter (eg Roman numerals)
'OTHER_NUMBER',
//No: a superscript or subscript digit, or number that's not a digit 0..9

// (excluding from ideographic scripts)
'DASH_PUNCTUATION', //Pd: any kind of hyphen or dash

'START PUNCTUATION', //Ps: any kind of opening bracket

'END_PUNCTUATION', //Pe: any kind of closing bracket

'INITIAL_QUOTE PUNCTUATION', //Pi: any kind of opening quote

'FINAL QUOTE_PUNCTUATION', //Pf: any kind of closing quote

' CONNECTOR_PUNCTUATION',

//Pc: a punctuation character that connects words (eg underscore)
'OTHER_PUNCTUATION',

//Po: any other kind of punctuation character

'FORMAT', //Cf: invisible formatting indicator
'"CONTROL ',

//Cc: 65 ISO control characters (0x00..0x1F and Ox7F..0x9F)
'"PRIVATE_USE', //Co: any code point reserved for private non-unicode use
'SURROGATE', //Cs: one half of a surrogate pair
'UNASSIGNED', //Cn: any code point to which no character has been assigned
]

def stats= (0x0000..0xFFFF) .groupBy{ Character.getType (it) }
stats.entrySet () .sort{ it.value.size }.reverse().each{ cat->
def keyName= Character.fields.
find{ it.get() == cat.key && it.name in categories }.name
println "$keyName: S$cat.value.size"

}

The surrogate category is divided into the high surrogates and the low surrogates. A Unicode supplementary character is represented by two

Characters, the first from the high surrogates, the second from the low. Integers, known as code points, can also represent all Unicode
characters, including supplementary ones. The code point is the same as a Character converted to an integer for basic plane characters, and its
values continue from 0x10000 for supplementary characters. The upper 11 bits of the code point Integer must be zeros. Methods accepting only
char values treat surrogate characters as undefined characters.

assert Character.MIN_HIGH_SURROGATE == 0xD800 &&
Character .MIN_SURROGATE == 0xD800

assert Character.MAX HIGH SURROGATE == OxDBFF

assert Character.MIN_LOW_SURROGATE == 0xDCOO0

assert Character.MAX LOW_SURROGATE == OxDFFF &&
Character.MAX SURROGATE == OxDFFF

assert Character.isSurrogatePair(Character.MIN_HIGH_SURROGATE,
Character.MIN LOW_SURROGATE)

assert Character.isHighSurrogate(Character.MIN_HIGH_SURROGATE)

assert Character.isLowSurrogate (Character.MIN_LOW_SURROGATE)

assert Character.MIN_CODE_POINT == 0x0000
assert Character.MIN_SUPPLEMENTARY CODE POINT == 0x10000 //an integer
assert Character.MAX CODE_POINT == OxXx10FFFF

assert Character.isValidCodePoint (Character.MIN CODE POINT)

assert ! Character.isValidCodePoint (Character.MAX_ CODE_POINT + 1)

assert Character.isSupplementaryCodePoint (
Character.MIN_SUPPLEMENTARY_CODE_POINT)

assert ! Character.isSupplementaryCodePoint (
Character.MIN_SUPPLEMENTARY_CODE_POINT - 1)

assert Character.charCount (0XFFFF) == 1
//number of Characters needed to represent a certain integer as Unicode
assert Character.charCount (0x10FFFF) == 2

assert Character.isDefined (0xFFFD)
assert ! Character.isDefined(0XFFFF) //doesn't include unassigned characters
assert Character.isDefined(0x10000)

To convert a Unicode character between a code point and a Character array:

def minLowSurr= Character.MIN_LOW_SURROGATE,
maxLowSurr= Character.MAX LOW_SURROGATE,
minHighSurr= Character.MIN_HIGH SURROGATE,
maxHighSurr= Character.MAX HIGH SURROGATE

assert Character.toChars (OXFFFF).collect{ it as int }.toList() == [0XFFFF]
//convert integer into array of Characters

assert Character.toChars(0x10000).collect{ it as int }.toList() ==
[minHighSurr as int, minLowSurr as int]

assert Character.toChars (0x10FFFF) .collect{ it as int }.toList() ==
[maxHighSurr as int, maxLowSurr as int]

def charArray= new char[6] //an array that can only contain Characters
assert Character.toChars (0x10000, charArray, 2) == 2 &&
charArray.collect{ it as int }.toList() ==
[0, 0, minHighSurr as int, minLowSurr as int, 0, 0]
charArray= new char [4]
assert Character.toChars (0OXFFFF, charArray, 1) == 1 &&
charArray.collect{ it as int }.toList() == [0, OxFFFF, 0, 0]

assert Character.toCodePoint (minHighSurr, minLowSurr) == 0x10000
//converts surrogate pair to integer representation

We can enquire of code points in a char array or string:

def minLowSurr= Character.MIN_LOW_SURROGATE,
minHighSurr= Character.MIN_HIGH_ SURROGATE

def cal= ['a', 'b', 'c', minHighSurr, minLowSurr, 'e', 'f', 'g'] as char[]
def ca2= ['a', 'b', 'c', OxXFFFF, 'e', 'f', 'g']l as charl[]
assert Character.codePointAt (cal, 3) == 0x10000
//beginning at index 3, look at as many chars as needed
assert Character.codePointAt (ca2, 3) == OXFFFF
assert Character.codePointAt (cal, 3, 4) == minHighSurr
//extra parameter limits sequence of chars to index <4
assert Character.codePointAt (ca2, 3, 4) == OxXFFFF
assert Character.codePointBefore(cal, 4) == minHighSurr
assert Character.codePointBefore(cal, 5) == 0x10000
//if low surrogate, look back more for high one, and use both
assert Character.codePointBefore(cal, 5, 4) == minLowSurr
//extra param limits lookback to index >=4
assert Character.codePointCount (cal, 1, 5) == 4
//number of code points in a subarray given by offset 1 and count 5
assert Character.codePointCount (cal, 1, 4) == 3
//lone high surr counted as 1 code point
assert Character.offsetByCodePoints(cal, 0, 6, 1, 3) == 5

//index of call0..<6] that's offset by 3 code points

//versions of these methods exist for strings...
def sl= 'abc'+ minHighSurr + minLowSurr +'efg'
def s2= 'abcdefg'

assert Character.codePointAt (sl, 3) == 0x10000
//if high surrogate, add on low surrogate
assert Character.codePointAt (sl, 4) == minLowSurr
//if low surrogate, use it only
assert Character.codePointAt (sl, 5) == 'e' as int
assert Character.codePointAt (s2, 3) == 'd' as int
//enquire code point in string
assert Character.codePointBefore(sl, 4) == minHighSurr
assert Character.codePointBefore(sl, 5) == 0x10000

//if low surrogate, look back more for high one, and use both
assert Character.codePointCount (sl, 1, 5) ==

//number of code points in a substring with indexes >=1 and <5
assert Character.offsetByCodePoints(sl, 1, 3) == 5

//index from 1 that's offset by 3 code points

Every character also has a directionality:

def directionalities= [:]
Character.fields.each{
if (it.name =~ /"DIRECTIONALITY /) directionalities[it.get()]= it.name

}

def stats= (0x0000..0xFFFF) .groupBy{ Character.getDirectionality (it) }
//will also work for supplementary chars
stats.entrySet () .sort{ it.value.size }.reverse().each{ dir->
def keyName= Character.fields.
find{ it.get() == dir.key && it.name in directionalities.values() }.name
println "SkeyName: $dir.value.size"

}

Every character is part of a Unicode block:

(0x0000. .0XFFFF) .groupBy{ Character.UnicodeBlock.of(it as char) }.
entrySet () .sort{it.value.size}.reverse() .
each{ println "$it.key: $it.value.size" } //this uses basic plane only

//this one uses supplementary characters also...

(0x0000. .0x10FFFF) .groupBy{ Character.UnicodeBlock.of(it as int) }.
entrySet () .sort{it.value.size}.reverse() .
each{ println "sit.key: $it.value.size" }

try{ Character.UnicodeBlock.of(0x110000); assert 0 }
catch(e){ assert e instanceof IllegalArgumentException }

Character assists integers using different radixes:

assert Character.MIN_RADIX == 2
//the minimum and maximum radixes available for conversion to/from strings
assert Character.MAX RADIX == 36 //0 to 9, and A to Z
assert Character.forDigit (12, 16) == 'c'
//character representation for a digit in a certain radix
assert Character.digit('c' as char, 16) == 12

//digit of a character rep'n in a certain radix

We can find the Unicode block for a loosely-formatted textual description of it:

['"BASIC LATIN', 'basic latin', 'BasicLatin', 'baSiclaTin', 'BaSiC LaTiN',
'BASIC_LATIN', 'BaSiC LaTiN'].
each{ assert Character.UnicodeBlock.forName (it).toString() == 'BASIC LATIN' }

Constructing and Using Characters

We can't represent Characters directly in our programs, but must construct them from a string:

assert 'a'.class == String
def cl= 'a' as char, c2= (char)'b' //constructing
def c3= new Character(c2), c4= c2.charValue() //cloning

[cl, c2, c3, c4l.each{ assert it.class == Character }
assert c2 == c3 && cl != c2
assert cl < c2 && cl.compareTo(c2) == -1

//comparing works just the same as for numbers
assert c2.toString().class == String

There's a number of Character utility methods, accepting either a code point or a basic-plane character, that test some attribute of the character:

def categories= [
'digit': { Character.isDigit (it) },
"letter': { Character.isLetter(it) },
'letter or digit': { Character.isLetterOrDigit(it) },
'identifier ignorable': { Character.isIdentifierIgnorable(it) },
//an ignorable character in a Java or Unicode identifier
'ISO control': { Character.isISOControl(it) }, //an ISO control character
'Java identifier part': { Character.isJavaldentifierPart (it) },
//be part of a Java identifier as other than the first character
'Java identifier start': { Character.isJavaldentifierStart(it) },
//permissible as the first character in a Java identifier
'Unicode identifier part': { Character.isUnicodeIdentifierPart (it) },
//be part of a Unicode identifier other than first character
'Unicode identifier start': { Character.isUnicodeIdentifierStart(it) },
//permissible as first character in a Unicode identifier
'lower case': { Character.isLowerCase (it) },
'upper case': { Character.isUpperCase (it) }
'title case': { Character.isTitleCase (it) },
'space char': { Character.isSpaceChar(it) }, //a Unicode space character
'whitespace': { Character.isWhitespace(it) }, //white space according to Java
'mirrored': { Character.isMirrored(it) },
//mirrored according to the Unicode spec

.

]
def stats= [:]
categories.keySet () .each{ stats[itl= 0 }
(0x0000. .0XFFFF) .each{ch-> //also works with supplementaries (0x0000..0x10FFFF)
categories.each{cat->
if(cat.value(ch)) stats[cat.key 1 += 1

}
}

stats.entrySet () .sort{ it.value }.reverse().each{ println "$it.key: $it.value" }

We can use characters instead of numbers in arithmetic operations:

assert 'a' as char == 97 && 'd' as char == 100
assert ('a' as char) + 7 == 104 && 7 + ('a' as char) == 104
//either first or second arg

assert ('a' as char) + ('d' as char) == 197 //two chars
assert ('a' as char).plus(7) == ('a' as char) + 7 //alternative method name
assert ('a' as char) - 27 == 70 && ('a' as char).minus(27) == 70
assert ('a' as char) * ('d' as char) == 9700 &&

('a' as char) .multiply('d' as char) == 9700
assert 450 / ('d' as char) == 4.5 && 450.div('d' as char) == 4.5
assert 420.intdiv('d' as char) == 4
assert ('a' as char) > 90 && ('a' as char).compareTo(90) == 1
assert 90 < ('a' as char) && 90.compareTo('a' as char) == -1
assert ('a' as char) == ('a' as char) &&

('a' as char) .compareTo('a' as char) == 0

We can auto-increment and -decrement characters:

def c= 'p' as char

assert as char && c == 'q' as char &&
as char && ¢ == 'p' as char &&
as char && ¢ == 'gq' as char &&
as char && ¢ == 'p' as char
assert c.next() == 'q' && c.previous() == '0' && ¢ == 'p'

Some miscellaneous methods:

assert Character.getNumericValue('6' as char) == 6

assert Character.reverseBytes(0x37ae as char) == 0xae37 as char
assert Character.toUpperCase('a' as char) == 'A' as char
assert Character.toLowerCase('D' as char) == 'd' as char
assert Character.toTitleCase('a' as char) == 'A' as char

JN1525-Strings

We can use either single- or double-quotes around strings:

assert 'hello, world' == "hello, world"

assert "Hello, Groovy's world" == 'Hello, Groovy\'s world'
//backslash escapes the quote

assert 'Say "Hello" to the world' == "Say \"Hello\" to the world"

Backslashes can escape other characters in Strings. We can use letter codes (eg '\b") or octal codes (eg \010'):

assert '\010' //backspace

assert '\011"' //horizontal tab

assert '\012' //linefeed

assert '\014' //form feed

assert '\015' //carriage return

assert '"\\' //use backslash to escape the backslash

To span multiple lines, use either triple quotes or a backslash at the end of the continuing lines to join them with the next:

assert '''hello,
world''' == 'hello, \nworld'
//triple-quotes for multi-line strings, adds '\n' regardless of host system
assert 'hello, \
world' == 'hello, world' //backslash joins lines within string

We can also use three double-quotes.

def text = ""m\
Good morning.
Good night again."""

When using double-quotes, either one or three, we can embed code within them using $. Here, they're called GStrings:

def name = 'Groovy'
assert "hello $name, how are you today?" == "hello Groovy, how are you today?"

Anything more complex than a variable name must be surrounded by curlies:

def a = 'How are you?'
assert "The phrase 'Sa' has length ${a.size()}" ==
"The phrase 'How are you?' has length 12"

We can change the variable's value in the GString:

def i= 1, list= []
3.times{ list<< "${i++}" }
assert list.join() == '123"'

String methods

We can convert other objects in Groovy to their string representation in different ways:

def o= new Object ()

assert String.valueOf(o) == o.toString() //this works for any object in Groovy

assert String.valueOf (true) == true.toString() //boolean value

assert String.valueOf ('d' as char) == ('d' as char).toString() //character

assert String.valueOf(7.5d) == 7.5d.toString() //double

assert String.valueOf(8.4f) == 8.4f.toString() //float

assert String.valueOf (13i) == 13i.toString() //integer

assert String.valueOf (14L) == 14L.toString() //long

assert String.valueOf(['a', 'b', 'c¢']l) == ['a', 'b', 'c'].toString()
//list, etc, etc, etc

To find the size and substrings:

def s= 'abcdefg'

assert s.length() == 7 && s.size() == 7

assert s.substring(2,5) == 'cde' && s.substring(2) == 'cdefg'

assert s.subSequence(2,5) == 'cde'

There's different ways to construct a string:

assert new String() == ''

assert new String('hello') == 'hello’

def minLowSurr= Character.MIN_LOW_SURROGATE,
minHighSurr= Character.MIN_HIGH_ SURROGATE

def str= 'abc' + minHighSurr + minLowSurr + 'efg!'

def ca= ['a', 'b', 'c', minHighSurr, minLowSurr, 'e', 'f', 'g'] as charl(]

def ia= ['a', 'b', 'c', 0x10000, 'e', 'f', 'g'l as int/[]

assert new String(ca) == str

assert new String(ca, 2, ca.size()-2) == str[2..-1]

assert new String(ia, 2, ia.size()-2) == str[2..-1]

def ca2= new char[8]

str.getChars (0, str.size(), ca2, 0)
//copy characters from string into character array

assert ca2.size() == str.size()

ca2.eachWithIndex{ elt, i-> assert elt == strl[i] }

def ca3= ['a', 'b', 'c', 'd', 'e'l as charl]

'abcde' . toCharArray () .eachWithIndex{ it, i-> assert it == ca3[i] }
//convert String to char array

assert String.valueOf (ca3) == 'abcde' //convert char array to String

assert String.copyValueOf (ca3) == 'abcde' //alternative method name

assert String.valueOf (ca3, 2, 2) == 'cd' //use substring

assert String.copyValueOf (ca3, 2, 2) == 'cd'

We can pad and center strings:

assert 'hello'.padRight(8,'+"') .padLeft (10,'+') == '++hello+++"'

assert 'hello'.padLeft (7).padRight(10) == ' hello '

assert 'hello'.center (10, '+').center(14, ' ') == ' ++hello+++ '
We can split a string into tokens:

assert 'he she\t it'.tokenize() == ['he',6 'she', 'it']

//tokens for split are ' \t\n\r\f'
assert 'he she\t it'.tokenize() ==
new StringTokenizer ('he she\t it').collect{ it }

assert 'he,she;it, ;they'.tokenize(',;') == ['he', 'she', 'it', 'they'l]
//supply our own tokens
assert new StringTokenizer ('he,she;it,;they', ',;').collect{ it } ==

'he, she;it, ;they' .tokenize(',; ")

assert new StringTokenizer ('he,she,;it', ',;', true).collect{ it } ==
[|he|’ |’|’ ‘She‘, |’|’ |’.|’ |it|]
//long form provides extra option to return the tokens with the split-up data

Some additional methods:

assert 'abcde'.find{ it > 'b' } == 'c' //first one found
assert 'abcde'.findall{ it > 'b' } == ['c', 'd', 'e']l //all found

assert 'abcde'.findIndexOf{ it > 'c' } == 3 //first one found
assert 'abcde'.every{ it < 'g' } && ! 'abcde'.every{ it < 'c' }
assert 'abcde'.any{ it > 'c' } && ! 'abcde'.any{ it > 'g' }
assert 'morning'.replace('n','t') == 'mortitg' &&
'boo' .replace('o', 'at') == 'batat' &&
'book'.replace('oco', 'ie') == 'biek’
assert 'EggS'.toLowerCase() == 'eggs' && 'EggS'.toUpperCase() == 'EGGS'
assert ' Bacon '.trim() == 'Bacon'

assert 'noodles'.startsWith('nood') && 'noodles'.endsWith('dles')
assert 'corn soup'.startsWith('rn', 2) //2 is offset

assert 'abc'.concat('def') == 'abcdef'

assert 'abcdefg'.contains('def')

assert ''.isEmpty() && ! 'abc'.isEmpty ()

assert 'morning'.indexOf ('n') == 3

assert 'morning'.indexOf ('n', 4) == 5 //ignore first 4 characters

assert 'morning'.indexOf ('ni') == 3

assert 'morning'.indexOf ('ni', 4) == -1 //not found

assert 'morning'.lastIndexOf('n') == 5

assert 'morning'.lastIndexOf('n', 4) == 3 //only search first 4 characters
assert 'morning'.lastIndexOf('ni') == 3

assert 'morning'.lastIndexOf('ni', 4) == 3
//only search first 4 characters for first char of search string

We can use operators on strings:

W

e

assert 'hello, ' + 'balloon' - 'lo' == 'hel, balloon'
//'-' subtracts one instance at most of string
assert 'hello, balloon' - 'abc' == 'hello, balloon'
assert 'hello, '.plus('balloon').minus('lo') == 'hel, balloon'
//alternative method syntax

assert 'value is ' + true == 'value is true' &&

'value is ' + 1.54d == 'value 1is 1.54' &&

//first converts double to String (without info loss)

‘value is ' + 7 == 'value is 7' //we can add on various types of values
assert 7 + ' is value' == '7 is value'
assert 'telling true lies' - true == 'telling lies' &&

'week has 7 days' - 7 == 'week has days'

//we can subtract various types of values

assert 'a' * 3 == 'aaa' && 'a'.multiply(3) == 'aaa'
assert 'hello'.reverse() == 'olleh'
assert 'hello'.count('l') == 2
assert 'abc'.collect{ it * 2 } == ['aa', 'bb', 'cc']
def s= [], t= [:]
tabc'.each{ s << it }
'abc'.eachWithIndex{ elt, i-> t[i]l= elt }
assert s == ['a', 'b', 'c'] & t == [0:'a', 1:'b', 2:'c']
assert 'abcde'.toList() == ['a', 'b', 'c', 'd', 'e'l]
assert 'abc'.next() == 'abd' && 'abc'.previous() == 'abb'

can subscript strings just as we can lists, except of course strings are read-only:

assert 'abcdefg'[3] == 'd!

assert 'abcdefg'.getAt(3) == 'd' //equivalent method name
assert 'abcdefg'.charAt(3) == 'd' //alternative method name
assert 'abcdefg'[3..5] == 'def'

assert 'abcdefg'.getAt(3..5) == 'def'

assert 'abcdefg'[1, 3, 5, 6] == 'bdfg'

assert 'abcdefg'[1, *3..5] == 'bdef'

assert 'abcdefg'[1, 3..5 == 'bdef'

]
//range in subscript flattened automatically

//if first arg is true,

assert 'abcdefg'[-5..-2] == 'cdef'
assert 'abcdefg'.getAt([1, *3..5 1) 'bdef’
assert 'abcdefg'.getAt([1, 3..5]) == 'bdef'
assert 'abcde' == 'ab' + 'c' + 'de'
assert 'abcde'.equals('ab' + 'c¢' + 'de') //equivalent method name
assert 'abcde'.contentEquals('ab' + 'c' + 'de') //alternative method name
assert 'AbcdE'.equalsIgnoreCase ('aBCDe')
assert 'abcde' < 'abcdf' && 'abcde' < 'abcdef'!
assert 'abcde'.compareTo ('abcdf') == -1 && 'abcde'.compareTo('abcdef') == -1
//equivalent method
assert 'AbcdEF'.compareTolgnoreCase('aBCDe') == 1
assert 'AbcdE'.compareToIgnoreCase ('aBCDef')
assert Collections.max('abC'.toList(), String.CASE_INSENSITIVE ORDER) == 'C'
assert Collections.min(
['abC', 'ABd', 'AbCd'], String.CASE_INSENSITIVE ORDER) == 'abC'
assert 'abcde'.regionMatches (2, 'ccccd', 3, 2)
//match from index 2 in 'abcde' to 2 chars from index 3 in 'ccccd'
assert 'abcDE'.regionMatches (true, 2, 'CCcCCd', 3, 2)

ignores case

We can format values into a string, using format():

//Strings (conversion type 's')

assert String.format('%1$8s', 'hello') == "' hello!’
//width (here, 8) is minimum characters to be written
assert String.format('$2$6s,%1$2s', 'a', 'hello') == ' hello, a'
//we can re-order arguments
assert String.format('s$1$2s', 7, 'd') == ' 7'
//we can give any type of input; we can ignore arguments
assert String.format('%ls,%2s', null, 'null') == 'null,null’
//null treated as 'null'’
assert String.format('$1$2.4s', 'hello') == 'hell!

//precision (here, 4) is maximum characters to be written

//Characters ('c')
assert String.format('$1l$c,%2$3c', 65, 66 as byte) == 'A, B!'
//convert argument to character; 2nd value 3 chars wide
assert String.format('$-3c', 67 as short) == 'C !
//left-justified with '-' flag; we needn't specify parameter number (1$, etc)
assert String.format('$c', 'D' as char) == 'D'

//Special conversion types:
assert String.format('hello %n world %%') == 'hello \r\n world %'
//platform-specific newline; double % to quote it

//Boolean ('b')
assert String.format('s$b, %b, %b, %b, %b, %b',
null, true, false, 0, 1, new Object()) ==
'false, true, false, true, true, true'

StringBuffers

A StringBuffer is a mutable string. (But from Java 5.0 onwards, we should use a StringBuilder instead, because StringBuffers are normally
reserved for multi-threaded processing.)

def sbl= new StringBuffer(),
sb2= new StringBuffer('Hello'),
sb3= new StringBuffer (sb2)
assert sbl.toString() == '' &&
sb2.toString() == 'Hello' &&
sb2.toString() == sb3.toString()

To find the size and substrings:

def sb= new StringBuffer ('abcdefg')

assert sb.size() == 7 && sb.length() == 7 //different ways to find size
sb.length= 6 //change size

assert sb.toString() == 'abcdef'

assert sb.reverse().toString() == 'fedcba’'

assert sb.toString() == 'fedcba' //reverse() method reverses order permanently

assert sb.substring(2) == 'dcba' //substring from index 2

assert sb.substring(2, 5) == 'dcb' //substring from index 2 to <5
assert sb.subSequence (2, 5) == 'dcb' //substring from index 2 to <5
assert sb + 'zyx' == 'fedcbazyx'

To append to a StringBuffer:

def sbl= new StringBuffer ()

sbl << 'abc'

sbl << 'def' << 'ghi' //can chain two << operators
sbl.leftShift ('jkl') //equivalent method name
sbl.append('mno') //alternative method name
sbl.append(['p', 'q', 'r'l as char([])

sbl.append(['r', 's', 't', 'u', 'v'l as char[]l, 1, 3
assert sbl.toString() == 'abcdefghijklmnopgrstu'

Note that << doesn't yet work with StringBuilders.

If we append to a String, a StringBuffer is returned:

def s= 'foo'
s= s << 'bar'

assert s.class == StringBuffer && s.toString() == 'foobar'

As with strings, we can subscript a StringBuffer, returning a string:

def sb= new StringBuffer ('abcdefg')

assert sb[3] == 'd'
assert sb[3].class == String
assert sb.getAt(3) == 'd' //equivalent method name

assert sb.charAt(3) == 'd' //alternative method name
assert sb[3..5] == 'def’
]

assert sb[1, 3, 5, 6 == 'bdfg'

assert sb[1, 3..5] == 'bdef'

assert sb[-5..-2] == 'cdef'

sb[3..5 1 = 'xy' //use subscripts to update StringBuffer
assert sb.toString() == 'abcxyg'

sb.putAt(2..4, 'z') //equivalent method name

assert sb.toString() == 'abzg'

sb.setCharAt (1, 'm' as char) //alternative method name
assert sb.toString() == 'amzg'

We can insert into, replace within, and delete from StringBuffers using methods:

def sb= new StringBuffer ('hello park')
sb.delete (4, 7)

assert sb.toString() == 'hellark'
sb.deleteCharAt (3)
assert sb.toString() == 'helark'

def ca= new char[6]
sb.getChars (2, 5, ca, 1)

//for indexes 2 to <5, copy into ca beginning from index 1
(f'\o', 1, 'a', 'r', '\o', '\0'l as char(]).

eachWithIndex{ elt, i-> assert cal[i] == elt }

sb.insert (4, 'se')

assert sb.toString() == 'helaserk'
sb.insert (4, new StringBuffer('ct '))
assert sb.toString() == 'helact serk'
sb.insert (10, ['i', 'c'] as char[])
assert sb.toString() == 'helact serick'
sb.insert(6, ['m', 'a', 'l', 't'l as char([]l, 1, 2)
//insert 2 chars from subscript 1
assert sb.toString() == 'helactal serick'
sb.insert (10, 'snapla', 3, 5) //insert chars from subscript 3 to <5
assert sb.toString() == 'helactal splerick'
sb.replace(4, 13, 'dor') //replace chars from subscript 4 to <13
assert sb.toString() == 'heladorrick'

We can find the index of substrings:

def sb= new StringBuffer ('hello elm')
assert sb.indexOf ('el') ==

assert sb.indexOf('el', 3) == 6 //first occurence of 'el' from index 3
assert sb.lastIndexOf ('el') == 6
assert sb.lastIndexOf ('el', 3) == 1 //last occurence of 'el' up to index 3

Some miscellaneous methods:

def s= new String(new StringBuffer ('abcdefg'))
assert s == 'abcdefg'

assert s.contains('def')

assert s.contentEquals('abcdefg!')

assert s.contentEquals(new StringBuffer ('abcdefg'))
def s2= s.replace('def', 'xyz')

assert s2 == 'abcxyzg'

We can enquire of code points in a String or StringBuffer using methods on them, just as we can with methods on Character:

def minLowSurr= Character.MIN_LOW_SURROGATE,
minHighSurr= Character.MIN_HIGH_ SURROGATE

def sl= 'abc'+ minHighSurr + minLowSurr +'efg'

assert sl.codePointAt (3) == 0x10000 //if high surrogate, add on low surrogate
assert sl.codePointAt (4) == minLowSurr //if low surrogate, use it only
assert sl.codePointAt (5) == 'e' as int
assert sl.codePointBefore(4) == minHighSurr
assert sl.codePointBefore(5) == 0x10000
//if low surrogate, look back more for high one, and use both
assert sl.codePointCount (1, 5) == 3
//number of code points in a substring with indexes >=1 and <5
assert sl.offsetByCodePoints(l, 3) == 5

//index from 1 that's offset by 3 code points

def sb= new StringBuffer('abc'+ minHighSurr + minLowSurr +'efg')

//also, for StringBuffers
assert sb.codePointAt (5) == 'e' as int
assert sb.codePointBefore (4)

== minHighSurr
assert sb.codePointCount (1, 5) == 3
assert sb.offsetByCodePoints(l, 3) == 5

sb .appendCodePoint (0x10000)
assert sb.toString() ==
'abc'+ minHighSurr + minLowSurr +'efg'+ minHighSurr + minLowSurr

We can manipulate the implementation of a StringBuffer:

def sbl= new StringBuffer() //default initial capacity is 16
assert sbl.capacity() == 16

def sb2= new StringBuffer (5) //we can specify initial capacity
assert sb2.capacity() == 5

sb2<< 'abc'

assert sb2.capacity() == 5 && sb2.size() == 3
sb2.trimToSize ()

assert sb2.capacity() == 3
sb2.ensureCapacity (10)

assert sb2.capacity() == 10

def sb3= new StringBuffer (0) //capacity approximately doubles when required
def cap= 0, caps=[]

100.times{

if ((sb3<< 'a') .capacity() != cap) caps<< (cap= sb3.capacity())
}
assert caps == [2, 6, 14, 30, 62, 126]

JN1535-Patterns

Matching Strings to Patterns

We can define string patterns, aka "Regular Expressions" or "Regexes", and see if a String matches it:

assert 'abc' ==~ /abc/ //pattern on righthand side between single-slashes
assert ! ('abc' ==~ /ace/)
assert ! ('abc' ==~ /ab/)

assert 'abc' ==~ /a.c/

assert 'abc'.matches(/a.c/) //alternative method name

assert java.util.regex.Pattern.matches(/a.c/, 'abc') //alternative syntax

assert java.util.regex.Pattern.compile(/a.c/).matcher('abc').matches ()
//alternative syntax

assert '\t\n\f\r' ==~ /\t\n\f\r/
//some control chars have same notation as in strings
assert '\t\n\f\r' ==~ /\x09\x0a\x0c\x0D/
//alternatively use hex codes (leading zero required to make 2 digits)
assert '\t\n\f\r' ==~ /\011\012\014\015/
//alternatively use octal codes (leading zero required)
assert '\b' ==~ /\x08/ && ! ('\b' ==~ /\b/)
// \b has different meaning in regex than in string
assert '\07\013\033' ==~ /\a\v\e/

//regex-only notation: bell \a, vertical tab \v, escape \e

//the . in the pattern matches any character, except \n (or \r\n on Windows)

Twelve characters that are special syntax for regexes need to be quoted:

The

The

assert 'a.c' ==~ /a\.c/ //backslash before . to quote it

assert ' {LON\$] 2%+ ==~ /N NN INVOOD NS\ 2\ *\+/
//the 12 chars that need quoting

assert ' {[O\\"$|2*+' ==~ /NQ.{[O\"$|?2*+\E/

//another way to quote text is to bracket with \Q and \E
import java.util.regex.Pattern
assert Pattern.quote(/.{[O\"$[?*+/) == /\Q.{[O\"$]2*+\E/
//a special method to quote text in this way

chars \c@, \cA, \cB, ..., \cZ, \c[, \c], \c?, and \c_ map to the special characters 0x0 to 0x1f, except Ox1c:

assert "${0x0 as char}" =~ /\ce@/

for(int c= 'A'; int d= 0x1l; c <= 'Z'; c++; d++){
assert "${d as char}" =~ /\c${c as char}/

}

0x1b as char}" =~ /\cl/
0x1d as char}" =~ /\cl/
Oxle as char}" =~ /\c*/
0x1f as char}" =~ /\c_/

assert "$
assert "$
assert "$
assert "$

{
{
{
{

have special pattern syntax for whitespace \s, word characters \w, digits \d, and their complements:

assert (0x0..0x7F).findAll{ (it as char) ==~ /\s/ } ==
['\t', "\n', '\o13', '\f', "\r', ' 'l.collect{it as int}
assert (0x0..0x7F).findAll{ (it as char) ==~ /\w/ } ==
[*'0'..'9", *'A'. . 'Z', ' ', *'a' .'z'].collect{it as int}
assert (0x0..0x7F).findAll{ (it as char) ==~ /\d/ } ==
('0'..'9") .collect{it as int}

U [/\w/, /\W/1, [/\d/, /\p/1, [/\s/, /\8/1].each{ pair->
assert (0x0..0x7F).findAll{ (it as char) ==~ pair[0] &&
(it as char) ==~ pair[l] }.size() == 0
} // \S means not \s; \W means not \w; \D means not \d

re's certain characters that the dot . doesn't match, except when (?s) is used:

assert (0x0..0x7F).findAll{ !((it as char) ==~ /./) } ==
['\n' as int, '\r' as int]
//chars that . doesn't match //also: 0x85, 0x2028, 0x2029

assert 'abc\ndef' ==~ /a.c\ndef/

assert ! ('abc\ndef' ==~ /abc.def/) //the . doesn't match \n

assert (0x0..0x7F).findall{ !((it as char) ==~ /(?s)./) } == []
//when (?s) used, . matches every character

assert 'abc\r\ndef' ==~ /(?s)abc..def/ && ! ('abc\r\ndef' ==~ /(?s)abc.def/)
//on Windows, \r\n needs .. for match

assert (0x0..0x7F).findAall{ !((it as char) ==~ /(?d)./) } == ['\n' as int]
//only char that . doesn't match for (?d) flag

assert (0x0..0x7F).findAll{ !((it as char) ==~ /(?sd)./) } == []

// (?sd) together same as (?s) alone

Some other flags:

assert ('gOoDbYe' ==~ /(?1i)goodbye/)
//when (?1i) used, case-insensitive matching for ASCII characters

assert 'an ace' ==~ /(?x) an\ ace #comment here after hash/
//quote the space, ignore unquoted whitespace and comments

Some other ways to use flags:

assert 'abcDEFG' ==~ /abc(?i)defg/
//turn on flag halfway thru pattern
assert 'abCDefg' ==~ /ab(?i)cd(?-1i)efg/
//turn flag on, then off again
assert 'abCDEfg' ==~ /ab(?i:cde)fg/
//turn flag on for only a certain span of text
assert 'ABcdeFG' ==~ /(?i)ab(?-i:cde)fg/

//turn flag on, but off for only a certain span

assert 'abcdefg' ==~ /abc(?ix) d e f g #comment here/
//turn more than one flag on together

assert 'abcdefg' ==~ /(?ix) a b ¢ (?-ix)defg/
//turn more than one flag off together

assert 'abcdefg' ==~ /(?ix) a b ¢ (?s-ix)defg/
//turn some flag(s) on and other flag(s) off together

import java.util.regex.Pattern
assert Pattern.compile(/abc.def/, Pattern.DOTALL) .matcher ('abc\ndef') .matches ()
//alternative to (?s
assert ! Pattern.compile(/abc.def/, Pattern.UNIX LINES).
matcher ('abc\ndef ') .matches () //alternative to (?d)
assert Pattern.compile(/goodbye/, Pattern.CASE_INSENSITIVE) .
matcher ('gOoDbYe') .matches () //alternative to (?1i)
assert Pattern.compile(/ an\ ace #comment here/, Pattern.COMMENTS) .
matcher ('an ace') .matches() //alternative to (?x)

//we can enquire the flags set at the end-point of a pattern...

import java.util.regex.Pattern

assert Pattern.compile(/ab(?i)c.def/, Pattern.DOTALL) .flags() ==
Pattern.DOTALL + Pattern.CASE_INSENSITIVE

assert Pattern.compile(/ab(?i)c.d(?-i)ef/, Pattern.DOTALL).flags() ==
Pattern.DOTALL

assert Pattern.compile(/ab(?i:c.d)ef/, Pattern.DOTALL).flags() ==
Pattern.DOTALL

A character class is a set of characters, one of which may be matched. We've already seen the predefined character classes \s, \w, \d, \S, \W, \D.

We can also define our own:

['bat', 'bet', 'bit', 'bot', 'but'].each{ assert it ==~ /blaeioult/ }
// laeiou] matches one of a,e,i,o,u

assert ! ('bnt' ==~ /blaeioult/

['bat', 'bet', 'bit', 'bot', 'but'l].each{ assert ! (it ==~ /b["aeioult/) }
//["aeiou] matches anything except a,e,i,o,u...

['bbt', 'bxt', 'b%t', 'b)t', 'b*t', 'b\nt'].each{ assert it ==~ /b["aeioult/ }
//...even newlines

assert 'b' ==~ /[abbbc]l/ //duplicate chars in character class have no effect

assert '&' ==~ /[a&]l/ &&
L('&' ==~ /la&&z]/) &&
'8! ==~ /[a&&&]/ &&
V(&' ==~ /[ag&l/) &&
‘&' ==~ /la&\&]/ //all legal syntax

[/[a-3j1/: [*'a'..'J']1,
//we can specify a range of characters inside a class using hyphen -

/1 _a-zA-2]/: [*'A'..'Z', '_', *ra'..'z'],

//we can have many ranges mixed with single characters
/1 a-z[BA-2]1/: [*'A'..'2', ' ', *'a'. . 'z'],

//same effect as [_a-zA-Z]
/la-m&&g-2z1/: [*'g'..'m'],

//&& is intersection operator
/la-z&&["bcl]l/: ['a', *'d'..'z'],
//” means 'not' everything in the character class

/la-z&&[*m-pll/: [*'a'..'1l', *'q'..'z'],
//&& with * works like subtraction
/[*\d\sl/: [*0x0..0x7F].collect{ it as char } - [*'\t'..'\zr', ' ', *'0'..'9'],

//not digit AND not whitespace
/I\D\S1/: [*0x0..0x7F].collect{ it as char },
//not equal to above, but means: not digit OR not whitespace
] .each{ regex, validvals->
assert (0x0..0x7F).findAll{ (it as char) ==~ regex } ==
validvals.collect{ it as int }

The only meta-characters inside a character class are \, [, * (in the first position),] (not in the first position or after the *), - (not in the first position,
after the *, or before the]), and &&. Quote them with a / to get the literal character. The other usual meta-characters are normal characters inside
a character class, and do not need to be quoted with a backslash, though can be. Character class precedences are, from highest: literal escapes
(eg \s), grouping (eg [abc]), ranges (eg a-g), unions (eg [abc][xyz]), then intersections ([a-z&&[gjpay]]).

We can use the alternation operator | to give some options:

['abc', 'def', 'xyz'l.each{ assert it ==~ /abc|def|xyz/ }
['abcz', 'aijz', 'axyz'l].each{ assert it ==~ /a(bc|ij|xy)z/ }
//we delimit the alternation with parentheses

//when using longhand syntax, we can see what option was matched, using groups,
//which we'll meet soon:

def m= java.util.regex.Pattern.compile(/a(bc|ij|xy)z/) .matcher('abcz')
m.matches ()

assert m.group (l) == 'bc' //whatever was matched between the parens

We use ? to indicate optional character/s:

['0 days', 'l day', '2 days'].each{ assert it ==~ /. days?/ }
['Mon', 'Monday'].each{ assert it ==~ /Mon(day)?/ }

Use {n} to match a character exactly n times:

assert 'aaab' ==~ /a{3}b/
assert 'abcabc' ==~ /(abc){2}/ // {n} can apply to a multi-character sequence
['ab', 'ba', 'bb', 'aa'l.each{ it ==~ /[abl {2}/ }
// {n} can apply to a character class
['abab', '%&@b'].each{ assert it ==~ /.{3}b/ }

We can match a character a variable number of times. Use the * operator to match any number of a character:

['aaab', 'aab', 'ab', 'b'l.each{ assert it ==~ /a*b/ }
//even zero occurences of the character is matched

['abcabc', 'abc', ''l.each{ assert it ==~ /(abc)*/ }
// * can apply to a multi-character sequence

['abbacb', 'acaba', 'cbbbac', 'c', '']l.each{ assert it ==~ /[abcl*/ }
// * can apply to a character class

['aaab', 'b', 'abab'l.each{ assert it ==~ /.*b/ }

// * is greedy: in 'abab' .* matches 'aba'

//Use + to match at least one occurence of a character:

['aaab', 'aab', 'ab'l.each{ assert it ==~ /a+b/ }
assert ! ('b' ==~ /a+b/) //at least one 'a' is required
assert 'abcabcxz' ==~ /(abc)+[xyzl+/

// + can apply to character class or multi-character sequence

//Other variable-length repetition operators:

assert 'aaaab' ==~ /a{3,}b/ // {n,} matches at least n characters
assert 'aaaab' ==~ /a{3,5}b/ // {nl,n2} matches between nl and n2 characters
assert 'abaxyzxyz' ==~ /[abl{2,}(xyz){2,4}/

//these also can apply to multi-character sequences or character classes

By using longhand syntax, we see that * operator is greedy, repeating the preceding token as often as possible, returning the leftmost longest
match:

def m= java.util.regex.Pattern.compile(/(.*), (.*)/) .matcher('one,two,three')
m.matches ()

assert m.group(l) == 'one,two' //what was matched between the first parens
assert m.group(2) == 'three' //what was matched between the second parens

assert m.hasGroup() //misc method to check whether the pattern has groups
assert m.groupCount () == 2 //misc method to count them

Anything between parentheses is a capturing group, whose matched values can be accessed later:

//we can access matched values in groups outside the pattern using
//longhand syntax...

def m= java.util.regex.Pattern.compile(/(a*) (b*)/).matcher('aaabb')
m.matches ()

assert m.group (1) == 'aaa' && m.start(l) == 0 && m.end(l) == 3
assert m.group (2) == 'bb' && m.start(2) == 3 && m.end(2) == 5
assert m.group (0) 'aaabb' //group(0) is the entire string

assert m.group () == 'aaabb' && m.start() == 0 && m.end() == 5

//parameters default to 0

//...or outside the pattern using indexing (don't forget the first [0] index)...
m= java.util.regex.Pattern.compile(/(a*) (b*)/) .matcher('aaabb')
m.matches ()

assert m[0] [0] == 'aaabb' //the entire string
assert m[0] [1] == 'aaa' && m.start(l) == 0 && m.end (1)
assert m[0] [2] == 'bb' && m.start(2) == 3 && m.end(2)

//...or within the pattern using \n notation:
assert 'aaabb,aaa,bb' ==~ /(a*) (b*),\1,\2/
// \1 is the first group matched, \2 the second matched

assert 'abbec,abb,bb,cc' ==~ /(a(b*)) (c*),\1,\2,\3/
//groups numbered by sequence of their opening parens from left to right
assert 'abcddd,ab,ddd' ==~ /(a(?:b)) (?>c) (d*),\1,\2/
//groups beginning with ?: or ?> aren't numbered
assert 'aba,a,b' ==~ /(a(b)?)+,\1,\2/
//second match for \1 has no match for \2, so \2 keeps value from first match

assert 'abc,bc' ==~ /a(bc)?,\1/
assert ! ('a,' ==~ /a(bc)?,\1/)

//referencing \1 causes entire match to fail if it hasn't already matched
assert ! ('a' ==~ /(labcl\1)/)

//referencing a group within itself causes entire match to fail

\1 through \9 in patterns are always interpreted as group references, and a backslash-escaped number greater than 9 is treated as a group
reference if at least that many groups exist at that point in the string pattern. Otherwise digits are dropped until either the number is smaller or
equal to the existing number of groups or it is one digit. Grouping parentheses and group references cannot be used inside character classes.

Some miscellaneous methods:

def m= (~/(a*)|bc/).matcher('bec') //another longhand syntax
m.matches ()
assert m.group (1) == null && m.start(l) == -1 && m.end(l) == -1

//if match successful but group didn't match anything

def p= java.util.regex.Pattern.compile(/ab*c/)
assert p.pattern() == /ab*c/ //retrieve the definition from a compiled pattern

Finding Patterns in Strings

As well as matching an entire string to a pattern, we can also find a pattern within a string using =~ syntax:

assert 'abcdefg' =~ /cde/ //is 'cde' within 'abcdefg'?
assert ! ('abcdefg' =~ /ace/)
assert java.util.regex.Pattern.compile(/cde/).matcher('abcdefg').find(
//alternative syntax
assert 'xxx z9g\t\nxxx' =~ /\s\w\d.\t\n/
//special characters work the same as with ==~ matching
assert ('xxxgOoDbYexxx' =~ /(?1)goodbye/)
//flags also work the same as with ==~
assert 'xxxbatxxx' =~ /blaeioult/
//character classes also work the same as with ==~

There can be more than one occurence of the pattern:

def s= 'horse house'

assert s =~ /ho.se/ //to check for the first occurence only
def m= (s =~ /ho.se/
assert m.size() == 2 && m[0] == 'horse' && m[1l] == 'house'

//to retrieve all occurences

def 1= []

s.eachMatch(/ho.se/){ 1 << it[0] } //alternative syntax, be sure to use it [0]
assert == ['horse', 'house']

def 12= []

s.eachMatch(/abc/){ 12 << it[0] } //no matches

assert 12 == []

def 13= []

s.eachMatch(/hor./){ 13 << it[0] } //one match only

assert 13 == ['hors']

Some longhand syntax, with various methods:

import java.util.regex.Pattern
def s= 'hoose horse house'

def m= Pattern.compile(/ho.se/) .matcher(s)

assert m.find() && s[m.start()..<m.end()] == 'hoose'
assert m.find() && s[m.start()..<m.end()] == 'horse'
assert m.find() && s[m.start()..<m.end()] == 'house'
assert ! m.find()

assert m.reset () && s[m.start()..<m.end()] == 'hoose'

//use reset() to find from beginning

assert m.find() && s[m.start()..<m.end()] == 'horse'
assert m.find(1) && s[m.start()..<m.end()] == 'horse'

m.setIndex (1)
//alternatively, calling setIndex() resets from that index,
//until find() called

assert m.find() && s[m.start()..<m.end()] == 'horse'

//giving a parameter to find() starts finding from that index

without finding

We can group when finding with =~ just as we do when matching with ==~:

def m= ('mistlemuscle' =~ /m(.)s(.)le/)

assert m.size() == 2

assert m.count == 2 //alternative to size()

assert m[0] == ['mistle', 'i', 't']

assert m[0] .size() == 3 && m[0] [0] == 'mistle' &&
m[0] [1] == 'i' && m[0][2] == 't°

assert m[1] == ['muscle', 'u', 'c']

assert m[1l] .size() == 3 && m[1] [0] == 'muscle' &&
m[1] [1] == 'u' && m[1l][2] == 'c'

//using the eachMatch() method...

def 1= []

'mistlemuscle’.eachMatch(/m(.)s(.)le/){ 1 << it }

assert l*.toList() == [['mistle', 'i', 't'], ['muscle', 'u', 'c'l]

def 12= []

'mistle'.eachMatch(/m(.)s(.)le/){ 12 << it }

assert 12*.toList() == [['mistle', 'i', 't']]

def 13= []

'practical'.eachMatch(/m(.)s(.)1le/){ 13 << it }

assert 13*.toList() == []

//using longhand notation...
import java.util.regex.Pattern
m= Pattern.compile(/(a+) (b+)/) .matcher('aaabbcccaabbb')

m.find ()

assert m.group(l) == 'aaa' && m.start(l) == 0 && m.end(l) == 3 &&
m.group(2) == 'bb' && m.start(2) == 3 && m.end(2) == 5 &&
m.group() == 'aaabb' && m.start() == 0 && m.end() == 5

m.find ()

assert m.group(l) == 'aa' && m.start(l) == 8 && m.end(l) == 10 &&
m.group(2) == 'bbb' && m.start(2) == 10 && m.end(2) == 13 &&
m.group() == 'aabbb' && m.start() == 8 && m.end() == 13

Calling collect() and each() require some special tricks to work:

def m= ('redeem coffee' =~ /ee/)
assert m.collect{it} == ['ee', 'ee']
//when calling collect() on a pattern with no groups...

assert m.collect{it} == []

//...we must call reset() if we want to access the found matches again
m.reset ()
assert m.collect{it} == ['ee', 'ee']

def 1= [] //ditto for each()
m.each{ 1 << it }

assert 1 == []

m.reset ()

1= []

m.each{ 1 << it }
assert 1 == ['ee', 'ee']

1= [] //ditto for eachWithIndex
m.eachWithIndex{it, i-> 1 << it+i }

assert 1 == []

m.reset ()

1= []

m.eachWithIndex{it, i-> 1 << it+i }

assert 1 == ['ee0', 'eel']

m= ('play the game\nfollow the rules' =~ /(?m)”*(.*?) the (.%*?)s/)
//for a pattern with groups...

1= []

m.each{g0, g1, g2-> 1 << [g0, g1, g2] }
//...we must pass the groups separately to the closure of each()

assert 1 == [['play the game',6 'play', 'game'l],
['follow the rules', 'follow', 'rules']]
m= ('mistlemuscle' =~ /m(.)s(.)le/)
assert m[1] == ['muscle', 'u', 'c'l]
assert m.group (0) == 'muscle' && m.group(l) == 'u' && m.group(2) == 'c'

//only call group() after using subscripting first

Aggregate functions we can use are:

assert ('tone, true, tame, tape, take, tile, time' =~ /t..e/).
findAll{ it[1] == 'a' } == ['tame', 'tape', 'take']

assert ('tone, true, tame, tape, take, tile, time' =~ /t..e/).
find{ it[1] == 'a' } == 'tame'

assert ('tone, true, tame, tape, take, tile, time' =~ /t..e/).
findIndexOf{ it[1] == 'a' } == 2 //index of 'tame'

assert ('tone, true, tame, tape, take, tile, time' =~ /t..e/).
any{ it[1] == 'a' }

assert ! ('tone, true, tame, tape, take, tile, time' =~ /t..e/).
every{ it[1] == 'a' }

The sequence of text joined by operators such as | ? * + {} has no effect on the success of the ==~ matcher, but does affect what's found with the
=~ finder. The first choice of the | is found first, and backtracking to the second choice is only tried if necessary. The choice of the ? is tried first,
and backtracking to ignore the choice only tried if necessary. As much as possible of the * + {} is found first, and backtracking to find less text only
tried if necessary.

assert ('abcdefg' =~ /bcd|bedef/) [0] == 'bed!
assert ('abcdefg' =~ /bcdef|bed/) [0] == 'bedef!
//first choice always tried first

assert ('Friday 13th' =~ /Fri(day)?/) [0] [0] == 'Friday'

assert ('Say "hello" and "goodbye" to the world!' =~ /".*"/)[0] ==
'"hello" and "goodbye"'

1=]

'Say "hello" and "goodbye" to the world!'.eachMatch(/"[""]1*"/){ 1 << it }
//use NOT DOUBLE-QUOTES instead of ANY CHARACTER

assert 1*.toList() == [['"hello"']l, ['"goodbye"']]

Because the ? and * operators can match nothing, they may not always be intuitive to understand:

def m= ('grgggr'=~/g?/)

def 1= []
for(int 1 in 0..<(m.size() as int)) 1 << m[i]
assert 1 == ['g', '', 'g', 'g', 'g', '', ']

// ? also matches the empty space before each 'r', and the end of string

m= ('grgggr'=~/g*/)

1= 0]
for(int i in 0..<(m.size() as int)) 1 << ml[i]
assert 1 == ['g', '', 'ggg', '', '']

// * also matches the empty space before each 'r', and the end of string

m= ('grgggr'=~/g+/)

1= [1
for(int 1 in 0..<(m.size() as int)) 1 << m[i]
assert 1 == ['g', 'ggg'l // + repetition is the most intuitive to use

By putting a ? after the operators ? * + {}, we can make them "lazy" instead of "greedy", that is, as little as possible is found first, and backtracking
to find MORE text is tried if necessary:

assert ('Friday 13th' =~ /Fri(day)??/)[0][0] == 'Fri' //instead of 'Friday'
def 1= []

'Say "hello" and "goodbye" to the world!'.eachMatch(/".*?"/){ 1 << it }
assert 1*.toList() == [['"hello"'], ['"goodbye"']]

We've seen some longhand methods such as 'find’, 'matches’, 'start’, and 'end'. There's many more such methods:

def s= 'a quick quick dog'

def m= (s =~ /a.*k/)

//starts at the beginning, but doesn't try to match the entire string
assert m.lookingAt () && s[m.start()..<m.end()] == 'a quick quick'
//replaceFirst. ..
assert (s =~ /quick/) .replaceFirst('fast') == 'a fast quick dog'
assert (s =~ /qu(ick)/).replaceFirst('kw$l') == 'a kwick quick dog'

//can reference groups in pattern using $
assert (s =~ /qu(ick)/).replaceFirst('kw\\$1l') == 'a kw$l quick dog'

//include literal $ by writing \$, escaping \ as \\

//utility method to create a literal replacement String for the given String...

import java.util.regex.Matcher

assert Matcher.quoteReplacement ('kws$l') == 'kw\\S$1'

assert (s =~ /qu(ick)/).replaceFirst(Matcher.quoteReplacement ('kw$l')) ==
'a kw$l quick dog!'

//we can mix GStrings and replacement group refs by mixing single-quoted and

//double-quoted strings...

def ice= 'ice cream'

assert ('some malting beer' =~ /a(lting).*/).replaceFirst('esl' + "$ice") ==
'some melting ice cream'

//replaceAll. ..

assert (s =~ /quick/) .replaceAll('fast') == 'a fast fast dog'

s= 'a quickly quacking duck'

assert (s =~ /qu(.)ck/).replaceAll('kw$lck') == 'a kwickly kwacking duck'

//another shorthand...

assert 'a quick quick dog'.replaceFirst(/qu(ick)/, 'kw\\$1') ==
'a kws$l quick dog'

assert 'a quickly quacking duck'.replaceAll (/qu(.)ck/, 'kw$lck') ==
'a kwickly kwacking duck'

//'appendReplacement' and 'appendTail' should be used together for more
//complex replacements.. .

m= 'one banana two havana three matana four' =~ /(.a.)ana/

def i=0, sb= new StringBuffer ()

while(m.find()) m.appendReplacement (sb, '$la' + 'na'*i++)
m.appendTail (sb)

assert sb.toString() == 'one bana two havana three matanana four'

Similarly to back-references in patterns, $1 through $9 in replacement strings are always interpreted as group references, and a dollar-escaped
number greater than 9 is treated as a group reference if at least that many groups exist in the string pattern. Otherwise digits are dropped until
either the number is smaller or equal to the existing number of groups or it is one digit.

We've already seen the greedy and lazy operators. There's also possessive operators, which act like greedy operators, except they never
backtrack. Whereas choosing greedy or lazy operators affects the efficiency of a match, they don't affect the outcome. However, possessive
operators can affect the outcome of a match:

//the greedy * operator, with backwards backtracking...
def m= (~/(.*),(.*)/).matcher('one,two,three')
assert m.matches() && m.group(l) == 'one,two' && m.group (2) == 'three'

//the lazy *? operator, with forwards backtracking...
m= (~/(.*?),(.*)/).matcher('one,two,three')
assert m.matches() && m.group(l) == 'one' && m.group(2) == 'two,three'

//the possessive *+ operator, with no backtracking at all, even when doing so
//would cause a match...
assert ! (~/(.*+),(.*)/).matcher('one,two,three').matches()

//we can qualify other operators with possessiveness, such as ++, ?+, {m,n}+...
m= (~/([abc,]*+), (.*)/).matcher('abba,and,beegees')
assert ! m.matches ()

//greedily matches 'abba,a', but doesn't backtrack to 'abba'

Atomic grouping, a more general form of possessiveness, enables everything in the atom group to be considered as one token. No backtracking
occurs within the group, only outside of it:

assert ! ('abbbc' ==~ /a(?s>b*)bc/)
//after 'bbb' matched, no backtracking to 'bb' within atomic group

Atomic grouping and possessiveness are handy with nested repetition, allowing much faster match failures.
Finding Positions in Strings

We can use * and $ to match the beginning and end of each line using flag m:

def s= 'an apple\nthe lime\na banana'
assert ! (s =~ /"a.{7}%/)

//normally, * matches the beginning of the entire input,
//and $ matches its end

def m= (s =~ /(?m)*a.{7}s/)
//in multi-line mode, ” matches the beginning of each line,
//and $ matches each line's end

assert m.size() == 2 && m[0] == 'an apple' && m[l] == 'a banana'
assert m.toString() ==
'java.util.regex.Matcher [pattern=(?m)”“a.{7}$ region=0,26 lastmatch=a bananal'
//some technical info

assert ((s+'\n') =~ /(?m)”a.{7}$/) // $ ignores any \n at the end of the string

import java.util.regex.Pattern

m= Pattern.compile(/"a.{7}$/, Pattern.MULTILINE).matcher (s)
//alternative to (?m) in longhand syntax

assert m.find() && s[m.start()..<m.end()] == 'an apple'

assert m.find() && s[m.start()..<m.end()] == 'a banana'

assert ! m.find()

At the end of strings with \n at the end, $ matches twice:

Wi

e

m= ('nine\nlives' =~ /$/)

assert m.find() && m.start() == 10 && m.end() == 10
// $ matches at end of string once only

assert ! m.find()

m= ('nine\nlives\n' =~ /$/)

assert m.find() && m.start() == 10 && m.end() == 10
// $ matches just before \n ...

assert m.find() && m.start() == 11 && m.end() == 11

//...and again, $ matches after the \n
assert ! m.find()

m= ('nine\nlives\n' =~ /(?m)s$/)
assert m.find() && m.start() == 4 && m.end() == 4

//in multiline mode, $ matches at end of each line
assert m.find() && m.start() == 10 && m.end() 10
assert m.find() && m.start() == 11 && m.end() == 11

// $ also always matches after the \n in multiline mode
assert ! m.find()

m= ('nine\nlives\n' =~ /*/)

// * matches at beginning of string once only,
//even if there's an \n at the end
assert m.find() && m.start() == 0 && m.end() == 0
assert ! m.find()

m= ('nine\nlives\n' =~ /(?m)"/)
assert m.find() && m.start() == 0 && m.end() == 0
assert m.find() && m.start() == 5 && m.end() == 5

//in multiline mode, * matches at beginning of each line
assert ! m.find()
// ~ also never matches after the \n in multiline mode

can use \A \Z and \z to match the beginning and end of input, even in multiline mode:

def sl= 'an apple\na banana'
assert (sl =~ /\A.{8}\n.{8}\z/)

// \A always matches the beginning of the entire input, and \Z its end
assert (sl =~ /\A.{8}\n.{8}\z/) // \z also matches its end

assert (sl =~ /(?m)\A.{8}\n.{8}\2/)
// ?m flag has no effect on meaning of \A \Z and \z

def s2= sl + '\n'

assert (s2 =~ /(?m)\A.{8}\n.{8}\2/)
// \Z ignores an extra \n when matching the end of input...
assert ! (s2 =~ /(?m)\A.{8}\n.{8}\z/) // ...but \z is fussy

We can match at word boundaries:

// \b matches either the preceding or following character, but not both, is
//a word (matched by \w)
(0x20..0x7F) .each{itl->
(0%20. .0x7F) .each{it2->
def s= "${itl as char}${it2 as char}"
if(s ==~ /.\b./) assert (s[0] ==~ /\w/) * (s[1] ==~ /\w/)

b}

// \B matches where \b doesn't
assert (0x0..0x7F).findAll{ (it as char) ==~ /\b/ && (it as char) ==~ /\B/ }.
size() == 0

// * means xor (exclusive or)

We can can look behind or ahead of a position, ie, find a position based on text that precedes follows it, but without matching that text itself. We
can only use fixed-length strings when looking behind, ie, literal text, character classes, finite repetition ({length} and ?), and alternation where
each string in it is also of fixed length, because the length of the match must be able to be predetermined:

//use (?=) to find the position just in front of all 'qu'...
assert 'the queen quietly quacked'.replaceAll(/(?=qu)/, 'we') ==
'the wequeen wequietly wequacked'

//use (?!) to find all 'c' not followed by 'a'...
assert 'clever cats can count mice'.replaceAll(/c(?!a)/, 'k') ==
'klever cats can kount mike'

//use (?<=) to find all words ending in '-gry'...
assert 'The angry, hungry boy gried out.'.
replaceAll (/\b\w+?(?<=gry)\b/, 'naughty') ==
'The naughty, naughty boy gried out.'

//use (?<!) to find 3-letter words not ending with 'e'...
assert 'The spy saw seven spuds.'.replaceAll(/\b\w{3}(?<!e)\b/, 'hid') ==
'The hid hid seven spuds.

//lookaheads and lookbehinds can contain capturing groups...
assert 'the landlord dared band led not'.
replaceAll (/\b\w{4,}(?<=(\w{3})d)\b/, '$1') ==
'the lor are ban led not'

Matching positions in a string is useful for splitting the string, and for inserting text:

assert 'The leaky cauldron.'.split(/\b/) .toList() ==
(v, 'The', ' ', 'leaky', ' ', 'cauldron', '.']
//note that an empty string is prepended
assert 'Hi, my, bye.'.split(/\b(?=\w)/).toList() ==
[**, '"Hi, ', 'my, ', 'bye.']
assert 'The leaky cauldron.'.replaceAll(/\b/, '*') =
'*The* *leaky* *cauldron*.
//note that text inserted at beginning but not at end

We can split a string in many ways:

def s= 'hi,my,spy, tie,bye,, '
assert s.split(/,/).toList() == ['hi', 'my', 'spy', 'tie', 'bye']
assert s.split(/,/, 1).toList() == ['hi,my,spy,tie,bye,,']

//extra argument gives max number of splits
assert s.split(/,/, 2).toList() == ['hi', 'my,spy,tie, bye,,']
assert s.split(/,/, 3).tolList() == ['hi', 'my', 'spy,tie,bye,,']
assert s.split(/,/, 0).toList() == ['hi', 'my', 'spy', 'tie', 'bye']
//any number of splits; same as no arg
assert s.split(/,/, -1).toList() == ['hi', 'my', 'spy', 'tie', 'bye', '', '']

//a negative arg doesn't remove trailing empty strings

assert (~/,/).split(s).toList() == ['hi', 'my', 'spy',6 'tie', 'bye'l
//alternative syntax
assert (~/,/).split(s, 2).toList() == ['hi', 'my,spy,tie,bye,,"']

Restricting a String to a Region for a Pattern

We can set the limit of the part of the input string that will be searched to find a match:

import java.util.regex.Pattern

def m= Pattern.compile(/abc+/).matcher('aaabc')

assert m.find()

m.region(l, 4) //restrict string 'aaabc' to a region within, ie, 'aab'
assert ! m.find()

assert m.regionStart() == 1 && m.regionEnd() == 4

assert ! m.region(l, 4).find() //alternative syntax

//we can make a region's boundaries transparent to lookaround and boundary
//matching constructs...

m= Pattern.compile(/abc\b/).matcher('aaabcdef')

m.region(1l, 5)

assert m.find() //doesn't consider whether there's a word boundary (\b) after
//'aabc' in full string

assert ! m.hasTransparentBounds ()

m.region(1l, 5)

m.useTransparentBounds (true)

assert ! m.find() //doesn't find anything because the \b doesn't match

assert m.hasTransparentBounds ()

assert ! m.region(l, 5).useTransparentBounds (true).find() //alternative syntax

//we can decide whether to match anchors such as * and $ at the boundaries of
//the region...

m= Pattern.compile(/“abc$/).matcher('aaabcdef')

m.region (2, 5)

assert m.find()

assert m.hasAnchoringBounds () //match such anchors by default

m.region (2, 5)

m.useAnchoringBounds (false)

assert ! m.find() //the * and $ no longer match

assert ! m.region(2, 5).useAnchoringBounds (false).find() //alternative syntax

JN2015-Files

To see the OS-dependent characters used for formatting filenames (here, when running on Windows):

assert File.separator == '\\' && File.separatorChar == '\\' as char
//used for formatting file names
assert File.pathSeparator == ';' && File.pathSeparatorChar == ';' as char

Instances of File are immutable representations of objects in the file system, that may or may not exist. To see different formats of a filename
(here, when running within D:\Groovy\Scripts directory):

Non

def f= new File('File.txt') //relative file name

assert f.name == 'File.txt'

assert ! f.isAbsolute()

assert f.path == 'File.txt'

assert f.parent == null

assert f.absolutePath == 'D:\\Groovy\\Scripts\\File.txt' //returns a string

assert f.absoluteFile.toString() == 'D:\\Groovy\\Scripts\\File.txt'
//returns a File object instead of string

assert f.canonicalPath == 'D:\\Groovy\\Scripts\\File.txt'

assert f.canonicalFile.toString() == 'D:\\Groovy\\Scripts\\File.txt'
//returns a File object instead of string

assert f.toURI().toString() == 'file:/D:/Groovy/Scripts/File.txt'

//toURI() returns a URI object

f= new File('D:/Groovy/Scripts/File.txt') //absolute file name

assert f.name == 'File.txt'

assert f.isAbsolute()

assert f.path == 'D:\\Groovy\\Scripts\\File.txt'

assert f.parent == 'D:\\Groovy\\Scripts'

assert f.parentFile.toString() == 'D:\\Groovy\\Scripts'
//returns a File object instead of string

assert f.absolutePath == 'D:\\Groovy\\Scripts\\File.txt'

assert f.canonicalPath == 'D:\\Groovy\\Scripts\\File.txt'

f= new File('../File.txt")

assert f.name == 'File.txt'

assert ! f.isAbsolute()

assert f.path == '..\\File.txt'

assert f.parent == '..'

assert f.absolutePath == 'D:\\Groovy\\Scripts\\..\\File.txt'

assert f.canonicalPath == 'D:\\Groovy\\File.txt'

f= new File('') //current directory

assert f.name == ''
assert ! f.isAbsolute()

assert f.path == "'

assert f.parent == null

assert f.absolutePath == 'D:\\Groovy\\Scripts'

assert f.canonicalPath == 'D:\\Groovy\\Scripts'

assert new File('File.txt') == new File('File.txt')
//compares two filenames' lexical names

assert new File('File.txt').compareTo (new File ('File.txt')) == 0
//equivalent method name

assert new File('File.txt') != new File('../Scripts/File.txt')

//lexical names different (although files are the same)

e of the above example's files were created. Files are only created by some event:

def fl= new File('Filel.txt')
fl << 'abcdefg'

assert fl.length() == 7 && fl.size() == 7
assert fl.isFile() && ! fl.isDirectory() && ! f1.isHidden/(

def f2= new File('D:/Groovy/Scripts', 'File2.txt')
//we can optionally supply the parent, either as a string...
f2= new File(new File('D:/Groovy/Scripts'), 'File2.txt!')

//...or as a File object
assert ! f2.exists()
f2.createNewFile() //if it doesn't already exist
assert f2.exists()

def dl= new File('Directoryl')

//file created by writing to it; file appended to if it already exists

dl.mkdir () //make directory, if it doesn't already exist
def d2= new File('Directory2/SubDirl')
d2.mkdirs ()
//make directory, including necessary but nonexistent parent directories

println fl.getFreeSpace ()

//the number of unallocated bytes in the partition this abstract file is
println fl.getUsableSpace ()

//the number of bytes available to this virtual machine in the partition
//this abstract file is in
println fl.getTotalSpace() //the size of the partition this abstract file is

//We can set file permissions:

assert f2.setWritable (true, false) && f2.canWrite()
//set writable permission for every user
assert f2.setWritable (true) && f2.canWrite ()
//set writable permission on file for owner only
assert f2.setWritable (false, false) && ! f2.canWrite(
//unset writable permission for every user
assert f2.setWritable (false) && ! f2.canWrite()
//unset writable permission on file for owner only
f2.writable= true //property format for owner only
assert f2.canWrite ()

assert f2.setReadOnly () && ! f2.canWrite ()
assert f2.setExecutable(true, false) && f2.canExecute ()
//set executable permission for every user
assert f2.setExecutable(true) && f2.canExecute ()
//set executable permission on file for owner only
f2.executable= true //property format for owner only
assert f2.canExecute()
assert ! f2.setExecutable(false)
//returns false because command unsuccessful: can't make file
//nonexecutable on Windows, though can on other systems

assert f2.setReadable (true, false) && f2.canRead()

//set readable permission for every user
assert f2.setReadable (true) && f2.canRead ()

//set readable permission on file for owner only
f2.readable= true //property format for owner only
assert f2.canRead()
assert ! f2.setReadable(false)

//can't make file nonreadable on Windows

//We can retrieve a list of files from a directory:

assert new File ('D:/Groovy/Scripts').list().toList () ==
['Script.bat', 'Filel.txt', 'File2.txt', 'Directoryl', 'Directory2']
//1list () returns an array of strings

assert new File ('Directory2').list().toList() == ['SubDirl']
assert new File('').list() == null
//1list () returns null if directory not explicitly specified

assert new File('D:/Groovy/Scripts') .list (
l[accept:{d, f-> £ ==~ /.*?1.%/ }] as FilenameFilter
) .toList() == ['Filel.txt', 'Directoryl']
//filter taking dir (File) and file (String) arguments, returns boolean

assert new File('D:/Groovy/Scripts') .list (
{d, £-> £ ==~ /.*?1.%/ } as FilenameFilter
) .toList() == ['Filel.txt', 'Directoryl'] //shorter syntax

assert new File('D:/Groovy/Scripts').listFiles().toList()*.name ==
['Script.bat', 'Filel.txt', 'File2.txt', 'Directoryl', 'Directory2']
//1listFiles() returns array of File objects

in

assert new File ('Directory2') .listFiles() .toList()*.toString() ==
['Directory2\\SubDirl']

assert new File('D:/Groovy/Scripts').listFiles(
{dir, file-> file ==~ /.*?\.txt/ } as FilenameFilter
) .toList () *.name == ['Filel.txt',6 'File2.txt']

assert new File('D:/Groovy/Scripts').listFiles(
[accept: {file-> file ==~ /.*?\.txt/ }] as FileFilter
) .toList () *.name == ['Filel.txt',6 'File2.txt']
//use a filter taking one argument only, returning boolean

//Renaming and deleting files:

f2.renameTo(new File ('RenamedFile2.txt'))
assert f2.name == 'File2.txt' //because File object is immutable
assert new File ('RenamedFile2.txt').exists()

[new File ('RenamedFile2.txt'), new File('Directoryl'), new File('Directory2')].
each{ it.delete() } //delete files

assert ! new File('RenamedFile2.txt') .exists()

assert | new File('Directoryl') .exists()

assert new File ('Directory2') .exists()
//because each sub-directory must be deleted separately

assert new File('Directory2/SubDirl') .delete() //returns true if file deleted OK
assert new File ('Directory2') .delete()
assert | new File('Directory2') .exists()

new File ('Filel.txt') .deleteOnExit ()
assert new File('Filel.txt') .exists() //but will be deleted when VM exits

def mod= new File('Filel.txt') .lastModified ()

assert new File('Filel.txt') .setLastModified (mod - 60000)
//60 seconds previously, returns true if successful

new File ('Filel.txt') .lastModified= mod - 120000

//property syntax for setting only
assert new File('Filel.txt') .lastModified() == mod - 120000

To perform general file manipulation in a file system, we can retrieve all the topmost directories:

println File.listRoots() .toList ()*.toString()
//listRoots () returns an array of File objects

To create a temporary file, with given prefix (of at least 3 chars) and suffix:

File.createTempFile('Tem', '.txt')
//created in directory for temporary files
File.createTempFile('Tem', '.txt', new File('D:\\Groovy\\Scripts'))

//eg, created D:/Groovy/Scripts/Tem59217.txt

We can read and write to files in various ways, as in this example:

def fl= new File('Filel.txt') << 'abcdefg:hijklmnop:grstuv:wxyz\n'
//create and write to the file
fl.leftShift ('123:456:7890\n') //equivalent method name
new File('File2.txt') .createNewFile ()
[new File ('Directoryl'), new File('Directory2/SubDirl')].each{ it.mkdirs() }

def list= []
new File ('D:\\Groovy\\Scripts').eachFile{ list<< it.name }
//eachFile() returns a list of File objects
assert list ==
['Script.bat', 'Filel.txt', 'File2.txt', 'Directoryl', 'Directory2']

list= []
new File ('D:\\Groovy\\Scripts').eachFileMatch(~/File.*?\.txt/){ list<< it.name }
//a regular expression, or any caseable expression

assert list == ['Filel.txt',6 'File2.txt']

list= []

new File ('D:\\Groovy\\Scripts').eachFileRecurse{ list<< it.name }

assert list == ['Script.bat', 'Filel.txt',6 'File2.txt',
'Directoryl', 'Directory2', 'SubDirl']

list= []

new File ('D:\\Groovy\\Scripts').eachDir{ list<< it.name }

assert list == ['Directoryl', 'Directory2']

list= []

fl.eachLine{ list<< it }

assert list == ['abcdefg:hijklmnop:grstuv:wxyz', '123:456:7890"']

list= fl.readLines/()

assert list == ['abcdefg:hijklmnop:grstuv:wxyz', '123:456:7890"']
list= []
fl.splitEachLine(':'){ list<< it } //splits each line into a list

assert list == [
['abcdefg', 'hijklmnop', 'grstuv', 'wxyz'l]l,
['123', '456', '7890'],

def f2= new File('File2.txt')

f2.write ('abcdefg\n') //can only write strings
assert f2.getText() == 'abcdefg\n'

f2.append ('hijklmnop, ')

f2.append(42) //can append any object

assert f2.getText() == '''abcdefg
hijklmnop,42'""'

f2.write('', 'unicode') //overwrites existing contents
assert f2.getText ('unicode') == "'
f2.append('', 'unicode') //also appends unicode marker OXFEFF

assert f2.getText('unicode') == '' + (OXFEFF as char) + "'
[new File('Filel.txt'),
new File ('File2.txt'),

new File ('Directory2/SubDirl'),
new File ('Directory2'),
].each{ it.delete() } //delete files used by this example

(
(
new File ('Directoryl'),
(
(

JN2025-Streams

We can create streams of data from files, network resources, memory locations, etc, both input and output. To initially demonstrate the use of
streams, we'll use streams around a file, both byte and Character streams. The methods introduced in these example can be used for any stream.

InputStreams and OutputStreams are streams of bytes:

def fos= new FileOutputStream('TestFile.txt')

//These methods are available for all output streams, not just FileOutputStream:
[21, 34, 43, 79].each{ fos.write(it) }
//write out the lowest-order 8 bits of the supplied integer
fos.flush()
fos.write([69, 32, 22] as bytell)
fos.write([10, 11, 12, 13, 88, 89] as bytell, 3, 2)
//write 2 bytes from array starting at index 3
fos.close()
try{ fos.write(77); assert 0 }catch(e){ assert e instanceof IOException }
//no writing after file closed

//check the byte contents of the file with a File utility method:
assert new File('TestFile.txt') .readBytes () .toList () ==
[21, 34, 43, 79, 69, 32, 22, 13, 88]

def fis= new FileInputStream('TestFile.txt')

//These methods are available for all input streams, not just FileInputStream:

assert fis.available() == 9

//an estimate of bytes left for reading or skipping in the input stream
assert fis.read() == 21 //actually, the next byte is returned as an integer
fis.skip(2) //skip over, here, 2 bytes of data from the stream
assert fis.available() == 6

def ba2= new byte[3]
fis.read (ba2)

assert ba2.toList() == [79, 69, 32]

def ba3= new byte[6]

assert fis.read(ba3, 3, 2) == 2 //fill ba3 with 2 elements from index 3,
//return num of elements copied, here, 2

assert ba3.toList() == [0, 0, 0, 22, 13, 0]

assert fis.read(ba3) == 1 //return num of elements copied, here, 1
assert ba3.toList() == [88, 0, 0, 22, 13, 0]

assert fis.read(ba3) == -1 //return -1 if already at end-of-stream

//true if this input stream support the mark() and reset() methods...
if (fis.markSupported()) {

fis.reset ()

//reset reading to beginning of stream if mark() hasn't ever been called

assert fis.read() == 21

fis.mark(0) //mark this position in the stream; argument has no meaning here
fis.read (new bytel[4])

fis.reset () //reset reading to where the last mark() method was called
assert fis.read() == 34
}
fis.close()
try{ fis.read(); assert 0 }catch(e){ assert e instanceof IOException }

new File('TestFile.txt') .delete() // delete the file used by this example

Readers and Writers are streams of Characters:

def fw= new FileWriter('TestFile.txt')

//These methods are available for all writers, not just for FileWriter:

['a', 'b']l.each{ fw.write(it as char) } //write out the supplied character
['ed', 'efg'].each{ fw.write(it) } //write out the supplied string
fw.flush ()

fw.write(['h', 'i', 'j'] as char[]

fw.write(['h', 'i', 'j', 'k', '1l', 'm'] as charl[], 3, 2)

//write 2 chars from array starting at index 3
fw.write ('klmnopqg', 2, 4) //write 4 chars from string starting at index 2
fw.append('q' as char). //these Java 5.0 methods allow chaining
append ('rstuv') .

append ('uvwxyz', 2, 6)
//use subsequence from index 2 to index 6 of supplied string

fw.close ()
try{ fw.write('z'); assert 0 }catch(e){ assert e instanceof IOException }

//no writing after file closed

assert new File('TestFile.txt') .readLines() == ['abcdefghijklmnopgrstuvwxyz']

def fr= new FileReader('TestFile.txt')

//These methods are available for all readers, not just for FileReader:
if (fr.ready()) {

assert fr.read() == 'a'

fr.skip(2) //skip over, here, 2 chars
def ca2= new char[3]

fr.read(ca2)

assert ca2.tolList()*.toString() == ['d', 'e', 'f']

def ca3= new char[6]

assert fr.read(ca3, 3, 2) == 2 //fill ca3 with 2 elements from index 3,
//return num of elements copied, here, 2
assert ca3.toList()*.toString() == ['\0', '\o', '\o', 'g', 'h', '\0']
//similar to InputStream method
fr.skip(20)

assert fr.read(ca3) == -1 //return -1 if already at end-of-stream

//true if this input stream support the mark() and reset() methods...

if (fr.markSupported()) {

fr.reset ()

//reset reading to beginning of stream if mark() hasn't ever been called

assert fr.read() == 'a' as char

fr.mark(0) //mark this position in the stream; argument has no meaning here
fr.read(new char[4])

fr.reset () //reset reading to where the last mark() method was called

assert fr.read() == 'b' as char
}
fr.close()
try{ fr.read(); assert 0 }catch(e){ assert e instanceof IOException }

}

new File ('TestFile.txt') .delete() //delete the file used by this example

Closing Streams

When we write to an output stream or writer such as FileWriter, we should always close() it in some way:

//here, because we don't close() the FileWriter, if there's an IOException,
//some written data may be lost...
def fw= new FileWriter('TestFilel.txt')

try(

fw.write ('abc\r\ndefg')

throw new IOException('') //simulate error on write() in previous line
}catch(e){ }
assert new File ('TestFilel.txt') .readLines() .toList() == []

//nothing written because wasn't closed or flushed
new File('TestFilel.txt').delete()
assert new File('TestFilel.txt').exists() //not deleted because wasn't closed

//here, we close() the FileWriter in a 'finally' block, not losing any written

//data. ..
def fw2= new FileWriter('TestFile2.txt')
try(
try(
fw2.write ('abc\r\ndefg')
throw new IOException('') //simulate error on write() in previous line
}finally{

fw2.close() //or flush() file so no data will be lost when exception thrown
}
}catch(e){ }
assert new File ('TestFile2.txt').readLines() == ['abc', 'defg']
//contents written OK
new File('TestFile2.txt') .delete()
assert ! new File('TestFile2.txt').exists() //file deleted OK

//using withWriter () always closes the File, whatever is thrown inside
//closure. ..
try(
new File('TestFile3.txt').withWriter(){ w->
w.write ('abc\r\ndefg')
throw new IOException('') //simulate error on write() in previous line
}
}catch(e){ }
new File('TestFile3.txt') .delete()
assert ! new File('TestFile3.txt').exists()
//deleted OK because withWriter () closed the file

We can choose from many such methods to read and write characters to streams, where the stream is always closed automatically. Here's so
methods which use a Reader and/or Writer. Although these examples use Files, all these methods work for other streamed resources also.

new File('TestFilel.txt').withWriter{ w->
w<< 'abc' << 'def' //operator syntax
w.leftsShift('ghi') .leftShift('jkl') //equivalent method name

}

//file overwritten because it already exists...
new File('TestFilel.txt').withWriter ('unicode'){ w->
w<< 'abcdefghij'

new File ('TestFilel.txt').withWriterAppend('unicode'){ w->
w<< 'klmnop' //although appending, unicode marker OxFEFF also added

//here, we'll use concatenation format for string because it's easier to read
def fw= new FileWriter('TestFilel.txt')
fw.withWriter{ w->

[tab,cd\n' + 'efg\n' + 'hi,jk\n' + '1°', ‘mn,op‘].each{

w<< it

new File('TestFilel.txt').withReader{ r->
assert r.read() == 'a'

def list= []

new File ('TestFilel.txt').eachLine{
list<< it

}

assert list == ['ab,cd', 'efg', 'hi,jk', 'lmn,op']

assert new File('TestFilel.txt') .readLines() ==
['ab,cd', 'efg', 'hi,jk', 'lmn,op'l]

assert new File('TestFilel.txt') .text ==
'ab,cd\n' + 'efg\n' + 'hi,jk\n' + 'lmn,op' //property

//filter lines from file, and write to writer...
def fw2= new FileWriter('TestFile2.txt')
new File('TestFilel.txt').filterLine (fw2){ line->
! line.contains('g')
}
assert new File ('TestFile2.txt') .text ==
'ab,cd\r\n' + 'hi,jk\r\n' + 'lmn,op\r\n'
// \n was changed to \r\n for Windows

def fw2a= new FileWriter('TestFile2.txt')
new FileReader ('TestFilel.txt').filterLine(fw2a){ line->
! line.contains('g')
}
assert new File ('TestFile2.txt') .text ==
tab,cd\r\n' + 'hi,jk\r\n' + 'lmn,op\r\n’'

def fr2= new FileReader('TestFile2.txt')

assert [fr2.readLine(), fr2.readLine()] == ['ab,cd', null]
//known bug: only returns correctly on first call

fr2.close()

new FileReader ('TestFile2.txt').withReader{ r->
def ca= new char[25]
r.read (ca)

assert ca.toList().join('').trim() == 'ab,cd\r\n' + 'hi,jk\r\n' + 'lmn,op'
}
def list2= []
new FileReader ('TestFile2.txt').splitEachLine(','){ line->
list2<< line
}
assert list2 == [['ab', 'cd'l, ['hi', 'jk']l, ['lmn', 'op'] 1]

def fw2b= new FileWriter('TestFile2.txt')
new FileReader ('TestFilel.txt').transformLine (fw2b){ line->
if (line.contains(',')) line += ', z'
line
}
assert new File('TestFile2.txt') .text ==
tab,cd,z\r\n' + 'efg\r\n' + 'hi,jk,z\r\n' + 'lmn,op,z\r\n'
def fw2c= new FileWriter('TestFile2.txt')
new FileReader ('TestFilel.txt').transformLine (fw2c){ line->
if (line.contains(',')) line += ', z'
line
}
assert new File ('TestFile2.txt') .text ==
tab,cd,z\r\n' + 'efg\r\n' + 'hi,jk,z\r\n' + 'lmn,op,z\r\n'

def fw2d= new FileWriter ('TestFile2.txt')

new FileReader ('TestFilel.txt').transformChar (fw2d){ ch->
if(ch == ', ") ch= '***!
ch

}

assert new File ('TestFile2.txt') .text ==

tab***cd\n' + 'efg\n' + 'hi**xjk\n'

+ 'lmn***op' // \n not converted

[new File ('TestFilel.txt'), new File('TestFile2.txt')].each{ it.delete() }
//delete files created by this example

Some methods which use an input and/or output stream which, although using Files in the examples, all work for other streamed resources also:

new File ('TestFilel.txt').withOutputStream{ os->
os<< ([95, 96] as byte[]l) //operator syntax for byte arrays
os.leftShift ([97, 98, 99] as bytel[]l) //equivalent method name

}
assert new File('TestFilel.txt') .readBytes() .toList() == [95, 96, 97, 98, 99]

def list= []
new File ('TestFilel.txt').eachByte(){ b->
list<< b

}

assert list == [95, 96, 97, 98, 99]

new FileOutputStream('TestFilel.txt') .withStream{ os->
os.write([100, 101, 102, 103] as bytel[])

def list2= []
new FileInputStream('TestFilel.txt').eachByte(){ b->
list2<< b

}

assert list2 == [100, 101, 102, 103]

new File ('TestFilel.txt').withInputStream{ is->
def ba= new byte[5]
is.read (ba)
assert ba == [100, 101, 102, 103, 0]

new FileInputStream('TestFilel.txt').withStream{ s->
def ba= new byte[5]
s.read (ba)
assert ba == [100, 101, 102, 103, 0]

assert new FileInputStream('TestFilel.txt').text == 'defg'
assert new FileInputStream('TestFilel.txt').getText ('unicode') == "'

new FileInputStream('TestFilel.txt').withReader{ r->
assert r.read() == 'd’

new FileOutputStream('TestFile2.txt') .withWriter ('unicode'){ w->
w<< !

}

assert new FileInputStream('TestFile2.txt').getText ('unicode') == "'

new FileOutputStream('TestFile2.txt') .withWriter{ w-»>
w<< new FileInputStream('TestFilel.txt')
//send contents of input stream directly to output stream
w<< 2.495 << '\n' //send an object to output stream as string, returning
//a writer, then send another object to that writer
w<< [3,4,5]
//send another object to output stream as string, returning a writer

}

assert new FileInputStream('TestFile2.txt').text == 'defg2.495\n' + '[3, 4, 5]'

def list3= []
new FileInputStream('TestFile2.txt').eachLine{ line->
list3<< line

}

assert list3 == ['defg2.495', '[3, 4, 5]']
new FileInputStream('TestFile2.txt').readLine() == 'defg2.495'
new FileInputStream('TestFile2.txt').readLines() == ['defg2.495', '[3, 4, 5]']

def fw3= new FileWriter('TestFile3.txt')
new FileInputStream('TestFile2.txt').filterLine (fw3){ line->
line.contains('g")

}

assert new File ('TestFile3.txt') .readLines() == ['defg2.495']

[new File('TestFilel.txt'),

new File ('TestFile2.txt'),
new File ('TestFile3.txt')].each{ it.delete() }

Although the examples above are for files, they're all available for streams, readers, and writers around all other resources also.

Resource-specific Streams

When we met the FilelnputStream, FileOutputStream, FileReader, and FileWriter in the above examples, we constructed them with a single

String. We can also construct them with a file, and add an 'append' flag:

def fos= new FileOutputStream(new File ('TestFile.txt'), true)

(

fos= new FileOutputStream(new File ('TestFile.txt'))

fos= new FileOutputStream('TestFile.txt', true) //appends to the file
fos= new FileOutputStream('TestFile.txt', false) //overwrites the file
fos= new FileOutputStream('TestFile.txt') //overwrites the file
def fis= new FileInputStream(new File ('TestFile.txt'))

fis= new FileInputStream('TestFile.txt')

def fr= new FileReader (new File ('TestFile.txt'))
fr= new FileReader ('TestFile.txt')

def fw= new FileWriter (new File('TestFile.txt'), true) //appends to the file
fw= new FileWriter (new File ('TestFile.txt'), true) //overwrites the file

fw= new FileWriter (new File ('TestFile.txt')) //overwrites the file

fw= new FileWriter ('TestFile.txt', true) //appends to the file

fw= new FileWriter('TestFile.txt', false) //overwrites the file

fw= new FileWriter('TestFile.txt') //overwrites the file

//appends to the file
fos= new FileOutputStream(new File ('TestFile.txt'), false) //overwrites the file
//overwrites the file

There are many other streams, readers, and writers that wrap around specific resources. ByteArraylnputStream and ByteArrayOutputStream

wrap around an array of bytes:

def bais= new ByteArrayInputStream([33, 34, 35] as bytel[])

[33, 34, 35, -1].each{ assert bais.read() == it }
def bais2=

new ByteArrayInputStream([33, 34, 35, 36, 37, 38, 39] as bytel],
[35, 36, 37, 38, -1].each{ assert bais2.read() == it }

def baos= new ByteArrayOutputStream()

baos.write([100, 101, 102, 103] as bytel[])

assert baos.size() == 4

assert baos.toByteArray().toList() == [100, 101, 102, 103]

def baos2= new ByteArrayOutputStream(10)

//we can specify initial size of internal buffer
baos.writeTo(baos2) //we can writeTo any OutputStream
assert baos2.toByteArray () .toList () == [100, 101, 102, 103]
assert baos2.toString() == 'defg'
assert baos2.toString('unicode') == '!
baos2.reset ()
assert baos2.toByteArray () .toList () == []

2,

4

)

CharArrayReader and CharArrayWriter wrap around an array of chars:

def car= new CharArrayReader(['a', 'b', 'c']l as char[])

['a', 'b', 'c', -1].each{ assert car.read() == it }
def car2=

new CharArrayReader(['a', 'b', 'c¢', 'd', 'e', 'f', 'g']l as charl[]l, 2, 4
[te', 'd', 'e', '£', -1].each{ assert car2.read() == it }

def caw= new CharArrayWriter()

caw.write(['a', 'b', 'c', 'd']l as char[])
assert caw.size() == 4
assert caw.toCharArray().toList() == ['a', 'b', 'c', 'd'].collect{ it as char }

def caw2= new CharArrayWriter (10
//we can specify initial size of internal buffer

caw.writeTo(caw2) //we can writeTo any Writer

assert caw2.toCharArray().toList() == ['a', 'b', 'c', 'd']l.collect{ it as char }
assert caw2.toString() == 'abcd'

caw2.reset ()

assert caw2.toCharArray () .toList() == []

StringReader and StringWriter wrap around a StringBuffer:

def sr= new StringReader('abcde')
[ta', 'b', 'c', 'd', 'e', -1].each{ assert sr.read() == it }

def sw= new StringWriter()

sw= new StringWriter(10) //we can specify initial size of StringBuffer
sw.write('abcde')

assert sw.buffer.toString() == 'abcde'

assert sw.toString() == 'abcde'

InputStreamReader and OutputStreamWriter are a reader and writer pair that forms the bridge between byte streams and character streams. An
InputStreamReader reads bytes from an InputStream and converts them to characters using a character-encoding, either the default or one
specified by name. Similarly, an OutputStreamWriter converts characters to bytes using a character-encoding and then writes those bytes to an
OutputStream. In this example, we use a FilelnputStream and FileOutputStream, but any InputStream or OutputStream could be used:

def wtr= new OutputStreamWriter (new FileOutputStream('TheOutput.txt'))
wtr<< 'abc'
wtr.close ()

def rdr= new InputStreamReader (new FileInputStream('TheOutput.txt'))
def list= []

rdr.eachLine{ list<< it }

assert list == ['abc'l]

println System.getProperty ("file.encoding")
//to see the default file encoding used

wtr= new OutputStreamWriter (new FileOutputStream('TheOutput.txt'), 'unicode')
wtr<< 'def!

println wtr.encoding //perhaps, 'UTF-16', as 'unicode' above is an alias
wtr.close ()

rdr= new InputStreamReader (new FileInputStream('TheOutput.txt'), 'unicode')
println rdr.encoding

list= []

rdr.eachLine{ list<< it }

assert list == ['def']

The buffered streams, reader, and writer wrap around another, buffering the data read or written so as to provide for the efficient processing of
bytes, characters, arrays, and lines. It's very useful for streams, readers, and writers whose input/output operations are costly, such as files.

def bos= new BufferedOutputStream(new FileOutputStream('TheOutput.txt'))
println bos.buf.size() //see the size of the default buffer

bos= new BufferedOutputStream(new FileOutputStream('TheOutput.txt'), 16384)
//set the buffer size
assert bos.buf.size() == 16384

bos= new File ('TheOutput.txt') .newOutputStream()
//returns a buffered output stream

def bis= new BufferedInputStream(new FileInputStream('TheOutput.txt'))
bis= new BufferedInputStream(new FileInputStream('TheOutput.txt'), 16384)
//set the buffer size
bis= new File ('TheOutput.txt') .newInputStream()
//returns a buffered input stream

def bwtr= new BufferedWriter (new FileWriter ('TheOutput.txt'))
bwtr= new BufferedWriter (new FileWriter ('TheOutput.txt'), 16384)
//set the buffer size

bwtr= new File ('TheOutput.txt') .newWriter() //returns a buffered writer

bwtr= new File ('TheOutput.txt') .newWriter ('unicode')

bwtr= new File ('TheOutput.txt') .newWriter (true) //appends to the file

bwtr= new File ('TheOutput.txt').newWriter ('unicode', true) //appends to the file

def brdr= new BufferedReader (new FileReader ('TheOutput.txt'))
brdr= new BufferedReader (new FileReader ('TheOutput.txt'), 16384)
//set the buffer size
brdr= new File ('TheOutput.txt').newReader() //returns a buffered reader
brdr= new File ('TheOutput.txt') .newReader ('unicode')
brdr= new FileInputStream('TheOutput.txt') .newReader ()

def file= new File ('TheOutput.txt')

def wtr= file.newWriter ()

wtr.writeLine ('abc!')

wtr.writeLine('def')

wtr.newLine() //writes blank line

wtr.close()

def rdr= file.newReader ()

assert rdr.readLine() == 'abc' //doesn't return end-of-line characters
assert rdr.text == 'def' + '\r\n' + '\r\n' //returns end-of-line characters

A SequencelnputStream joins two other streams together:

def fl= new File ('TheOutputl.txt'), f2= new File ('TheOutput2.txt')
fl<< 'abcde'; f2<< 'fghij'

def isl= new FileInputStream(fl), is2= new FileInputStream(£f2)

def sis= new SequenceInputStream(isl, 1is2)

assert sis.text == 'abcdefghij'

SequencelnputStream can also join three or more streams together using a Vector. See the upcoming tutorial on multi-threading for more on
Vectors:

def fl= new File ('TheOutputl.txt'),
f2= new File ('TheOutput2.txt'),
f3= new File ('TheOutput3.txt')
fl<< 'abc'; f2<< 'def'; £f3<< 'ghij’
def list=[new FileInputStream(£fl),
new FileInputStream(f2),
new FileInputStream(£3)]
def sis= new SequenceInputStream(new Vector(list) .elements())
assert sis.text == 'abcdefghij'

A line-number reader keeps track of line numbers:

def w= new File ('TheOutput.txt') .newWriter ()
w.writeLine('abc'); w.writeLine ('defg'); w.close()

def lnr= new LineNumberReader (new FileReader ('TheOutput.txt'))

Inr= new LineNumberReader (new FileReader ('TheOutput.txt'), 16384)
//set the buffer size

assert lnr.lineNumber == 0

assert lnr.readLine() == 'abc'

assert lnr.lineNumber ==

Inr.lineNumber= 4

assert lnr.readLine() == 'defg'’

assert lnr.lineNumber ==

A pushback input stream allows read input to be pushed back on:

def ba= [7, 8, 9, 10, 11, 12, 13] as bytel]

def pis= new PushbackInputStream(new ByteArrayInputStream (ba))

pis= new PushbackInputStream(new ByteArrayInputStream(ba), 1024)
//or specify buffer size

def ba2= new byte[3]

pis.read (ba2)

assert ba2.toList() == [7, 8, 9]

pis.unread(2)
pis.read (ba2)
assert ba2.toList() == [2, 10, 11]

pis.unread([3, 4, 5, 6] as bytell])
pis.read (ba2)

assert ba2.toList() == [3, 4, 5]
pis.read (ba2)
assert ba2.toList() == [6, 12, 13]

A pushback reader provides a similar facility for characters:

def ca= ['g', 'h', 'i', 'J', 'k', '1]', 'm'] as char(]

def prdr= new PushbackReader (new CharArrayReader (ca))

prdr= new PushbackReader (new CharArrayReader (ca), 1024)
//or specify buffer size

def ca2= new char[3]

prdr.read(ca2)

assert ca2.toList() == ['g', 'h', 'i'].collect{it as char}

prdr.unread('b' as int)
prdr.read(ca2)

assert ca2.toList() == ['b', 'j', 'k'].collect{it as char}
prdr.unread(['c', 'd', 'e', 'f'] as charl]

prdr.read(ca2)

assert ca2.toList() == ['c', 'd', 'e'].collect{it as char}
prdr.read(ca2)

assert ca2.toList() == ['f', '1l', 'm'].collect{it as char}
prdr.unread(['a', 'b', 'c', 'd', 'e', 'f', 'g']l as char([], 1, 4)

//offset 1, length 4 of array
prdr.read(ca2)
assert ca2.toList() == ['b', 'c', 'd'].collect{it as char}

A DataOutputStream writes out Groovy structures as bytes, and a DatalnputStream reads such bytes in as Groovy structures:

def baos= new ByteArrayOutputStream(30)
def dos= new DataOutputStream(baos)
assert dos.size() == 0

def bais= new ByteArrayInputStream(baos.buf)
def dis= new DatalInputStream(bais)

dos.writeBoolean(true)
assert baos.toByteArray().toList() == [1] //writes boolean as a l-byte value

assert dis.readBoolean() == true

dos.writeByte(200) //converted to -56, a l-byte value

assert baos.toByteArray () .toList() == [1, -56]
//'true', followed by '200 as byte'
assert dis.readByte() == -56

dis.reset() //resets input stream
dis.skipBytes(l) //we can skip bytes
assert dis.readUnsignedByte () == 200
baos.reset () //flushes backing stream
dis.reset ()

dos.writeBytes ('abcdefg') //writes string as a sequence of bytes
assert baos.toByteArray() as List == [97, 98, 99, 100, 101, 102, 103]
dis.reset ()

def ba= new byte[5]

dis.readFully(ba) //readFully() is converse of writeBytes()

assert ba as List == [97, 98, 99, 100, 101]

dis.reset ()

ba= new byte[5]

dis.readFully(ba, 1, 2) //offset 1 and length 2 of ba
assert ba as List == [0, 97, 98, 0, 0]

baos.reset () ; dis.reset ()

dos.writeChar('a' as int) //writes char as 2-byte value, high byte first

assert baos.toByteArray() as List == [0, 97]
assert dis.readChar() == 'a'
baos.reset () ; dis.reset ()

dos.writeChars('ab') //writes string as a sequence of characters
assert baos.toByteArray() as List == [0, 97, 0, 98]
baos.reset () ; dis.reset() //DatalnputStream has no readChars () method

dos.writeShort (5000) //writes a short as two bytes, high byte first
assert baos.toByteArray() as List == [19, -120] && 20%*256 - 120 == 5000
assert dis.readShort() == 5000

dis.reset ()
dis.readUnsignedShort () == 5000 //similar to readUnsignedByte ()
baos.reset () ; dis.reset ()

dos.writelInt (5000) //writes an integer as four bytes, high byte first

assert baos.toByteArray() as List == [0, 0, 19, -120]
assert dis.readInt() == 5000
baos.reset () ; dis.reset ()

dos.writeLong(5000) //writes a long as eight bytes, high byte first

assert baos.toByteArray() as List == [0, 0, O, O, O, O, 19, -120]
assert dis.readLong() == 5000
baos.reset () ; dis.reset ()

dos.writeDouble (123.456)

//calls Double.doubleToLongBits (), writes as 8 bytes, high first
println baos.toByteArray () as List
assert dis.readDouble () == 123.456d
baos.reset () ; dis.reset ()

dos.writeFloat (123.456f)
//calls Float.floatToIntBits(), writes as 4 bytes, high first
println baos.toByteArray () as List

assert dis.readFloat () 123.456fF

baos.reset(); dis.reset()

dos.writeUTF ('abc')
//writes using "modified UTF-8 encoding in a machine-independent manner"

assert baos.toByteArray() as List == [0, 3, 97, 98, 99]
//UTF-8 adds 0, 3 at beginning
assert dis.readUTF() == 'abc'

dis.reset ()

assert DatalInputStream.readUTF (dis) == 'abc'
//a static method to perform the same action

We'll meet more different types of streams, readers, and writers in the tutorials on Inheritance, Networking, Multi-threading, and others coming up.

ObjectinputStream and ObjectOutputStream sugar

There are also helper methods for Object input/output classes as this example shows:

@Immutable class Point implements Serializable { int x, y }

def file = new File('points.dat')
def square = [new Point (10, 10),
new Point (20, 10)
new Point (20, 20)
new Point (10, 20)]
file.withObjectOutputStream { oos ->
oos.writeObject (square)
}
file.withObjectInputStream(getClass () .classLoader){ ois ->
def saved = ois.readObject()
assert square == saved

JN2515-Closures

Blocks

We can embed a sequence of statements inside "try", called a "block". Defined variables are only visible within that block, not outside:

def a = 'good morning'
try(
def b = 'greetings', c = 'nice day'

//'def' keyword applies to both 'b' and 'c'

assert a == 'good morning'
assert b == 'greetings'
assert a == 'good morning'

//println b //a compile error if uncommented: b not visible here

Using the "def" keyword is optional because we are inside a script:

def ¢ =5

assert c ==

d =6

assert d == 6 //def keyword optional because we're within a script context
assert binding.variables.c == null

assert binding.variables.d ==
//when def not used, variable becomes part of binding.variables

But variables without "def" are visible outside the block:

try{

h =9

assert binding.variables.h == 9
}
assert h == 9

assert binding.variables.h ==

We can't define a variable (using "def") with the same name as another already visible (ie, another "in scope"):

def a = 'island'
//def a = 'snake' //a compile error if uncommented: a already defined
try{

//def a = 'jewel' //a compile error if uncommented: a already defined

}

We can nest blocks:

def a = 123
try{
try{
try{
assert a == 123
}
}
}

Closures

We can take a sequence of statements that refers to its external context and assign it to a variable, then execute it later. It's technically called a

"closable block", commonly called a "closure":

def a = 'coffee'
def ¢ = {
def b = 'tea'
a+ ' and ' + b //a refers to the variable a outside the closure,

//and is remembered by the closure

}

assert c() == 'coffee and tea' //short for c.call()

The closure assigned to the variable (here, c) will remember its context (here, including a) even if that context is not in scope when the closure

called:
def c
try{
def a = 'sugar'
c ={ a} //a closure always returns its only value
}
assert c() == 'sugar'
def d = ¢ //we can also assign the closure to another variable
assert d() == 'sugar'

A closure always returns a value, the result of its last statement:

giveSeven = { 7 }
assert giveSeven() == 7 //value of last statement is returned

giveNull = { def a }

assert giveNull() == null //null returned if last statement has no value

By putting a closure within another, we can create two instances of it:

c={ def e={ 'milk' }; e }

d=c

assert ¢ == d
vl = c()

v2 = c()

assert vl != v2

S

Closure Parameters

We can put parameters at the beginning of a closure definition, and pass values in when we call the closure:

def toTriple = {n -> n * 3}

assert toTriple.call(5) == 15

We can also pass information out using the parameters:

def £ = { list, value -> list << value }

x =[]

f(x, 1)

f(x, 2,) //trailing comma in argument list OK
f(x, 3)

assert x == [1, 2, 3]

One parameter is always available, called "it", if no explicit parameters are named:

c = { it*3 }
assert c('run') == 'runrunrun'

If parameters aren't specified, "it" will still be implicitly defined, but be null:

//c = { def it = 789 }
//a compile error when uncommented: 'it' already implicitly defined
c = { valuel -> def it = 789; [valuel, it] }

//works OK because no 'it' among parameters

assert c(456) == [456, 789]
c = {-> def it = 789; it } //zero parameters, not even 'it', so works OK
assert c() == 789

Parameters can't have the same name as another variable in scope, except for the implicit parameter 'it":

def name= 'cup'
//def c={ name-> println (name) } //a compile error when uncommented:
//current scope already contains name 'name'
c= { def d= { 2 * it }; 3 * d(it) }
//'it' refers to immediately-surrounding closure's parameter in each case
assert c(5) == 30

If there's already a variable called 'it' in scope, we can access it using owner.it:

it= 2
c= { assert it == 3; assert owner.it == }
c(3)

We can pass one closure into another as a parameter:

toTriple = {n -> n * 3}
runTwice = { a, ¢ -> c(c(a))}
assert runTwice(5, toTriple) == 45

We can return a closure from another:

def times= { x -> { y -> x * y }}
assert times(3) (4) == 12

There's a shortcut syntax when explicitly defining a closure within another closure call, where that closure is the last or only parameter:

def runTwice = { a, ¢ -> c(c(a)) }
assert runTwice(5, {it * 3}) == 45 //usual syntax
assert runTwice(5){it * 3} == 45

//when closure is last param, can put it after the param list

def runTwiceAndConcat = { ¢ -> c() + c() }

assert runTwiceAndConcat ({ 'plate' }) == 'plateplate' //usual syntax
assert runTwiceAndConcat (){ 'bowl' } == 'bowlbowl' //shortcut form
assert runTwiceAndConcat{ 'mug' } == 'mugmug’

//can skip parens altogether if closure is only param

def runTwoClosures { a, c1, c2 -> cl(c2(a)) }
//when more than one closure as last params
assert runTwoClosures(5, {it*3}, {it*4}) == 60 //usual syntax

assert runTwoClosures(5){it*3}{it*4} == 60 //shortcut form

Arguments in a closure call can be named. They are interpreted as the keys in a map passed in as the first parameter:

def f= {m, i, j-> i + j + m.x + m.y }

assert f(6, x:4, y:3, 7) == 20

def g= {m, i, j, k, c-> c(d + J + k, m.x + m.y) }
assert g(y:5, 1, 2, x:6, 3){a,b->a * b } == 66

We can enquire the number of parameters for a closure, both from inside and outside the closure:

c= {x,y,z-> getMaximumNumberOfParameters ()
assert c.getMaximumNumberOfParameters ()
assert c(4,5,6) 3

}
3

A closure may have its last parameter/s assigned default value/s:

def e = { a, b, c=3, d='a' -> "${a+b+c}sa" }
assert e(7, 4) == 'l4a’'
assert e(9, 8, 7) == '24a' //override default value of 'c'

A closure can take a varying number of arguments by prefixing its last parameter with Object[], and accessing them using 'each":

def c { arg, Object[] extras ->
def list= []
list<< arg
extras.each{ list<< it }

list
}
assert c(1) == [11
assert c(1, 2) == [1, 2]
assert c(1, 2, 3) == [1, 2, 3]
assert c¢(1, 2, 3, 4) ==1[1, 2, 3, 4]

We can also prefix the last parameter of a closure with Closure[] to pass in a varying number of other closures, even using the shortcut syntax:

def apply { a, Closurel] cc ->
(cc as List) .inject (a){ flo, it-> it(flo) }
//apply the closures nestedly to the initial value

}

assert apply(7){it*3}{it+1}{it*2}.toString() == '44'

When we call a closure with a list argument, if there's no closure defined with a list parameter, the arguments are passed in as separate
parameters:

def c= {a, b, c-> a + b + c}
def list=[1,2,3]
assert c(list) == 6

A closure may be copied with its first parameter/s fixed to a constant value/s, using curry:

def concat = { pl, p2, p3 -> "$pl $p2 Sp3" }
def concatAfterFly = concat.curry('fly')

assert concatAfterFly('drive', 'cycle') == 'fly drive cycle'
def concatAfterFlySwim = concatAfterFly.curry('swim')
assert concatAfterFlySwim('walk') == 'fly swim walk'

In closures, we can use currying and parameter-count-varying together:

def ¢ = { arg, Object[] extras -> arg + ', ' + extras.join(', ') }
def d = c.curry(1) //curry first param only

assert d(2, 3, 4) == '1, 2, 3, 4'

def e = c.curry(1, 3) //curry part of Object[] also

assert e(5) == '1, 3, 5°'

def £ = e.

curry(5, 7, 9, 11) //currying continues on Object
assert £(13, 15) == '1, 3, 5, 7, 9, 11, 13, 15"

We can make closures recursive:

def gcd //predefine closure name
gcd={ m,n-> m%n==0? n: gcd(n,m%n) }
assert gcd(28, 35) == 7

We can even make a recursion of anonymous closures (thanks to 'call' method available for each closure)

def results = [];
{ a, b ->
results << a
a<1l0 && call(b, a+b)
}(1,1)
assert results == [1, 1, 2, 3, 5, 8, 13] // Fibonacci numbers

Functions

A function is similar to a closure, though a function can't access defined variables in its surrounding context:

a = 32 //def keyword not used for this one

def ¢ = 'there', d = 'yonder'
def £(){

assert a == 32 //outer 'a' visible because 'def' keyword wasn't used with it
def ¢ = 'here'

//compiles OK because other defined c¢ invisible inside function definition
//println d //a compile error when uncommented: d not accessable
c

}

assert f() == 'here' //syntax to invoke a function

The def keyword is compulsory when defining functions:

c = { 'here, again' }

assert f() == 'here, again'
//90) { println 'there, again' }
//a compile error when uncommented: def keyword required

We use a special syntax to assign a function to another variable when using the original definition name:

def £(){ 77 } //define function using name 'f'

assert f£() == 77

def g = this.&f //special syntax to assign function to another variable
assert g() == 77

def h = g //don't use special syntax here

assert h() == 77

f = 'something else' //this 'f' is a VARIABLE, not the function NAME
assert f£() == 77 //the function name can't be reassigned

Unlike blocks and closures, we can't nest functions:

def £(){

//def g1(){ println 'there' }
//a compile error when uncommented: can't nest functions
'here'
}
assert f() == 'here'
try(

//def g2 (){ println 'yonder' }
//a compile error when uncommented: can't nest functions
}
c = {

//def g3 (){ println 'outer space' }
//a compile error when uncommented: can't nest functions
}
def h(){

try{ def ¢ = { 'here, again' } }

//we can have blocks and closures within functions

Function Parameters

A function can have parameters, with which we can pass information both in and out:

def foo(list, value)({
list << value

}

x =[]

foo(x, 1)

foo(x, 2)

assert x == [1, 2]

We can have more than one function of the same name if they each have different numbers of (untyped) parameters.

def foo(value){ 'vi' }

def foo(list, value){ 'v2' }
assert foo(9) == 'v1'
assert foo([], 1) == 'v2'

A function returns a value, unless prefixed by void instead of def, when it always returns null:

def £1(){ 7}
) =

assert f1(= 7 //value of last statement is returned

def £2(){ return 8; 3 }
assert f2() == 8 //return explicitly using return

void £3(){ 10 }
assert £3() == null //null always returned

//void £4(){ return 9 }
//a compile error when uncommented: can't use 'return' in a void function

When there's a method and closure with the same name and parameters, the method is chosen instead of the closure:

def c(){'method c'}
def c= {-> 'closure c'}
assert c() == 'method c'

def d(i){'method d'}
def d= {'closure d'}
assert d(9) == 'method d'

Some Similarities with Closures

We can use the shortcut invocation syntax for closure parameters:

def f(Closure c){ c() }

assert £{ 'heehee' } == 'heehee'

A function may have its last parameter/s assigned default value/s:

def dd(a, b=2){ "$a, $b" }
assert dd(7, 4) == '7, 4°'
assert dd(9) == '9, 2!

Arguments in a function call can be named, interpreted as keys in a map passed in as first parameter:

def £f(m, i,){ i + 3 + m.x + m.y }
assert f(6, x:4, y:3, 7) == 20

def g(m, i, 3, k, o){ c(i + J + k, m.x + m.y) }
assert g(y:5, 1, 2, x:6, 3){a,b->a * b } == 66

A function can take a varying number of arguments by prefixing its last argument by Object[], and accessing them using each:

def c(arg, Object[] extras) {
def list= []
list<< arg
extras.each{ list<< it }
list

}

assert c(1)

assert c¢(1, 2, 3, 4)

When we call a function with a list argument, if there's none defined with a list parameter, the arguments are passed in separately:

def x(a, b, c){a + b + c}
def list=[1,2,3]
assert x(list) == 6

We can call a function recursively by referencing its own name:

o

def ged(m, n){ if(m%n == 0)return n; gcd(n,m%n) }
assert ged(28, 35) == 7

JN2525-Classes

Accessing Private Variables

Closures and functions can't remember any information defined within themselves between invocations. If we want a closure to remember a
variable between invocations, one only it has access to, we can nest the definitions inside a block:

def c
try(
def a= new Random() //only closure ¢ can see this variable; it is private to c
c= { a.nextInt(100) }
}
100.times{ println c() }
try{ a; assert 0 }catch(e) //'a' inaccessable here
{ assert e instanceof MissingPropertyException }

We can have more than one closure accessing this private variable:

def counterInit, counterIncr, counterDecr, counterShow
//common beginning of names to show common private variable/s

try(
def count
counterInit= { count= it }
counterIncr= { count++ }
counterDecr= { count-- }
counterShow= { count }
}
counterInit (0)
counterIncr(); counterIncr(); counterDecr(); counterIncr ()
assert counterShow() == 2

We can also put all closures accessing common private variables in a map to show they're related:

def counter= [:]

try(
def count= 0
counter.incr= { count++; counter.show() }
counter.decr= { count--; counter.show() }

counter.show= { count }

counter. incr ()
assert counter.show() == 1

Expando

We can access private variables with an Expando instead. An expando allows us to assign closures to Expando names:

def counter= new Expando ()

try{
def count= 0
counter.incr= { count++; show() }

//no need to qualify closure call with expando name
counter.decr= { count--; show() }
counter.show= { timesShown++; count }
counter.timesShown= 0
//we can associate any value, not just closures, to expando keys
}
counter.incr(); counter.incr(); counter.decr(); counter.incr()
assert counter.show() == 2

An expando can also be used when common private variables aren't used:

def language= new Expando ()
language .name= "Groovy"
language .numletters= { name.size() }

assert language.numlLetters() == 6
language .name= "Ruby"

assert language.numLetters() == 4
language .name= "PHP"
assert language.numLetters() == 3

Like individual closures, closures in expandos see all external variables all the way to the outermost block. This is not always helpful for large
programs as it can limit our choice of names:

def a= 7
try(

//... lots of lines and blocks in between
def exp= new Expando ()

exp.c= {

//def a= 2 //does not compile if uncommented: a is already defined
/] ..
}
}

For single-argument closures, both standalone and within expandos, we can use the implicit parameter as a map for all variables to ensure they're
all valid, though the syntax is not very elegant:

def a= 7
try(
def c= {
it= [it: it]
it.a= 2
it.it + it.a
}

assert c(3) == 5

There is a better way to ensure a chosen variable name will not "shadow" another from the same scope.

Static Classes

Just as we can use functions instead of closures to hide names from the surrounding context, so also we can use static classes instead of
expandos to hide such external names. We use the static keyword to qualify the individual definitions in a class definition:

def a= 7
def a= 7
class Counter{
//variable within a class is called a field...
static public count= 0
//count has 'public' keyword, meaning it's visible from outside class

//function within a class is called a method...
static incr () {
count++

}

static decr () {
//println a //compile error if uncommented:
//a is outside the class and not visible

count --
Counter.incr(); Counter.incr(); Counter.decr(); 5.times{ Counter.incr() }
assert Counter.count == 6

//variables defined within class visible from everywhere else inside class

Methods act quite similar to standalone functions. They can take parameters:

class Counter{
static private count = 0
//qualified with private, meaning not visible from outside class
static incr(n){ count += n }
static decr(count){ this.count -= count }
//params can have same name as a field; 'this.' prefix accesses field
static show(){ count }
}
Counter.incr (2); Counter.incr(7); Counter.decr(4); Counter.incr(6)
assert Counter.show() == 11

We can have more than one method of the same name if they each have different numbers of parameters.

class Counter{
static private count = 0
static incr(count++ }
static incr

{
){ count += n }
static decr () {

)
(n
(){ count-- }
(n

0

static decr){ count -=n }

static show(){ count }
}
Counter.incr(17); Counter.incr(); Counter.decr(4)
assert Counter.show() == 14

Methods are also similar to other aspects of functions:

class U{
static a(x, Closure c){ c(x) }
static b(a, b=2){ "$a, sb" } //last argument/s assigned default values
static c(arg, Object[] extras){ arg + extras.inject(0){ flo, it-> flo+it } }
static ged(m, n){ if(m%n == 0)return n; gcd(n,m%n) }
//recursion by calling own name

}

assert U.a(7){ it*it } == 49 //shorthand passing of closures as parameters
assert U.b(7, 4) == '7, 4°'

assert U.b(9) == '9, 2!

assert U.c(1,2,3,4,5) == 15 //varying number of arguments using Object []
assert U.gcd(28, 35) == 7

We can assign each method of a static class to a variable and access it directly similar to how we can with functions:

class U{
static private a= 11
static f£(n){ a*n }

}

assert U.f(4) == 44

def g= U.&f //special syntax to assign method to variable
assert g(4) == 44

def h = g //don't use special syntax here

assert h(4) == 44

When there's no accessibility keyword like 'public' or 'private’ in front of a field within a static class, it becomes a property, meaning two extra
methods are created:

class Counter{

static count = 0

//property because no accessibility keyword (eg 'public', 'private')

static incr(n){ count += n }

static decr(n){ count -= n }
}
Counter.incr (7); Counter.decr(4)
assert Counter.count == 3
assert Counter.getCount () == 3 //extra method for property, called a 'getter'
Counter.setCount (34) //extra method for property, called a 'setter'
assert Counter.getCount() == 34

When we access the property value using normal syntax, the 'getter’ or 'setter' is also called:

class Counter{
static count= 0 //'count' is a property

//we can define our own logic for the getter and/or setter...
static setCount (n){ count= n*2 } //set the value to twice what's supplied
static getCount(){ 'count: '+ count }
//return the value as a String with 'count: ' prepended

}

Counter.setCount (23) //our own 'setCount' method is called here

assert Counter.getCount () == 'count: 46'
//our own 'getCount' method is called here
assert Counter.count == 'count: 46'

//our own 'getCount' method is also called here
Counter.count= 7
assert Counter.count == 'count: 14'
//our own 'setCount' method was also called in previous line

To run some code, called a static initializer, the first time the static class is accessed. We can have more than one static initializer in a class.

class Counter{
static count = 0
static{ println 'Counter first accessed' } //static initializer
static incr(n){ count += n }
static decr(n){ count -= n }
}
println 'incrementing...'
Counter.incr(7) //'Counter first accessed' printed here
println 'decrementing...'
Counter.decr (4) //nothing printed

Instantiable Classes

We can write instantiable classes, templates from which we can construct many instances, called objects or class instances. We don't use the
static keyword before the definitions within the class:

class Counter{
def count
def incr(n
def decr(

= 0 //must use def inside classes if no other keyword before name
){ count += n }

n){ count -=n }

}

def cl= new Counter () //create a new object from class

cl.incr(2); cl.incr(7); cl.decr(4); cl.incr(6

assert cl.count == 11

def c2= new Counter ()
c2.incr(5); c2.decr(2)
assert c2.count == 3

//create another new object from class

We can run some code the first time each object instance is constructed. First, the instance initializer/s are run. Next run is the constructor with
the same number of arguments as in the calling code.

class Counter{
def count
{ println 'Counter created' }
//instance initializer shown by using standalone curlies
Counter () { count= 0 }
//instance constructor shown by using class name
Counter (n) { count= n }
//another constructor with a different number of arguments
def incr(n){ count += n }
def decr(n){ count -=n }
}
¢ = new Counter() //'Counter created' printed
c.incr(17); c.decr(2)
assert c.count == 15
d = new Counter (2) //'Counter created' printed again
d.incr(12); d.decr(10); d.incr(3)
assert d.count == 7

If we don't define any constructors, we can pass values directly to fields within a class by adding them to the constructor call:

class Dog{
def sit
def number
def train(){ ([sit()] * number).join(' ') }
}
def d= new Dog(number:3, sit:{'Down boy!'})
assert d.train() == 'Down boy! Down boy! Down boy!"'

Methods, properties, and fields on instantiable classes act similarly to those on static classes:

class U{

private timesCalled= 0 //qualified with visibility, therefore a field
def count = 0 //a property
def a(x){ x }

def a(x, Closure c){ c(x) } //more than one method of the same name but
//each having different numbers of parameters

def b(a, b=2){ "$a, $b" } //last argument/s assigned default values
def c(arg, Object[] extras){ arg + extras.inject(0){ flo, it-> flo+it } }
def gcd(m, n){ if(m%n == 0)return n; gcd(n,m%n) }
//recursion by calling own name

}

def u=new U()

assert u.a(7){ it*it } == 49 //shorthand passing of closures as parameters
assert u.b(7, 4) == '7, 4°'

assert u.b(9) == '9, 2!

assert u.c(1,2,3,4,5) == 15 //varying number of arguments using Object []
assert u.gcd(28, 35) == 7

u.setCount (91

assert u.getCount () == 91

A class can have both static and instantiable parts by using the static keyword on the definitions that are static and not using it on those that are
instantiable:

class Dice(

//here is the static portion of the class...
static private count //doesn't need a value
static{ println 'First use'; count = 0 }

static showCount () { return count }

//and here is the instantiable portion...
def lastThrow
Dice() { println 'Instance created'; count++ }

//static portion can be used by instantiable portion, but not vice versa

def throww() {
lastThrow = 1+Math.round(6*Math.random()) //random integer from 1 to 6

return lastThrow

}
}
dl = new Dice() //'First use' then 'Instance created' printed
d2 = new Dice() //'Instance created' printed
println "Dice 1: ${(1..20).collect{dl.throww()}}"
println "Dice 2: ${(1..20).collect{d2.throww()}}"
println "Dice 1 last throw: $dl.lastThrow, dice 2 last throw: $d2.lastThrow"
println "Number of dice in play: ${Dice.showCount ()}"

A class can have more than one constructor:

class A{
def list= []
AQ){
list<< "A constructed"
}
A(int 1) {
this ()
//a constructor can call another constructor if it's the first statement
list<< "A constructed with $i"
}
A(String s){
this (5)
list<< "A constructed with '$s'"
}
}

def al= new A()
assert al.list == ["A constructed"]

def a2= new A(7)

assert a2.list.collect{it as String} == [
"A constructed",
"A constructed with 7",

def a3= new A('bird')

assert a3.list.collect{it as String}
"A constructed",
"A constructed with 5",
"A constructed with 'bird'",

Categories

When a class has a category method, that is, a static method where the first parameter acts like an instance of the class, we can use an
alternative 'category' syntax to call that method:

class View(
def zoom= 1
def produce (str){ str*zoom }
static swap (self, that){ //first parameter acts like instance of the class
def a= self.zoom
self.zoom= that.zoom
that.zoom= a
}
}
def vl= new View(zoom: 5), v2= new View(zoom: 4)
View.swap(vl, v2) //usual syntax
assert vl.zoom == 4 && v2.zoom ==
use (View) { vl.swap(v2) } //alternative syntax
assert vl.zoom == 5 && v2.zoom ==
assert vl.produce('a') == 'aaaaa'

We can also use category syntax when the category method/s are in a different class:

class View(
static timesCalled= 0 //unrelated static definition
def zoom= 1
def produce (str){ timesCalled++; str*zoom }
}
class Extraf{
static swap (self, that){ //first parameter acts like instance of View class
def a= self.zoom
self.zoom= that.zoom
that.zoom= a

}
}
def vl= new View(zoom: 5), v2= new View(zoom: 4)
use (Extra){ vl.swap(v2) }
//alternative syntax with category method in different class
assert vl.zoom == 4 && v2.zoom ==
assert vl.produce('a') == 'aaaa'

Many supplied library classes in Groovy have category methods that can be called using category syntax. (However, most category methods on
Numbers, Characters, and Booleans do not work with category syntax in Groovy-1.0)

assert String.format('Hello, %1$s.', 42) == 'Hello, 42.
use (String) {

assert 'Hello, %1$s.'.format(42) == 'Hello, 42.'
}

Far more common are supplied library classes having category methods in another utility class, eg, List having utilities in Collections:

def list= ['a', 7, 'b', 9, 7, 7, 2.4, 7]
Collections.replaceAll(list, 7, 55) //normal syntax
assert list == ['a', 55, 'b', 9, 55, 55, 2.4, 55]
list= ['a', 7, 'b', 9, 7, 7, 2.4, 7]

use (Collections) {
list.replaceAll (7, 55) //category syntax

}

assert list == ['a', 55, 'b', 9, 55, 55, 2.4, 55]

We can call category methods inside other category methods:

class Extras({
static f(self, n){ "Hello, $n" }
}
class Extras2{
static g(self, n){
Extras.f (self, n)

}
static h(self, n){
def ret
use (Extras) { ret= self.f(n) } //call Extras.f() as a category method
ret
}
}
assert Extras.f (new Extras(), 4) == 'Hello, 4'
assert Extras2.g(new Extras2(), 5) 'Hello, 5°'
assert Extras2.h(new Extras2(), 6) == 'Hello, 6'
class A{ }
def a= new A()
use (Extras) {
assert a.f(14) == 'Hello, 14'
}
use (Extras2) {
assert a.g(1l5) == 'Hello, 15'
assert a.h(16) == 'Hello, 16' //call category method within another
}

But we can't call category methods inside another category method from the same class:

class Extras({
static f(self, n){ "Hello, $n" }
static g(self, n){ f(self, n) }
static hl(self, n){ £(n) } //calling f without first parameter only valid
//when called within a category method
static h2(self, n) {
def ret
use (Extras) {
ret= self.f(n)
} //class as category within itself only valid if method wasn't called

)
)

//using category syntax

ret
}
}
assert Extras.f (new Extras(), 4) == 'Hello, 4'
assert Extras.g(new Extras(), 5) == 'Hello, 5'
try{ Extras.hl(new Extras(), 6); assert 0 }
catch(e){ assert e instanceof MissingMethodException }
assert Extras.h2(new Extras(), 7) == 'Hello, 7'

class A{ }
def a= new A()
use (Extras) {

assert a.f(14) == 'Hello, 14'
assert a.g(1l5) == 'Hello, 15'
assert a.hl(16) == 'Hello, 16'

try{ a.h2(17); assert 0 }
catch(e){ assert e instanceof GroovyRuntimeException }

A lot of entities in Groovy are classes, not just the explicit ones we've just learnt about. Numbers, lists, sets, maps, strings, patterns, scripts,
closures, functions, and expandos are all implemented under the hood as classes. Classes are the building block of Groovy.

JN2535-Control

A Groovy script is a sequence of statements:

def a= 1 i

assert "a is $a" == 'a is 1!

def b= 2; assert "b is $b" == 'b is 2 :
//if two statements on one line, separate by semicolons

def c= 3; ; def d= 4 //empty statement in between i

When defining classes, we can provide 'asType' methods to convert the class into another using the 'as' operator. Classes we've seen in previous
tutorials that convert to another using 'as' (eg, Integer, BigDecimal, String) use the 'asType' method under the hood:

class A{
def x
Object asType(Class c){
if (¢ == B) return new B (x:x*3)
}
}

class B{
def x

}

def a= new A(x:3)

def bl= a.asType(B)
assert bl.class == B && bl.x == 9

def b2= a as B //more common, shortcut syntax for asType ()
assert b2.class == B && b2.x ==

We can use 'as' to convert a list into a class instance using the list elements as constructor arguments:

class A{
int x,y
A(x,y){ this.x=x; this.y=y }
String toString(){ "x: $x; y: Sy" }
}
def a= [1,2] as A
assert a.class == A && a.toString() == 'x: 1; y: 2'

Conditional Statements

The if and if-else statements let us choose subsequent statements to execute based on a condition:

def x= 7
if(x > 4){ println 'x is greater than 4' } //if-statement (no 'else' clause)

if(x > 4) println 'x is greater than 4'
//curlies optional if only one statement
//if-else statement...
if(x > 4)
println 'x is greater than 4'
telse{
println 'x is less than or equal to 4'

}

if(x > 8) println 'x is greater than 8'
//again, curlies optional if only one statement
else println 'x is less than or equal to 8'

//an 'else' clause always belongs to
def result
if(x > 4)
if(x > 8) result= 'x is greater than 8'
else result= 'x is less than or equal to 8'
//a single 'else' with two 'if' clauses belongs to the innermost
assert result == 'x is less than or equal to 8'

The meaning of the 'in' operator depends whether its context in the code is conditional or iterative. When in a conditional context, the 'isCase'
method of the target is invoked:

class A{
boolean isCase (Object o) {
if (o == 'A') return true
else return false

def a= new A()

assert a.isCase('A')
assert 'A' in a //more common, shortcut syntax for isCase()

assert ! (a.isCase('Z')
assert ! ('Z' in a) //more common, shortcut syntax for isCase()

The switch statement inspects an expression and resumes execution from the first matching case-expression, ie, regex matched, list or set or
range contained in, class an instance of, or object equal to:

def values= [
‘abc': 'abc',
'xyz': 'list',
18: 'range',
31: BigInteger,
'dream': 'something beginning with dr',
1.23: 'none',
]
values.each{
def result
switch(it.key){
case 'abc': //if switched expression matches case-expression, execute all
//statements until 'break'
result= 'abc'
break
case [4, 5, 6, 'xyz']l:
result= 'list'
break
case 'xyz': //this case is never chosen because 'xyz' is matched by
//previous case, then 'break' executed
result= 'xyz'
break
case 12..30:
result= 'range'
break
case Integer:
result= Integer //because this case doesn't have a 'break',6 result
//overwritten by BigInteger in next line
case BigInteger:
result= BigInteger
break
case ~/dr.*/:
result= 'something beginning with dr'
break
case {it instanceof Integer && it>30}: //use Closure
result= 'result is > 30
break
default:
result= 'none'
}

assert result == it.value

When we supply our own values in the case-expression, the 'isCase' method is invoked to determine whether or not the switch-expression is
matched. If there's no 'isCase' method, the 'equals' method is used to test for equality:

class A{
boolean isCase (Object switchvalue){ //'isCase' method used for case-expression
if (switchvalue == 'Hi') return true
else return false
}
}
switch('Hi'){
case new A():
assert true
break
default:
assert false

class B{

boolean equals(Object switchvalue){ //'equals' method used for case-expression
this.class == switchValue.getClass()

}
}

switch(new B()){
case new B():
assert true
break
default:
assert false

Iterative Statements

The while statement lets us iterate through a block of code:

def x= 0, y= 0
while(x < 5){

X++
Y += X
assert x == 5 && y == 15

while(x < 10) x++ //curlies optional if only one statement
assert x == 10

while(x < 15){ //we can break out of a while-loop using 'break'
X++
if(x == 12) break

}

assert x == 12
while(x != 15 && x != 18){
//we can jump to the next iteration of a while-loop using 'continue'
X++
if((x == 15){
X++
continue
}
}
assert x == 18

We've already seen the 'each' and other related method calls, which emulate the while-statement at a higher level of abstraction, but with some
restrictions: the loop variable isn't available outside the loop, no guarantees are made about the order of iteration through the collection, and the
'break’, ‘continue’, and 'return' commands aren't available:

int n=1
while(n <= 5){

def y= 0
(1..n) .each{ //loop variable, here 'it', not available outside loop
y += it

//if(y > 8) break
//a syntax error when uncommented: 'break' command not available here
}

assert y == (n+l)*(n/2.0) //another way to add the numbers 1 to n
n++

}

Other method calls that loop are 'times', 'upto', 'downto’, and 'step'. Like 'each’, they don't allow 'break’, 'continue’, and 'return' commands, but do
make guarantees about the order of iteration:

def a= 2
3.times{

a= a*a
}

assert a == 256

def list= []
1.upto(5) {

list<< it
}

assert list == [1, 2, 3, 4, 5]

list= []
5.3.downto(2.1){ //'upto', 'downto', and 'step' also work with decimal numbers
list<< it

}

assert list == [5.3, 4.3, 3.3, 2.3]

list= []

1.step(9.5, 2.5){
list<< it

}

assert list == [1, 3.5, 6, 8.5]

We can label any statement with a name. Labelling a while loop lets any arbitrarily deep nested statement break out of or continue on from it:

yonder: def d= 4
there: {

def e= 5

here: if(e == 5){

def f= 6

there: def g= 7 //label can repeat a previously-used outer label
}
}

there: def h= 8
//label can repeat a previously-used label at same syntactic level

def i=0, j=0
outer: while(i<5){ //labelling a while loop is especially useful...
j=0
i++
while(j<5){
J++
if(i==3 && j==2) break outer
//...because we can break out of a specified labelled while loop
}
}

assert i==3 && j==2

def outer= 0, inner= 0
outer: while(outer != 5 && outer != 8){
//label can have same name as any variables
inner= 0
outer++
while(inner<5) {
inner++
if (outer==5) {
outer++
continue outer
//we can also continue on from a specified labelled while loop

}
}

assert outer==8

}

For-Statements

For-statements are complex yet powerful iterative statements with many possible formats. When 'in' is used in the iterative context of a
for-statement, the 'iterator' method of the target is invoked. The 'iterator' method must return an Iterator, defining at least the 'hasNext' and 'next'
methods:

class CountToFive{

def n= 0

def iterator() {
hasNext: { n<5 },
next: { n++ },
] as Iterator

def list= []
def counter= new CountToFive ()
for(int i in counter)

list<< 1

}

assert list == [0, 1, 2, 3, 4]

The for-statement works with many kinds of objects (eg, Collection, array, Map, String, regex, File, Reader, InputStream, etc):

def list= []
for(e in [0, 1, 2, 3, 4]){ //iterate over a list
list<< e

}

assert list == [0, 1, 2, 3, 4]

list= []
for(i in 1..9){ //iterate over a range
list<< 1

}

assert list == [1, 2, 3, 4, 5, 6, 7, 8, 9]

list= []

for(e in (3..6).toArray()){ //over an array
list<< e

}

assert list == [3, 4, 5, 6]

list= []
for(e in ['abc':1, 'def':2, 'xyz':3]){ //over a map
list<< e.value

}

assert list as Set == [1, 2, 3] as Set

list= []
for(v in [1:'a', 2:'b', 3:'c']l.values()){ //over values in a map
list<< v

}

assert list as Set == ['a', 'b', 'c'l as Set

list = []
for(¢ in "abc"){ //over the chars in a string
list<< c

}

assert list == ['a', 'b', 'c']

We can use 'break' and 'continue' within a for-loop using 'in":

def list = []
for(¢ in 'abc'){

list<< ¢
if(¢ == 'b') break
}
assert list == ['a', 'b']
list = []
for(¢ in 'abc'){
if(¢ == 'b') continue
list<< ¢
}
assert list == ['a', 'c']

'‘each' methods can also be considered as emulating for-loops at a higher level of abstraction, without the guarantees about the order of iteration,
and the 'break’, 'continue’, and 'return' commands being unavailable:

def list= []

[|a|’ ‘b, ter] .each{
list<< it

}

assert list == ['a', 'b', 'c']

//instead of...

list= []

for(item in ['a', 'b', 'c']){
list<< item

}

assert list == ['a', 'b', 'c']

Another format for the for-statement is the initializer-condition-incrementer format:

def list= []
for(def i=0; i<5; i++){

//first value an initializer, second a condition, third an incrementer
list<< 1

}

assert list == [0, 1, 2, 3, 4]

//equivalent while-statement...
list= []
try(

def i=0 //initializer
while(i<5){ //condition
list<< 1

i++ //incrementer

}
}

assert list == [0, 1, 2, 3, 4]

//for-statement with 'break'

list= []

for(def i=0; i<5; i++){
list<< 1
if(1 ==) break

}

assert list == [0, 1, 2]

//equivalent while-statement with 'break'
list= []
try{
def i=0
while(i<5
list<< 1
if(1 == 2) break
i++

}

—_—

}

assert list == [0, 1, 2]

//for-statement with 'continue'

list= []
for(def i=0; i<5; i++){
if(i == 2){ i++; continue }
//the incrementer isn't executed automatically when we 'continue'
list<< 1
}
assert list == [0, 1, 3, 4]

//equivalent while-statement with 'continue'
list= []
try(
def i=0
while(i<5) {
if(i == 2){ i++; continue }
list<< 1
1++
}
}

assert list == [0, 1, 3, 4]

We can have more than one initializer, and more than one incrementer:

//two initializers and two incrementers...

def list= []

for(def i=0; def j=10; i<5; i++; j++){ //the middle expression is the condition
list<< 1 + j

}

assert list == [10, 12, 14, 16, 18]

//three initializers and three incrementers...

list= []

for(def i=0; def j=10; def k=20; i<3; i++; j++; k++){
list<< 1 + j + k

}

assert list == [30, 33, 36]

//when there's an even number of expressions, the condition is just before
//the middle...
list= []
try{

def i=0

for(def j=10; i<5; i++; j++){

list<< i + jJ

}

}

assert list == [10, 12, 14, 16, 18]

//we can force in more initializers than incrementers by using
//'null' statements...
list= []
for(def i=0; def j=10; i<5; i++; null){
list<< 1 + j
}

assert list == [10, 11, 12, 13, 14]

Operator Overloading

The precedence heirarchy of the operators, some of which we haven't looked at yet, is, from highest to lowest:

S (scope escape)
new () (parentheses)
[]1 (subscripting) () (method call) {} (closable block) I[] (list/map)
?. *. (dots)
~ 1 $ () (cast type)
** (power)
(

++ (pre/post) --(pre/post) +(unary) - (unary)

*
~
oe

+(binary) - (binary)
<< >> >>> <

< <= > >= instanceof in as

We've seen how the 'as' operator is mapped to the asType() method, and how the 'in' operator is mapped to the isCase() and iterator() methods.
Many more operators have equivalent method names. We've seen how [] subscripting has equivalent methods getAt() and putAt() in the
HashMap class. They are also equivalent when we define such methods on our own classes:

class A{

int key

def value

def getAt(int n){ if (key == n) return value }
void putAt (int n, def o){ key= n; value= o }

}

def a= new A()

alll= 'abc' //calls putAt()

assert a[l] == 'abc' //calls getAt()
assert al[2] == null

We've also seen how various operators have equivalent method names in the numerical classes, such as Integer, BigDecimal, float, etc. They,
too, are also equivalent when we define such methods on our own classes:

class OddNumber{ //only gives odd results to operations, adding 1 if necessary
int value
OddNumber (int n){ value= (n%2)? n: n+l }

def power (int n){ value**n }

def multiply(int n){ def i= value*n; (i%2)? i: i+1 }

def div(int n){ int i= value/n; (i%2)? i: i+1 }

def mod(int n){ int i= value - div(n)*n; (i%2)? i: i+1 }
def plus(int n){ int i= value + n; (i%2)? i: i+1 }

def minus(int n){ int i= value - n; (i%2)? i: i+1 }

def and(int n){ n == value }
def or(int n){ n == value || (n == value-1) }
def xor(int n) {n == value-1 }

def leftShift (int n){ value= (n%2)? n: n+l }
def rightShift (int n){ (value * 10**n) + 1 }
def rightShiftUnsigned (int n){ (value * 10**(n*2)) + 1 }

def next (){ new OddNumber (value + 2) }
def previous(){ new OddNumber (value - 2) }

}

def e= new OddNumber (6)

assert e.value == 7

assert e**3 == 343 //calls power ()
assert e*4 == 29 //calls multiply ()
assert e/3 == 3 //calls div()
assert e%3 == -1 //calls mod()
assert e+5 == 13 //calls plus()
assert e-1 == 7 //calls minus()
assert e & 7 //calls and()

assert e | 6 && e | 7 //calls or()
assert e ~ 6 //calls xor()

e<< 2 //calls leftsShift()

assert e.value == 3

assert e>>2 == 301 //calls rightShift ()

assert e>>>2 == 30001 //calls rightShiftUnsigned()
assert (e++).value == 3 //calls next ()

assert e.value ==

assert (++e).value == 7

assert e.value ==

assert (e--).value == 7 //calls previous()
assert e.value ==
assert (--e).value == 3

assert e.value ==

JN3015-Types

We can restrict the types of values a variable may hold by specifying some restricting class instead of 'def":

import org.codehaus.groovy.runtime.typehandling.GroovyCastException

def v= 3 //variable v can hold any value
v= 'helicopter'

v= false
v= new StringBuffer ()
v= null

int i= 15 //variable i can only hold integer values
i= 'A'
assert i == 65 //'A' casted to its integer value

//unable to cast boolean value to integer
try{ i= false; assert 0 }catch(e){ assert e in GroovyCastException }

Closure c= {it * 3} //variable c can only hold Closures
try{ c= false; assert 0 }catch(e){ assert e in GroovyCastException }
//unable to cast boolean value to Closure

StringBuffer s= new StringBuffer ('morning')
//variable s can only hold StringBuffers

try{ s= { it * 5 }; assert 0 }catch(e){ assert e in GroovyCastException }
//unable to cast Closure value to StringBuffer

When we assign values not of a variable's type to the variable, sometimes it may be 'cast' to the type, other times an exception is thrown:

import org.codehaus.groovy.runtime.typehandling.GroovyCastException

int 1
i= 45L; assert i == 451
i= 45.1f; assert i == 45i

try{ i= '42'; assert 0 }catch(e){assert e in GroovyCastException}
try{ i= false; assert 0 }catch(e){assert e in GroovyCastException}

//long similar to int

byte by
by= 200i; assert by == -56

//short similar to byte

float £
f= 123i; assert f == 123.0f
try{ f£= '42.1'; assert 0 }catch(e){assert e in GroovyCastException}

//double similar to float

BigInteger bi
bi= 42L; assert bi == 42g
try{ bi= '421'; assert 0 }catch(e){assert e in GroovyCastException}

BigDecimal bd
bd= 42.1f; assert bd == 42.1g
try{ bd= '4.21'; assert 0 }catch(e){assert e in GroovyCastException}

boolean b

b= 0; assert ! b

b= 1i; assert b

b= 1g; assert b

b= 1.1g; assert b
b= 1.1f; assert b
b= ''; assert ! b
b= 'a'; assert b

b= 'abc'; assert b
b= null; assert ! b

char c
c= 'a'; assert ¢ == ('a' as char)
try{ c= 'abc'; assert 0 }catch(e){assert e in GroovyCastException}

String s

s= 421i; assert s == '42'

s= 42L; assert s == '42'

s= 42g; assert s == '42'

s= 42.1g; assert s == '42.1'

s= 42.100g; assert s == '42.100'
s= 42.1f; assert s == '42.1'

StringBuffer sb
try{ sb= 'abc'; assert 0 }catch(e){ assert e in GroovyCastException }

We can statically type Closure parameters. The casting is more restrictive than for assigning to variables:

import org.codehaus.groovy.runtime.typehandling.GroovyCastException

int 1

def toTriple= {int n -> n * 3}
i= 5

assert toTriple(5) == 15

//a float is cast to an integer when assigning to a variable, but not when
//passing as a parameter...

i= 5.0f

try{ toTriple(5.0f); assert 0 }

catch(e) {assert e.class in MissingMethodException}

//a String can't cast to an integer, either when assigning to a variable or
//passing as a parameter...

try{ i= 'abc'; assert 0 }

catch(e) {assert e.class in GroovyCastException}

try{ toTriple('abc'); assert 0 }

catch(e) {assert e.class in MissingMethodException}

We can also statically type the variable-numbered parameters in a closure:

def ¢ = { int[] args ->
args.toList () .inject (0) { flo, it-> flo + it }

}

assert ¢(5) ==5
assert c(4, 2, 3) == 9
try{ c(2, 'abc'); assert 0 }catch(e){ assert e in MissingMethodException }

We can statically type function parameters:

def f(String s, int i){ ([s]l*i).join(',") }
assert f('abc', 3) == 'abc,abc,abc’

def f(int n, int i){ "$n * $i" } //another function f defined with same
//number of but different types of parameters
assert f(4, 5) == '4 * 5!
assert f('a', 5) == 'a,a,a,a,a’'
//correct function selected based on parameter types...
try{ £(4, 'x'); assert 0 }catch(e){ assert e in MissingMethodException }
//...or no method selected

We can statically type the return type from a function. Casting a returned value of a different type follows the same rules as for assigning to
variables:

String £(){ 'abec' }
assert f() == 'abc'

int g(){ 2.4f }
assert g() == 21

We can statically type method parameters just like we do with function parameters, including selecting a method based on its parameter types, for
both static methods and instance methods:

//static methods. ..
class A{

static f(String s, int i){ ([s]*i).join(',') }

static f(int n, int i){ "$n * $i" } //another method f defined with same
//number of but different types of parameters

}

assert A.f('abc', 3) == 'abc,abc,abc'
assert A.f(4, 5) == '4 * 5!
assert A.f('a', 5) == 'a,a,a,a,a’
//correct method selected based on parameter types...
try{ A.£(4, 'x'); assert 0 }catch(e){ assert e in MissingMethodException }

//...or no method selected

//instance methods. ..

class Counter{
def count = 0
def incr(String n){ count += new Integer(n) }
def incr(int n){ count += n }

}
def c= new Counter (count: 5)
c.incr(3)

c.incr('4")
try{ c.incr(2.5); assert 0 }catch(e){ assert e in MissingMethodException }
assert c.count == 12

Wi

[0)

can statically type the return type from a method, just as we can from a function, both static and instance methods:

class A{
static String £(){ 'abc' }
static int g(){ 2.4f }
byte h(){ 200i }

}

assert A.f() == 'abc'
assert A.g() == 2i
assert new A().h() == -56

Property getters and setters can accept and return any statically-typed value:

class Counter{

def count= 0

void setCount (int n){ count= n*2 } //set the value to twice what's supplied
String getCount(){ 'count: '+ count }

//return the value as a String with 'count: ' prepended

}
def c= new Counter ()
c.count= 23
assert c.count == 'count: 46"

A list can be cast to a class using that class's constructor:

class A{
int x,y
A(x,y){ this.x=x; this.y=y } //2-arg constructor
String toString(){ "x: $x; y: Sy" }
}
A a
a= [1,2] //2-element list causes 2-arg constructor of A to be called
assert a.class == A && a.toString() == 'x: 1; y: 2'

Statically-Typed Arrays

We can statically type an Object array variable:

Object[] oca= new Object [2]
assert oa.class in Object[] && oa.size() == 2 && oal[0,1] == [null, null]

oa= 7 //if we assign another scalar value, it's wrapped into an array
assert oa.class in Object[] && oa.size() == 1 && oal0] == 7

oa= [3, 5] //if we assign another collection value, it's cast to an array
assert oa.class in Object[] && oa.size() == 2 && oal0,1] == [3, 5]

def map= ['a':4, 'b':8, 'c':12]
oa= map
assert oa.class in Object[] && oa.size() == 3
//it's cast to an array of MapEntrys
oa.each{ assert it.key in map.keySet () && it.value == mapl[it.key] }

Wi

[0)

can statically type a variable not only as an array, but as a certain type of array:

int[] ia

ia= 7.5

assert ia.class in int[] && ia.size() == 1 && ial[0] == 7i
//assigned value above cast to an integer array

try{ ia= ['abc', 'def']; assert 0 }catch(e){ assert e in ClassCastException }
//can't cast Strings to Integers

We can instead statically type each array element:

def a= new int([3]

assert al[0] == 0 && al[l] == 0 && a[2] == 0 //default value is 0

al0l= 7.5

assert al[0] == 71 //assigned value in above line was cast to an integer
try{ alll= 'abc'; assert 0 }catch(e){ assert e in ClassCastException }

//can't cast String to an Integer

Statically typing both the variable and each element allows both array assignments and element assignments to be cast or disallowed:

int[] ia= new int([3]

ia[0]= 7.5

assert ial[0] == 7i

ia= 7.5

assert ia.class in int[] && ia.size() == 1 && ial[0] == 7i

A multidimensional array type casts its assigned value in various ways:

//a scalar value is cascadingly wrapped by arrays...
Object[][] ia

ia= 7.5

assert ia in Object[] [] && ia.size() == 1 &&
ia[0] in Object[] && ial[0].size() == 1 &&
iaf0] [0] == 7.5

//a one-dimensional vector value is array-wrapped at the innermost level...
ia= ['a', 'b', 'c']

assert ia in Object[] [l && ia.size() == 3 &&
ia[0] in Object[] && ia[0].size() == 1 &&
ia[0] [0] == 'a' && ia[1l] [0] == 'b' && ial2][0] == 'c'

Interfaces

Groovy enables a construct known as an interface, which classes can implement. We can test for implemented interfaces with the 'in' operator:

class A{} //a standard class definition, though without any fields,
//properties, or methods

def a= new A()

assert a in A

interface X{}
class B implements X{} //a class can implement an interface
def b= new B()
assert b in B && b in X

//'in' tests for the class and for interfaces implemented
assert ! (a in X)

interface Y{}

interface Zz{}

class C implements X, Y, Z{} //a class can implement more than one interface
def c= new C()

assert ¢ in C && ¢ in X && c in Y && c in 2

Interfaces can contain method declarations. Each declared method must be defined in implementing classes:

interface X{
String sayPies (int 1)

}

class A implements X({
String sayPies (int n){ "There are $n pies!" } //sayPies(int) in X defined
String sayBirds(int n){ "There are $n birds!" }
}
def a= new A()
assert a.sayPies(24) == 'There are 24 pies!'

//class B implements X({}
//a compile error when uncommented: sayPies (int) must be implemented

//these each give a compile error when uncommented...
//class C implements X{ String sayPies(float n){ "$n" } } //wrong parameter type
//class D implements X{ Object sayPies(int n){ "$n" } } //wrong return type

An interface can also be composed of other interfaces, using the 'extends' keyword:

interface X{
def x1(int i)
def x2()
}
interface Y{
def x1(int i)
def y()
}
interface Z extends X, Y{ }
//it's OK if a method, here x1(int), is in more than one interface

class A implements Z{
def x1(int i){ i }
def x2(){ 2 }
def y(){ 3}

}

assert new A().x1(1) ==1

We can implement an interface with map syntax:

interface X{
int echo(int i)
def sayTarts(int i)
String sayPies (int 1)
}
def a= [
echo: {n-> n},
sayTarts: {n-> "There are $n tarts!"},
sayPies: {n-> "There are $n pies!" as String},
//explicit cast from GString to String required here

] as X

assert a.echo(12) == 12

assert a.sayTarts(18) 'There are 18 tarts!'
assert a.sayPies(24) == 'There are 24 pies!'

//when interface has only one method, we don't need a map, but can assign and
//cast the closure directly...
interface Y{

def sayCakes (int 1)

}

def b= {n-> "There are $n cakes!"} as Y

assert b.sayCakes(36) == 'There are 36 cakes!'

Interfaces can also have fields, but their values can't be changed:

interface X{
int status= 1 //constant field on interface
int changeCounter ()
}
class A implements X({
int counter= 1 //updateable field on class itself
int changeCounter(){ counter++ }
int changeStatus() { status++ }
}
def a= new A()
a.changeCounter () //field 'counter' can be changed...
try{ a.changeStatus(); assert 0 }catch(e){ assert e in IllegalAccessException }
//...but field 'status' can't

Static Typing with Interfaces

We can use an interface, instead of a class, to statically type a variable, field, parameter, etc:

import org.codehaus.groovy.runtime.typehandling.GroovyCastException

interface X{}

class A implements X{}

class B{}

X a

a= new A()

try{ a= new B(); assert 0 }catch(e){ assert e in GroovyCastException }

Groovy supplies many interfaces we can use to statically type variables. Some have no methods, eg, Serializable, while others have one or m

ore:

class A implements Serializable{}
//Serializable interface marks class A via the 'in' operator
assert A in Serializable

//class B implements Closeable({}
//compile error when uncommented: method close() must be defined

class C implements Closeable{
void close () {}
//Closeable interface signifies that this close() method is present
}
def c= new C()
if (¢ in Closeable) c.close()

We've met the Comparator interface in the tutorial on Collections, and the Iterator interface in the tutorial on Control Structures.

Many Groovy classes we've met implement interfaces, which we can use to statically type variables:

import org.codehaus.groovy.runtime.typehandling.GroovyCastException

List listl= new ArrayList(),
list2= [],
list3= new LinkedList ()
assert listl in Arraylist &&
list2 in ArraylList &&
list3 in LinkedList

Set setl= new HashSet(),
set2= listl,
set3= list3,
set4= new TreeSet ()
assert [setl, set2, set3].every{ it in HashSet } &&
set4 in TreeSet

SortedSet ssl= new TreeSet (),
s82
try{ ss2= new HashSet (); assert 0 }catch(e){ assert e in GroovyCastException }

Map mapl= new HashMap (),
map2= new TreeMap (),
map3= [:],
map4= new LinkedHashMap ()
assert mapl in HashMap &&
map2 in TreeMap &&
[map3, map4].every{ it in LinkedHashMap }

SortedMap sml= new TreeMap (),
sm2
try{ sm2= new HashMap(); assert 0 }catch(e){ assert e in GroovyCastException }

JN3025-Inheritance

Groovy enables one class to extend another, just as interfaces can, though classes extend at most one class. We can test for extended classes
with the 'in' operator, just like with implemented interfaces:

class A{}

class B extends A{}

def b= new B()

assert b in B && b in A

class A1{}

class A2{}

//class C extends Al, A2{}

//compile error when uncommented: a class can extend at most one class

Public instance fields, properties, and methods defined on an extended class are also available on the extending class:

class A{
public int prev //field
int signature //property
String sayPies(int n){ "There are ${prev= signature= n} pies!" } //method
}
class B extends A{
String sayBirds(int n){ "There are $n birds!" }
}

def b= new B()

assert b.sayBirds(17) == 'There are 17 birds!'
assert b.sayPies(11l) == 'There are 11 pies!'
//method sayPies(int) from A acts as part of B
assert b.prev == 11 //field 'prev' from A acts as part of B
b.signature= 19
assert b.signature == 19 //property 'signature' from A acts as part of B
assert b.getSignature() == 19

We can use the 'private' and 'protected' modifiers to restrict the visibility of instance methods, properties, and fields:

class A{

//private methods, properties, and fields are not visible outside the class,
//even in inheriting classes...
private int prevPies

private String sayPies (int n){ "There are ${prevPies= n} pies!" }

//protected methods, properties, and fields are visible in inheriting
//classes (and within the same package)...
protected int prevBeans
protected String sayBeans (int n){ "There are ${prevBeans= n} beans!" }
}
class B extends A{
def testAccesses () {
assert sayPies(23) == 'There are 23 pies!'
//Groovy bug: this private method shouldn't be visible here
try{ prevPies; assert 0 }catch(e){ assert e in MissingPropertyException }
//A's private field 'prevPies' not visible here

assert sayBeans(29) == 'There are 29 beans!'
//A's protected method visible here in an inheriting class
assert prevBeans == 29

//A's protected field visible here in an inheriting class

}
}

def b= new B()
assert b.sayPies(11l) == 'There are 11 pies!'
//Groovy bug: this private method shouldn't be visible here
try{ b.prevPies; assert 0 }catch(e){ assert e in MissingPropertyException }
//A's private field 'prevPies' not visible here

assert b.sayBeans(14) == 'There are 14 beans!'
//this protected method is visible here in the same package it's defined in
assert b.prevBeans == 14

//this protected field is visible here in the same package it's defined in

b.testAccesses ()

Public static fields, properties, and methods are inherited by extending classes:

class A{
static public int numBananas //field

static signature //property

static String sayBananas(int n){ //method

"There are ${numBananas= signature= n} bananas!"
}

}

class B extends A{}

assert A.sayBananas(23) == 'There are 23 bananas!' //method call
assert A.numBananas == 23 //field access

assert A.signature == 23 //property accesses

assert A.getSignature() == 23

assert B.sayBananas(23) == 'There are 23 bananas!' //method call
assert B.numBananas == 23 //field access

assert B.signature == 23 //property access

B.getSignature() == 23 //property access using method syntax

We can make static methods, properties, and fields private or protected:

class A{

static private int numBananas= 0

static private String sayBananas(int n) {
"There are ${numBananas= n} bananas!"

}

static protected int numApples= 0

static protected String sayApples (int n) {
"There are ${numApples= n} apples!"

}

class B extends A{
static testAccesses () {
assert sayBananas(37) == 'There are 37 bananas!'
//numBananas //compile error when uncommented:
//A's private field not visible here

assert sayApples(29) == 'There are 29 apples!'
//numApples //compile error when uncommented:
//A's protected field not visible here in an inheriting class
}
}

assert B.sayBananas(31) == 'There are 31 bananas!'

try{ B.numBananas; assert 0 }catch(e){ assert e in MissingPropertyException }
assert B.sayApples(23) == 'There are 23 apples!'

assert B.numApples == 23

B.testAccesses ()

We can define what's called an "abstract class", a class with only some methods defined, the others being only declarations just like in interfaces.
An abstract class and each method declaration in it must be modified with the keyword 'abstract":

interface X{
def x()
}
interface Y{
def y()
}
abstract class A{
def a(){ println 1 } //method definition
abstract b() //declaration of method only
}
class B extends A implements X, Y{
def x(){ println 2 }
def y(){ println 3 }
def b(){ println 4 } //declared method from abstract class A defined here

Whether a method is static or not is part of its definition, not its declaration. So interface and abstract methods may not be declared static.

interface X{
def x()
//static x1() //error when uncommented: interface methods can not be static
}
interface Y{
def y()
}
abstract class A{
static a(){ println 1 }
abstract b()
abstract c()
//abstract static cl()
//error when uncommented: abstract methods can not be static
}
class B extends A implements X, Y{
static x(){ println 2 }
def y(){ println 3 }
static b(){ println 4 }
def c(){ println 5 }

At the other end from abstract classes and methods are "final classes" and "final methods". A final class may not be extended; a final method may
not be overriden:

class A{
final a(){ 11 }
def b(){ 12 }
}
final class B extends A{
//def a(){ 15 } //compile error when uncommented: can not override final A.a()
def b(){ 16 }
}

//class C extends B{} //compile error when uncommented: can not extend final C

Constructors

Just as a class's constructor can call another constructor at the beginning of its code, so also it can call a constructor on the superclass at the
beginning of its code:

class A{
def list= []
AQ){
list<< "A constructed"
}
A(int 1) {
this()
list<< "A constructed with si"
}
}
class B extends A{
B(){
list<< "B constructed"
}
B(String s) {
super (5) //a constructor can call its superclass's constructor if it's
//the first statement
list<< "B constructed with 'S$s'"
}
}

def bl= new B('kea')
assert bl.list.collect{it as String}
"A constructed",
"A constructed with 5",
"B constructed with 'kea'",
]
def b2= new B()
assert b2.list == [
"A constructed",
//default parameterless constructor called if super () not called
"B constructed",

1

Using Classes by Extending Them

Some classes supplied with Groovy are intended to be extended to be used. For example, FilterinputStream, FilterOutputStream, FilterReader,
and FilterWriter:

//When not extended, FilterOutputStream simply passes its method calls to the
//wrapped stream.. .
try(
def fos= new FilterOutputStream(new FileOutputStream('abc.txt'))
fos.write(331)
fos.write([34,35,36] as bytel[])
fos.write([34,35,36,37,38,39,40] as bytell, 3, 2)
fos.close()
def fis= new FilterInputStream(new FileInputStream('abc.txt'))
def ba= new byte[6]
fis.read (ba)
assert ba.toList() == [33,34,35,36,37,38]

//We can extend FilterOutputStream to provide the logic for the filter...
class EvenNumberOutputStream extends FilterOutputStream(
EvenNumberOutputStream (OutputStream out) {
super (out)

}
def write(int i) {
if(i%2 == 0) super.write(i) //call method of same name in the super-class
}
def write(bytel]l ba)
super.write(ba.toList().findAll{ it%2 == 0 } as bytel[])
}
def write(bytel[] ba, int start, int size){
this.write(balstart..<(start+size)] as bytel[])
//another way to call method of same name in same class definition
}
}

try{ //...then call the methods...
def fos= new EvenNumberOutputStream(new FileOutputStream('abc.txt'))
fos.write(331)
fos.write([34,35,36] as bytel[])
fos.write([34,35,36,37,38,39,40] as bytell, 3, 2)
fos.close()
def fis= new FilterInputStream(new FileInputStream('abc.txt'))
def ba= new byte[6]
fis.read (ba)
assert ba.toList() == [34,36,38,0,0,0]

We can similarly extend FilterInputStream, FilterReader, and FilterWriter.

The Object Hierarchy

All classes are arranged in a hierarchy with java.lang.Object as the root. Here are those we've met so far; those labelled as such are abstract and
final classes:

java.lang.Object
java.lang.Boolean (final)
java.lang.Character (final)
java.lang.Number (abstract)
java.lang.Integer (final)
java.lang.Long (final)
java.math.BigInteger
java.math.BigDecimal
java.lang.Short (final)
java.lang.Byte (final)
java.lang.Float (final)
java.lang.Double (final)
java.math.MathContext (final)
java.util.Random
java.util.Date

java.util.TimeZone (abstract)
java.util.SimpleTimeZone
java.util.Calendar (abstract)
java.util.GregorianCalendar
groovy.time.BaseDuration (abstract)
groovy.time.Duration
groovy.time.TimeDuration
groovy.time.DatumDependentDuration
groovy.time.TimeDatumDependentDuration
java.util.AbstractCollection (abstract)
java.util.AbstractList (abstract)
java.util.ArrayList
groovy.lang.Sequence
groovy.lang.IntRange
groovy.lang.ObjectRange
java.util.AbstractSet (abstract)
java.util .HashSet
java.util.TreeSet
java.util.AbstractMap (abstract)
java.HashMap
java.util.LinkedHashMap
groovy.lang.SpreadMap
java.TreeMap
java.util.Collections
java.lang.String (final)
java.lang.StringBuffer (final)
java.util.regex.Pattern (final)
java.util.regex.Matcher (final)
groovy.lang.GroovyObjectSupport (abstract)
groovy.lang.Binding
groovy.lang.Closure (abstract)
groovy.lang.GString (abstract)
groovy.util.Expando
java.text.Format (abstract)
java.text.NumberFormat (abstract)
java.text .DecimalFormat
java.text.DateFormat (abstract)
java.text.SimpleDateFormat
java.text.DecimalFormatSymbols
java.text.DateFormatSymbols
java.io.File
java.io.InputStream (abstract)
java.io.ByteArrayInputStream
java.io.FileInputStream
java.io.FilterInputStream
java.io.BufferedInputStream
java.io.DataInputStream
java.io.LineNumberInputStream
java.io.PushbackInputStream
java.io.SequenceInputStream
java.io.StringBufferInputStream
java.lo.OutputStream (abstract)
java.io.ByteArrayOutputStream
java.io.FileOutputStream
java.io.FilterOutputStream
java.io.BufferedOutputStream
java.io.DataOutputStream
java.io.PrintStream
java.lo.Reader (abstract)
java.io.BufferedReader
java.io.LineNumberReader
java.io.CharArrayReader
java.io.FilterReader (abstract)
java.io.PushbackReader
java.io.InputStreamReader
java.io.FileReader
java.io.StringReader
java.lo.Writer (abstract)
java.io.BufferedWriter
java.io.CharArrayWriter

java.io.FilterWriter (abstract)
java.io.OutputStreamWriter
java.io.FileWriter

java.io.PrintWriter
java.io.StringWriter

JN3035-Exceptions

Exceptions and Errors are together known as Throwables. The Throwables are positioned like so in the Object hierarchy:

java.lang.Object
java.lang.Throwable
java.lang.Error
java.lang.Exception

Errors are fatalities that we would normally want to cause a program failure, while Exceptions are events that we would normally want to handle in
our program. An example of using them with a try-catch statement, a 'try' clause followed by a 'catch’ clause:

//assert 1 == 0 //AssertionError when uncommented

//try{ assert 1 == }catch(e) {}
//AssertionError when uncommented: Exceptions, not Errors, are caught here

try{
assert 1 ==
}catch (Error e) {}
//by specifying Error, prevents bad assertion from causing program failure

try{
assert 1 == 0
}catch (Throwable e){} //specifying Throwable also prevents program failure

//try{ assert 1 == }catch (Object o) {}
//compile error when uncommented:
//only Throwables and its subclasses may be caught

A common idiom for asserting for exceptions is:

try(

'moo' .toLong () //this will generate an exception
assert false //asserting that this point should never be reached
}catch (e) {

assert e in NumberFormatException

}

Some common exceptions associated with Groovy:

assert new java.lang.ArithmeticException ()

assert new java.lang.ArrayIndexOutOfBoundsException ()
assert new java.lang.NullPointerException ()

assert new java.io.IOException()

We can put code within a 'finally’ clause following a matching 'try' clause, so that if the code in the 'try' clause throws an exception, the code in the
finally clause will always execute:

def z
try(
def i= 7, j= 0
try(
def k=1 / j
assert false //never reached due to Exception in previous line
}finally{
z= 'reached here' //always executed even if Exception thrown

}catch (e) {
assert e in ArithmeticException
assert z == 'reached here'

We can attach more than one 'catch’ clause to a 'try' clause, and attach a 'finally' clause also:

class El extends Exception{} //we can define our own exceptions
class E2 extends Exceptionf{}
class E3 extends Exceptionf{}

try(
def z

//multi-catch try-block with finally-clause...
try(
throw new E2()
assert false
}catch(E1l e){
assert false
}catch(E2 e){
z= 'reached here'
throw new E3() //uncaught exception because only one catch clause executed
}catch(E3 e){
assert false //never reached
}finally{
assert z == 'reached here'
throw new E1()
assert false

}

}catch(E1l e){} //catches exception thrown in embedded finally clause

An exception will ripple up through the nested blocks, executing only code in finally' clauses, until caught, or the thread terminates.

class MyException extends Exception{}
def z
try(
try(
throw new MyException ()
assert false
}
}catch (e) {
assert e in MyException
z= 'been here'
}

assert z == 'been here'

Exceptions will also ripple through function and method invocations

class MyException extends Exceptionf{}

def z= []
def met () {
throw new MyException ()
}
try{ met(); assert false }
catch(e) {assert e in MyException; z << 'function'}

class M{
def m(){ throw new MyException() }

}
try{ new M().m(); assert false }
catch(e) {assert e in MyException; z << 'method' }

def c= { throw new MyException() }
try{ c(); assert false }
catch(e) {assert e in MyException; z << 'closure'}

assert z == ['function', 'method', 'closure']

//Method embedded in closure...

def z2
def d= { new M().m(); assert false }
try{ d(); assert false }

)i
catch(e) {assert e in MyException; z2= 'closure d'}
assert z2 == 'closure d'

We can mark a function or method indicating what type of Exception it might throw. This is a useful documentation feature:

class MyException extends Exceptionf{}
def z= []

def met() throws MyException{ // 'function met() may throw MyException'
throw new MyException ()

}

try{ met(); assert false }

catch(e) {assert e in MyException; z << 'function'}

class M{

def m() throws MyException{ // 'method m() of class M may throw MyException'
throw new MyException ()

}
}

try{ new M().m(); assert false }
catch(e) {assert e in MyException; z << 'method' }

assert z == ['function', 'method']

JN3515-Interception

We can use the ProxyMetaClass to intercept methods in a class within a selected block for the current thread.

Interceptors with ProxyMetaClass

By using ProxyMetaClass, we can attach an interceptor to a class for a block of code. The Groovy-supplied Interceptor interface has three

methods. The beforelnvoke() method specifies code to be executed before the intercepted method, the dolnvoke() indicates whether to execute

the intercepted method, and afterinvoke() executes after the intercepted method finishes, or after a false-returning dolnvoke(). The result

parameter passed to afterinvoke() is the result of executing the method, or what was returned from beforelnvoke() if the intercepted method

wasn't executed. What afterlnvoke() returns is returned from the method call in the main flow of the program.

class MyClass{
public MyClass (String s){ println "constructing $s" }
public String sayHello(String name) {
println "saying hello to $name"
"Hello " + name //return this value
}
}

class MyInterceptor implements Interceptor{
Object beforeInvoke (Object object, String methodName, Object[] arguments) {
println " BEFORE Sobject .SmethodName S$arguments"
if (methodName == 'sayHello') arguments[0] += ' and family'
//we can change the arguments
null //value returned here isn't actually used anywhere else
}
boolean doInvoke(){ true } //whether or not to invoke the intercepted
//method with beforeInvoke's copy of arguments

Object afterInvoke (Object object, String methodName, Object[] arguments,
Object result) {
println " AFTER Sobject .SmethodName Sarguments: Sresult"
if (methodName == 'sayHello') result= (result as String) + ' and in-laws'
//we can change the returned value
result
}
}

def proxy= ProxyMetaClass.getInstance(MyClass)
//create proxy metaclass for MyClass
proxy.interceptor= new MyInterceptor ()
//attach new interceptor to MyClass's proxy metaclass
proxy.use(
def invoice= new MyClass ('trade')
println invoice.sayHello('Ms Pearl')

}

/*example output:
BEFORE class MyClass .ctor {"trade"}
constructing trade
AFTER class MyClass .ctor {"trade"}: MyClass@ldé63e39
BEFORE MyClass@ldé63e39 .sayHello {"Ms Pearl"}
saying hello to Ms Pearl and family
AFTER MyClass@ld63e39 .sayHello {"Ms Pearl and family"}: Hello Ms Pearl and family
Hello Ms Pearl and family and in-laws

*/

We can invoke a different method instead of the one called:

class MyClass{
public String sayHello(String name) {
println "saying hello to $name"
return "Hello " + name
}
public String sayGoodbye (String name) {
println "saying goodbye to Sname"
return "Goodbye " + name
}
}

class MyInterceptor implements Interceptor{
def toInvoke= true
//so we can change whether or not to invoke the original method
def resultFromSayGoodBye

Object beforeInvoke (Object object, String methodName, Object[] arguments) {
if (object instanceof MyClass && methodName == 'sayHello') {
resultFromSayGoodBye= object .sayGoodbye (arguments [0])
//so we can invoke a different method
toInvoke= false //don't invoke sayHello
}
}

boolean doInvoke(){ toInvoke }

Object afterInvoke (Object object, String methodName, Object[] arguments,
Object result) {
if (object instanceof MyClass && methodName == 'sayHello') {
toInvoke= true
result= resultFromSayGoodBye

}

result

//a utility to match up class, interceptor, and code...
def uselnterceptor= { Class theClass, Class thelnterceptor, Closure theCode->
def proxy= ProxyMetaClass.getInstance(theClass)
def interceptor= thelnterceptor.newInstance ()
//must use dynamic constructor here because class not yet known
proxy.interceptor= interceptor
proxy.use(theCode)
}

uselnterceptor(MyClass, MyInterceptor) {
println new MyClass () .sayHello('Ms Pearl')
}

/*output :

saying goodbye to Ms Pearl
Goodbye Ms Pearl

*/

We can even use interceptors on predefined Java classes:

class MyInterceptor implements Interceptor{
Object beforeInvoke (Object object, String methodName, Object[] arguments) {
null
}
boolean doInvoke(){ true }
Object afterInvoke (Object object, String methodName, Object[] arguments,
Object result) {

if (object instanceof ArrayList && methodName == 'size'){
result = (result as Integer) + 10 //add 10 to size of ArrayLists
}
result

}
}

def uselnterceptor= { Class theClass, Class thelnterceptor, Closure theCode->
def proxy= ProxyMetaClass.getInstance(theClass)
def interceptor= thelnterceptor.newInstance ()
proxy.interceptor= interceptor
proxy.use(theCode)

}

uselnterceptor(ArraylList, MyInterceptor) {
assert ['a', 'b', 'c']l.size() == 13

}

We can prevent methods being intercepted inside the interceptor by using special & notation:

class MyInterceptor implements Interceptor{
Object beforeInvoke(Object object, String methodName, Object[] arguments) {

null

}

boolean doInvoke(){ true }

Object afterInvoke(Object object, String methodName,Object[] arguments,
Object result){
if (object instanceof ArrayList && methodName == 'size') {
result = (result as Integer) + [1,2,3,4,5,6,7,8,9,10].&size()
// & before method name prevents re-interception of method

result

}
}

def uselInterceptor= { Class theClass, Class thelnterceptor, Closure theCode->
def proxy= ProxyMetaClass.getInstance(theClass)
def interceptor= thelnterceptor.newlInstance ()
proxy.interceptor= interceptor
proxy.use(theCode)

}

uselnterceptor(ArraylList, MyInterceptor) {
assert ['a', 'b', 'c']l.size() == 13

Like categories, interceptors are only valid for a certain block in the current thread. We can also combine categories with interceptors in various
ways, also only valid in the current thread:

class MyCategory{
static String categorize(String s){ "categorized: $s" }

}

class StringInterceptor implements Interceptor
Object beforeInvoke (Object object, String methodName, Object[] arguments) {
if (object instanceof String)
use (MyCategory) {
assert object.&categorize() == "categorized: sobject"
}
null
}
boolean doInvoke(){ true }
Object afterInvoke (Object object, String methodName, Object[] arguments,
Object result) {
if (object instanceof String)
result= "intercepted: S$result"
result
}
}

def uselnterceptor= { Class theClass, Class thelnterceptor, Closure theCode->
def proxy= ProxyMetaClass.getInstance(theClass)
def interceptor= thelnterceptor.newInstance ()
proxy.interceptor= interceptor
proxy.use(theCode)

}

uselnterceptor(String, StringInterceptor) {
assert new String('silver').toString() == 'intercepted: silver'

use (MyCategory) {
assert new String('golden') .categorize() ==
'intercepted: categorized: golden'

}

Thread.start{ //no interception in spawned thread...
use (MyCategory) {
assert new String('bronze').categorize() == 'categorized: bronze'
}
}
}

Unintercepted Interceptors

The special & notation for bypassing interceptors handles simple code, but for more complex code we often need our own
Uninterceptedinterceptor:

abstract class UninterceptedInterceptor implements Interceptor
def proxy= null //we need to know the proxy...

abstract Object doBefore(Object object, String methodName,
Object [] arguments)

public Object beforeInvoke(Object object, String methodName,
Object[] arguments) {

proxy.interceptor= null //...so we can turn off interception...
def result
try(
result= doBefore(object, methodName, arguments)
}catch (Exception e) {
throw e
}finally{
proxy.interceptor= this //...and turn interception back on

result

}

abstract boolean doInvoke ()

abstract Object doAfter(Object object, String methodName, Object[] arguments,
Object result)

public Object afterInvoke(Object object, String methodName,
Object[] arguments, Object result) {
proxy.interceptor= null //turn off interception
try(
result= doAfter (object, methodName, arguments, result)
}catch (Exception e) {
throw e
}finally{
proxy.interceptor= this //turn interception back on

result

}
}

class MyInterceptor extends UninterceptedInterceptor(
Object doBefore(Object object, String methodName, Object[] arguments) {
null
}

boolean doInvoke(){ true }

Object doAfter(Object object, String methodName,Object[] arguments,
Object result){
if (object instanceof ArrayList && methodName == 'size'){
result = (result as Integer) + [1,2,3,4,5,6,7,8,9,10].size()
//call ArrayList size () method here without stack overflow

result

}
}

def uselInterceptor= { Class theClass, Class thelnterceptor, Closure theCode->
def proxy= ProxyMetaClass.getInstance(theClass)
def interceptor= thelnterceptor.newInstance ()
proxy.interceptor= interceptor
interceptor.proxy= proxy
//we must now store a proxy reference in the interceptor
proxy.use(theCode)

}

uselnterceptor(ArraylList, MyInterceptor) {
assert ['a', 'b', 'c']l.size() == 13
}

Intercepting many classes in one block

Often, we want to intercept more than one class in one block. This example is of an aliasing interceptor, which disables some English-language
names for selected classes, and replaces them with Spanish-language names. We re-use the Uninterceptedinterceptor class and uselnterceptor

utility from the previous example.

import org.codehaus.groovy.runtime.InvokerHelper

abstract class AliasInterceptor extends UninterceptedInterceptor{
protected aliases= [:]

private toReturn= null, toThrow= false, toInvoke= false

Object doBefore(Object object, String methodName, Object[] arguments) {
if (methodName in aliases.keySet())
toReturn= InvokerHelper.invokeMethod(object, aliases [methodName],
arguments)
//use Spanish names instead
else if(methodName in aliases.values()) toThrow= true
//disable the English names
else toInvoke= true //run other methods unchanged
null

}

Object doAfter(Object object, String methodName, Object[] arguments,
Object result){
if (toReturn != null) {
result= toReturn
toReturn= null
}else if(toThrow) {
toThrow= false
throw new MissingMethodException(methodName, object.getClass(),
arguments)
}else toInvoke= false
result

}

boolean doInvoke(){ toInvoke }

}

class ArrayListAliasInterceptor extends AliasInterceptor{
{aliases.putAll([tamano:'size', todos:'each'])} //Spanish aliases

}

class HashMapAliasInterceptor extends AliasInterceptor(
{aliases.putAll([tamano:'size', todos:'each' 1)}

}

class LinkedHashMapAliasInterceptor extends AliasInterceptor{
{aliases.putAll([tamano:'size', todos:'each'])}

We call the code like so:

def useAliasing= { Closure c->
useInterceptor (ArrayList, ArrayListAliasInterceptor) {
uselnterceptor (HashMap, HashMapAliasInterceptor) {
useInterceptor (LinkedHashMap, LinkedHashMapAliasInterceptor) {
c()

useAliasing{
def a= [1, 3, 5, 7, 9]
println 'size: '+ a.tamano()
//Spanish 'tamano' is an alias for the 'size' method
try{ println a.size(); assert 0 }
catch(e){ assert e instanceof MissingMethodException }
//English 'size' method disabled
a.todos{ println 'item: '+ it }
println '!'

def b= [a:1, c:3, e:5, g:7]

println 'size: '+ b.tamano()

try{ println b.size(); assert 0 }

catch(e){ assert e instanceof MissingMethodException }
b.todos{ println 'item: '+ it }

println '!'

def c= new LinkedHashMap([e:5, g:7, 1:9])

println 'size: '+ c.tamano()

try{ println c.size(); assert 0 }

catch(e){ assert e instanceof MissingMethodException }
c.todos{ println 'item: '+ it }

We can put the cascadingly indented code into a list to make it neater by defining a utility category method on the List class.

class Extras({
static closureInject (List self, Closure base)
def z= []
self.eachWithIndex{ it, i-> z<< {-> it(z[i+1])} }
z<< base
z [0] ()

use (Extras) {
[{c-> uselnterceptor (ArrayList, ArrayListAliasInterceptor){ c() }},
{c-> useInterceptor (HashMap, HashMapAliasInterceptor){ c() }},
{c-> useInterceptor (LinkedHashMap, LinkedHashMapAliasInterceptor){ c() }},

] .closureInject{
def a= [1, 3, 5, 7, 9],
b= [a:1, ¢:3, e:5, g:7],
c= new LinkedHashMap([e:5, g:7, 1:9])

println 'size: '+ a.tamano()

try{ println a.size(); assert 0 }

catch(e){ assert e instanceof MissingMethodException }
a.todos{ println 'item: '+ it }

println "'

println 'size: '+ b.tamano()

try{ println b.size(); assert 0 }

catch(e){ assert e instanceof MissingMethodException }
b.todos{ println 'item: '+ it }

println "'

println 'size: '+ c.tamano()

try{ println c.size(); assert 0 }

catch(e){ assert e instanceof MissingMethodException }
c.todos{ println 'item: '+ it }

Our own ProxyMetaClass

We can define our own proxy meta-classes. One case for which we'd do so is to implement our own style of interceptors, here, an
around-interceptor:

import org.codehaus.groovy.runtime.InvokerHelper

public class MyProxyMetaClass extends MetaClassImpl{
protected adaptee= null
def interceptor= null
MyProxyMetaClass (MetaClassRegistry registry, Class theClass,
MetaClass adaptee) {
super (registry, theClass); this.adaptee = adaptee
}
static getInstance (Class theClass) {
def metaRegistry = InvokerHelper.getInstance().getMetaRegistry ()
new MyProxyMetaClass (metaRegistry, theClass,
metaRegistry.getMetaClass (theClass))
}
void use (Closure closure) {
registry.setMetaClass (theClass, this)
try{ closure.call() }
finally{ registry.setMetaClass (theClass, adaptee) }
}
void use (GroovyObject object, Closure closure) {
object.setMetaClass (this)
try{ closure.call() }
finally{ object.setMetaClass (adaptee) }
}
Object invokeMethod(final Object object, final String methodName,
final Object[] arguments) {
doCall (object, methodName, arguments,
{ adaptee.invokeMethod (object, methodName, arguments) })
}
Object invokeStaticMethod(final Object object, final String methodName,
final Object[] arguments) {
doCall (object, methodName, arguments,
{ adaptee.invokeStaticMethod (object, methodName, arguments) })
}
Object invokeConstructor (final Object[] arguments) {
doCall (theClass, '"ctor", arguments,
{ adaptee.invokeConstructor (arguments) })
}
Object invokeConstructorAt (final Class at, final Object[] arguments) {
doCall (theClass, '"ctor", arguments,
{ adaptee.invokeConstructorAt (at, arguments) })
}
private Object doCall (Object object, String methodName, Object[] arguments,
Closure howToInvoke) {
if (null == interceptor){ return howToInvoke.call() }
interceptor.aroundInvoke (object, methodName, arguments, howToInvoke)

interface AroundInterceptor{
Object aroundInvoke (Object object, String methodName, Object[] arguments,
Closure proceed)

We can then run our code:

class MyInterceptor implements AroundInterceptor{
Object aroundInvoke (Object object, String methodName, Object[] arguments,
Closure proceed) {

println " BEFORE Sobject .$methodName Sarguments"

def result= proceed()

println " AFTER Sobject .s$methodName Sarguments: $Sresult"
result

}
}

class MyClass{
void sayHi(){ System.out.println 'hi' }

}

def interceptor= new MyInterceptor (
def proxy= MyProxyMetaClass.getInstance(MyClass)
proxy.use(

proxy.interceptor= interceptor

new MyClass () .sayHi ()

}

/*outputs:
BEFORE class MyClass .ctor {}
AFTER class MyClass .ctor {}: MyClass@lf5d386
BEFORE MyClass@l1£5d386 .sayHi {}
hi
AFTER MyClass@l1f5d386 .sayHi {}: null
*/

Using many Interceptors with our own ProxyMetaClass

We can only use one interceptor with the ProxyMetaClass supplied by Groovy, so we need to provide our own when attaching more than one
interceptor to a class:

import org.codehaus.groovy.runtime.InvokerHelper

public class MultilInterceptorProxyMetaClass extends MetaClassImpl{
protected adaptee= null
def interceptors= [] //reference a list of interceptors, instead of just one

MultiInterceptorProxyMetaClass(MetaClassRegistry registry, Class theClass,
MetaClass adaptee) {
super (registry, theClass)
this.adaptee = adaptee
if(null == adaptee)
throw new IllegalArgumentException("adaptee must not be null")
}
static getInstance (Class theClass) {
def metaRegistry= InvokerHelper.getInstance ().getMetaRegistry()
new MultiInterceptorProxyMetaClass (metaRegistry, theClass,
metaRegistry.getMetaClass (theClass))
}
void use(Closure closure) {
registry.setMetaClass (theClass, this)
registry.getMetaClass (theClass) .initialize ()
try{ closure.call() }
finally{ registry.setMetaClass (theClass, adaptee) }
}
void use (GroovyObject object, Closure closure) {
object.setMetaClass (this)
try{ closure.call() }
finally{ object.setMetaClass (adaptee) }
}
Object invokeMethod(final Object object, final String methodName,
final Object[] arguments) {
doCall (object, methodName, arguments,
{ adaptee.invokeMethod (object, methodName, arguments) })
}
Object invokeStaticMethod(final Object object, final String methodName,
final Object[] arguments) {
doCall (object, methodName, arguments,
{ adaptee.invokeStaticMethod(object, methodName, arguments) })
}
Object invokeConstructor (final Object[] arguments) {
doCall (theClass, '"ctor", arguments,
{ adaptee.invokeConstructor (arguments) })
}
public Object invokeConstructorAt(final Class at, final Object[] arguments) {
doCall (theClass, '"ctor", arguments,
{ adaptee.invokeConstructorAt (at, arguments) })
}
private Object doCall(Object object, String methodName, Object[] arguments,
Closure howToInvoke) {
if (interceptors == []){ return howToInvoke.call() }
def result
interceptors.each{ //different logic to cater for all the interceptors

result= it.beforeInvoke (object, methodName, arguments)
if (it.doInvoke()){ result= howToInvoke.call() }
it.afterInvoke (object, methodName, arguments, result)

}

result

Using a MultilnterceptorProxyMetaClass for the Observer pattern

A common design pattern is the Observer pattern. Using interceptors, we can abstract the observation code into its own class, the
ObserverProtocol, which can be used by subclasses. It enables us to add and remove observing objects for an observed object. We use method
interception to decouple the observing and observed objects from the observation relationship itself.

abstract class ObserverProtocol implements Interceptor(
private perSubjectObservers

protected getObservers(subject) {

if (perSubjectObservers == null) perSubjectObservers= [:]
def observers= perSubjectObservers[subject]
if (observers == null) {

observers= []

perSubjectObservers[subject]= observers

}

observers

public void addObserver(subject, observer) {
getObservers (subject) << observer

}

public void removeObserver(subject, observer) {
getObservers (subject) .remove (observer)

}

abstract Object beforeInvoke(Object object, String methodName,
Object [] arguments)

abstract boolean doInvoke ()

abstract Object afterInvoke(Object object, String methodName,
Object[] arguments, Object result)

We can extend this ObserverProtocol with domain-specific observers. The example is a Groovy rewrite of one first implemented in AspectJ by Jan
Hannemann and Gregor Kiczales.

public class Screen{ //class to be observed
def name
public Screen(String s){
this.name= s
}
public void display(String s){
println(this.name + ": " + s)
}
}

public class Point{ //class to be observed
def x, y, color
public Point(int x, int y, Color color) {
this.x=x
this.y=y
this.color=color
}
}

class ColorObserver extends ObserverProtocol{
Object beforeInvoke(Object object, String methodName, Object[] arguments) {
null
}
boolean doInvoke(){ true }
Object afterInvoke(Object object, String methodName, Object[] arguments,
Object result){
if (object instanceof Point && methodName == 'setColor') ({
getObservers (object) . each{
it.display ("Screen updated (point subject changed color).")
}
}
result
}
}

class CoordinateObserver extends ObserverProtocol{
Object beforeInvoke(Object object, String methodName, Object[] arguments) {
null
}
boolean doInvoke(){ true }
Object afterInvoke(Object object, String methodName, Object[] arguments,
Object result){
if (object instanceof Point && ['setX', 'setY'].contains(methodName)) {
getObservers (object) . each{
it.display("Screen updated (point subject changed coordinates)."
}
}
result
}
}

class ScreenObserver extends ObserverProtocol({
Object beforeInvoke(Object object, String methodName, Object[] arguments) {
null
}
boolean doInvoke(){ true }
Object afterInvoke(Object object, String methodName, Object[] arguments,
Object result){
if (object instanceof Screen && methodName == 'display'){
getObservers (object) . each{
it.display("Screen updated (screen subject changed message).")
}
}

result

Now we run the program. It first creates five Screen objects (s1, s2, s3, s4, and s5) and one point object, then sets up some observing
relationships (namely, s1 and s2 will observe color changes to the point, s3 and s4 will observe coordinate changes to the point, and s5 will
observe s2's and s4's display method), and finally, make changes to the point, first, the color, then its x-coordinate. The color change triggers s1
and s2 to each print an appropriate message. s2's message triggers its observer s5 to print a message. The coordinate change triggers s3 and s4
to print a message. s4's message also triggers the observer s5.

import java.awt.Color

def colorObserver= new ColorObserver ()
def coordinateObserver= new CoordinateObserver ()
def screenObserver= new ScreenObserver ()

def pointProxy= MultiInterceptorProxyMetaClass.getInstance(Point)
pointProxy.interceptors << colorObserver << coordinateObserver

//multi-interception used here
pointProxy.use{

def screenProxy= MultiInterceptorProxyMetaClass.getInstance(Screen)
screenProxy.interceptors << screenObserver
screenProxy.use{

println("Creating Screen sl,s2,s3,s4,s5 and Point p")
def sl= new Screen('sl'),

s2= new Screen('s2'),
s3= new Screen('s3'),
s4= new Screen('s4'),
s5= new Screen('s5')

s
def p= new Point (5, 5, Color.blue)

println("Creating observing relationships:")

(
println(" - sl and s2 observe color changes to p")
println(" - s3 and s4 observe coordinate changes to p")
println(" - s5 observes s2's and s4's display () method")

colorObserver.addObserver (p, sl)
colorObserver.addObserver (p, s2)
coordinateObserver.addObserver (p, s3)
coordinateObserver.addObserver (p, s4)
screenObserver.addObserver (s2, s5)
screenObserver.addObserver (s4, s5)

println("Changing p's color:")
p.setColor (Color.red)

println("Changing p's x-coordinate:")
p.setX(4)

println("done.")

/*output :

Creating Screen sl,s2,s3,s4,s5 and Point p

Creating observing relationships:

- sl and s2 observe color changes to p

- s3 and s4 observe coordinate changes to p

- s5 observes s2's and s4's display() method

Changing p's color:

sl: Screen updated (point subject changed color) .

s2: Screen updated (point subject changed color) .

s5: Screen updated (screen subject changed message) .
Changing p's x-coordinate:

s3: Screen updated (point subject changed coordinates) .
s4: Screen updated (point subject changed coordinates) .
s5: Screen updated (screen subject changed message) .
done.

*/

Using a MultilnterceptorProxyMetaClass and UninterceptedFriendlyinterceptor for the Decorator pattern

We can use more than one unintercepted interceptor with a proxy meta-class. A good example where this is necessary is the Decorator pattern.
We re-use the MultilnterceptorProxyMetaClass from previous examples, but must write a special unintercepted interceptor, which we call an
UninterceptedFriendlyInterceptor, that can be used as one of many with the MultilnterceptorProxyMetaClass.

abstract class UninterceptedFriendlyInterceptor implements Interceptor
def proxy= null

abstract Object doBefore(Object object, String methodName,
Object [] arguments)

public Object beforeInvoke (Object object, String methodName,
Object[] arguments) {
def thelnterceptors= proxy.interceptors
proxy.interceptors= null
def result
try(
result= doBefore (object, methodName, arguments)
}catch (Exception e) {
throw e
}finally{
proxy.interceptors= theInterceptors
}

result

}

abstract boolean doInvoke ()

abstract Object doAfter(Object object, String methodName,
Object[] arguments, Object result)

public Object afterInvoke (Object object, String methodName,
Object[] arguments, Object result) {

def thelnterceptors= proxy.interceptors
proxy.interceptors= null
try(

result= doAfter (object, methodName, arguments, result)
}catch (Exception e) {

throw e
}finally{

proxy.interceptors= theInterceptors
}

result

For our example Decorator pattern, we'll code an OutputStreamWriter that prints extra if necessary. We use decorators extended from the
UninterceptableFriendlyInterceptor. Firstly, a NewlineDecorator that uses a line-width policy to perhaps place the output on a new line. And
second, a very simple WhitespaceDecorator that ensures there's some whitespace between any two consecutive items output. Each has only
very simple logic for this example.

abstract class PrintDecorator extends UninterceptedFriendlyInterceptor
abstract Object doBefore(Object object, String methodName,
Object [] arguments)

abstract Object doAfter(Object object, String methodName, Object[] arguments,
Object result)

//only execute the intercepted method if it's the last class in the chain of
//decorators around the method. ..
boolean doInvoke(){ proxy.interceptors[-1] == this }

}

class NewlineDecorator extends PrintDecorator{
int lineSizeSoFar= 0

Object doBefore(Object object, String methodName, Object[] arguments) {

if (methodName == 'leftShift' && arguments[0] instanceof String) {
if (lineSizeSoFar + arguments [0].size() > 30){
arguments [0]= '\r\n' + arguments [0]
lineSizeSoFar= 0
}else{

lineSizeSoFar += arguments[0] .size()

Object doAfter(Object object, String methodName, Object[] arguments,
Object result){
result
}
}

class WhitespaceDecorator extends PrintDecorator{
def prevOutput= ' '

Object doBefore(Object object, String methodName, Object[] arguments) {

if (methodName == 'leftShift' && arguments[0] instanceof String) {
if (prevOutput [-1] != ' ' && prevOutput [-1] != '\n'){
arguments[0] = ' ' + arguments[0]

}
}
}

Object doAfter(Object object, String methodName, Object[] arguments,
Object result){
if (methodName == 'leftShift' && arguments[0] instanceof String) {
prevOutput= arguments [0]
}

result

After the classes, interceptors, and code block are matched up, the printing logic and the OutputStreamWriter are both unaware that the output is
being decorated. Each decorator will perhaps modify the output, then pass it along to the next decorator to do the same. The distinct items of
output sent to the OutputStreamWriter are separated by spaces, whether or not a space was in the output string in the program, and the output
fits within a certain width.

oswProxy= MultiInterceptorProxyMetaClass.getInstance(OutputStreamWriter)
[new NewlineDecorator(),
new WhitespaceDecorator (), //the order of these decorators is important
] .each{
it.proxy= oswProxy
oswProxy.interceptors << it
}
oswProxy .use{
def wtr= new OutputStreamWriter (
new FileOutputStream(new File ('TheOutput.txt')))
wtr<< "Singing in the Rain" <<
"hello " <<
"climate <<
"hotrod" <<
"far out and spacy" <<
'Clementine, darling'
wtr.close ()

/*output file:

Singing in the Rain hello

climate hotrod far out and spacy
Clementine, darling

*/

JN3525-MetaClasses

Groovy gives us a wide variety of choices for meta-programming. We've looked at Categories and Interceptors, which change the behavior of
objects within a selected block and current thread only, in other tutorials. In this tutorial, we'll learn about more ways of meta-programming in
Groovy.

Intercepting Method Calls and Property Accesses

We can add a special method called 'invokeMethod' to a class definition that executes calls to undefined methods:

class MyClass{
def hello(){ 'invoked hello directly' }
def invokeMethod (String name, Object args) {
return "unknown method $name (${args.join(', ')})"
}
}

def mine= new MyClass ()
assert mine.hello() == 'invoked hello directly'
assert mine.foo("Mark", 19) == 'unknown method foo(Mark, 19)

If our class implements GroovyInterceptable, invokeMethod is called for all method invocations whether they exist or not:

class MyClass implements GroovyInterceptable{
def hello(){ 'invoked hello() directly' }
def invokeMethod (String name, Object args)
"invoked method $name (${args.join(', ")})"
}
}

def mine= new MyClass ()

assert mine.hello() == 'invoked method hello()'
assert mine.foo('Mark', 19) == 'invoked method foo(Mark, 19)'
assert mine.&hello() == 'invoked hello() directly'

//we can still invoke a method directly using .& syntax

We can get and set properties using special method names:

class MyClass{
def greeting= 'accessed greeting directly'
Object getProperty (String property) {
"read from property Sproperty"
}
void setProperty(String property, Object newValue) {
throw new Exception("wrote to property Sproperty")
}
}

def mine= new MyClass ()

assert mine.greeting == 'read from property greeting'
try{
mine.greeting= 'hi’
}catch(e) { assert e.message == 'wrote to property greeting' }
assert mine.@greeting == 'accessed greeting directly'

//we can access a property directly using .@ syntax

When there's a field of some name, refering to that name still considers it to be a property unless the syntax .@ is used:

class MyClass{

public greeting= 'accessed field greeting (directly)' //field, not property
Object getProperty (String property) {

"read from property Sproperty"

}
}
def mine= new MyClass ()
assert mine.greeting == 'read from property greeting'
assert mine.@greeting == 'accessed field greeting (directly)'

We can call methods and access properties directly, both statically and dynamically, from within the class using various syntaxes:

class MyClass implements GroovyInterceptable{
def greeting= 'accessed greeting'
def id= 'White: '

Object getProperty (String property) {
try(
return this.e@id + //access field directly
'indirectly ' +
this.e"$property" //access field directly and dynamically
}catch (e) {
return "no such property $property"
}
}

def hello(Object[] args){ "invoked hello with (${args.join(', '")})" }
def id(){ 'Green: ' }

def invokeMethod (String name, Object args) {
try(
return this.&id() + //call method directly
'indirectly ' +
this.&"$name" (args) //call method directly and dynamically
}catch (e) {
return "no such method $name"
}
}
}

def mine= new MyClass ()

assert mine.greeting == 'White: indirectly accessed greeting'

assert mine.farewell == 'no such property farewell'

assert mine.hello(1l, 'b', 3) == 'Green: indirectly invoked hello with (1, b, 3)°'
assert mine.foo('Mark', 19) == 'no such method foo'

If we add such 'invokeMethod', 'getProperty’, or 'setProperty’ methods to an object using Expando or Category syntax, they act just like normal
methods. Not many supplied classes have 'invokeMethod' and such defined. For such cases, we need to use MetaClasses.

MetaClasses

We've seen how classes behave with the default MetaClass:

class A{
def bark(){ 'A: invoked bark()' }
def invokeMethod (String name, Object args) {
"A: missing $name(${args.join(', ')})"

}
}
def a= new A()
assert a.bark() == 'A: invoked bark()'
assert a.bleet() == 'A: missing bleet ()"

We can create our own MetaClass which wraps around the existing one. DelegatingMetaClass provides the infrastructure for this, so we only
need extend it with our own logic. We can do so on an instance-by-instance basis:

public class MyMetaClass extends DelegatingMetaClass{
MyMetaClass (Class theClass) {
super (theClass)
}
Object invokeMethod (Object object, String methodName, Object[] arguments) {
"MyMetaClass: ${super.invokeMethod (object, methodName, arguments)}"
}
}

public class MyOtherMetaClass extends DelegatingMetaClass{
MyOtherMetaClass (Class theClass)
super (theClass)
}
Object invokeMethod (Object object, String methodName, Object[] arguments) {
"MyOtherMetaClass: ${super.invokeMethod (object, methodName, arguments)}"
}
}

class A{
def bark(){ 'A: invoked bark()' }
def invokeMethod (String name, Object args)
"A: missing $name(${args.join(', ')})"
}
}

def amc= new MyMetaClass (A)
amc.initialize ()
def a= new A()
a.metaClass= amc
//using metaClass property on an instance affects only that instance...

def amc2= new MyOtherMetaClass (A)
amc2.initialize ()

def a2= new A()

a2.metaClass= amc2

assert a.bark() == 'MyMetaClass: A: invoked bark()'
assert a2.bark() == 'MyOtherMetaClass: A: invoked bark()'
Thread.start{ //...even in a new thread
assert a.bark() == 'MyMetaClass: A: invoked bark()'
assert a2.bark() == 'MyOtherMetaClass: A: invoked bark()'
}
assert new A().bark() == 'A: invoked bark()'

//new instances don't have new MetaClass

assert a.bleet () == 'A: missing bleet ()"
//MetaClass invokeMethod () NOT called here

Or we can do so on a class-wide basis:

public class MyMetaClass extends DelegatingMetaClass{
MyMetaClass (Class theClass) {
super (theClass)
}
Object invokeMethod (Object object, String methodName, Object[] arguments) {
"MyMetaClass: ${super.invokeMethod (object, methodName, arguments)}"
}
}

class A{
def bark(){ 'A: invoked bark()' }
def invokeMethod (String name, Object args) {
"A: missing $name(${args.join(', ')})"
}
}

def amc= new MyMetaClass (A)
amc.initialize()

def a= new A()
import org.codehaus.groovy.runtime.InvokerHelper

InvokerHelper.instance.metaRegistry.setMetaClass (A, amc)
//all newly-created instances of A after this call will be affected

assert a.bark() == 'A: invoked bark()' //created before so old MetaClass used
assert a.bleet () == 'A: missing bleet ()"
assert new A() .bark() == 'MyMetaClass: A: invoked bark()' //new MetaClass used

Thread.start{
assert a.bark() == 'A: invoked bark()' //old MetaClass used
assert new A() .bark() == 'MyMetaClass: A: invoked bark()' //new MetaClass used

}

Classes we define ourselves return a MetaClass when accessing the metaClass property, but many Groovy-supplied classes don't. There's only
one instance of a MetaClass in such cases:

class A{}
assert new A().metaClass.class == MetaClassImpl
assert new ArrayList () .metaClass.class == ArrayList //class itself returned

When we use Groovy-supplied classes without their own MetaClass, both already-created and newly-created classes are affected by changes to
the MetaClass:

public class MyMetaClass extends DelegatingMetaClass{
MyMetaClass (Class theClass) {
super (theClass)
}
Object invokeMethod (Object object, String methodName, Object[] arguments) {
"MyMetaClass: ${super.invokeMethod (object, methodName, arguments)}"

}

def amc= new MyMetaClass (ArrayList)
amc.initialize ()

def listl= [1, 2, 3]

import org.codehaus.groovy.runtime.InvokerHelper
InvokerHelper.instance.metaRegistry.setMetaClass (ArrayList, amc)
//all instances of ArrayList will be affected, even already created ones

assert listl.join(',') == 'MyMetaClass: 1,2,3'
//new MetaClass used with already created ArrayList

def list2= [4, 5, 6]
assert list2.join(',') == 'MyMetaClass: 4,5,6'
//new MetaClass used with newly created ArrayList

//even in new Thread...
Thread.start{

assert listl.join(',') == 'MyMetaClass: 1,2,3' //new MetaClass used
assert list2.join(',') == 'MyMetaClass: 4,5,6' //new MetaClass used
assert [7, 8, 9].join(',') == 'MyMetaClass: 7,8,9' //new MetaClass used

}

Other methods besides invokeMethod are available on the MetaClass:

Object invokeStaticMethod (Object object, String methodName, Object[] arguments)
Object invokeConstructor (Object[] arguments)

Object getProperty (Object object, String property)

void setProperty (Object object, String property, Object newValue)

Object getAttribute(Object object, String attribute)

void setAttribute (Object object, String attribute, Object newValue)

Class getTheClass ()

For example, making the constructor return an instance of something other than what we called the constructor on:

public class MyMetaClass extends DelegatingMetaClass{
MyMetaClass (Class theClass) {
super (theClass)
}
Object invokeConstructor (Object[] arguments) {
[1
}
}

class A{}

def amc= new MyMetaClass (A)

amc.initialize ()

import org.codehaus.groovy.runtime.InvokerHelper
InvokerHelper.instance.metaRegistry.setMetaClass (A, amc)

def a= new A()
assert a.class == ArrayList
assert (a << 1 << 2 << 3).size() == 3

ExpandoMetaClass

There's some easy-to-use facilities available through the MetaClass, known as ExpandoMetaClass, to which we can add properties and methods
easily

class A{
String text
}
def al= new A(text: 'aBCdefG')
assert al.metaClass.class == MetaClassImpl //usual MetaClass type

A.metaClass.inSameCase= {-> text.toUpperCase() }
//triggers conversion of MetaClass of A to ExpandoMetaClass

//then adds new instance method 'inUpperCase' to class

def a2= new A(text: 'hiJKLmnOp')

assert a2.metaClass.getClass() == ExpandoMetaClass
//MetaClass of A changed for instances created after conversion trigger only
assert a2.inSameCase() == 'HIJKLMNOP'
assert al.metaClass.class == MetaClassImpl //still usual MetaClass type
try{ println al.inSameCase(); assert false }

catch(e){ assert e in MissingMethodException } //new method not available

A.metaClass.inLowerCase= {-> text.toLowerCase() }
assert a2.inLowerCase () == 'hijklmnop'

//we can replace the method definition with another
A.metaClass.inSameCase= {-> text.toLowerCase() }
assert a2.inSameCase() == 'hijklmnop'

A.metaClass.inSameCase= null //remove method
try{ println al.inSameCase(); assert false }
catch(e){ assert e in MissingMethodException } //method no longer available

//we can add static methods...
A.metaClass.'static'.inSameCase= { it.toLowerCase()}
assert A.inSameCase('gRStuVwXyz') == 'grstuvwxyz'

We can also add properties and constructors:

class A{}

//we can let ExpandoMetaClass manage the properties...
A.metaClass.character = 'Cat in the Hat' //add property 'character'

def al= new A()
assert al.character == 'Cat in the Hat'

//...or we can manage the properties ourselves...
def ourProperties = Collections.synchronizedMap ([:])
//see tutorial on Multi-Threading to learn about synchronized objects
A.metaClass.setType= { String value ->
ourProperties["${delegate}Type"] = value
}
A.metaClass.getType= {->
ourProperties["${delegate}Type"]
}
al.type= 'Hatted Cat'
assert al.type == 'Hatted Cat'

//we can add our own constructors...
def a2= new A()
A.metaClass.constructor= {-> new A() }
try(
a2= new A() //be careful when overriding default or existing constructors
assert false
}catch (Error e){ assert e in StackOverflowError }

A.metaClass.constructor= {-> new A() }
try(
A.metaClass.constructor << {-> new A() }
// << notation doesn't allow overriding
assert false
}catch(e){ assert e in GroovyRuntimeException }

A.metaClass.constructor= { String s-> new A(character: s) }
a2 = new A("Thing One")

//We can quote method and property names...
A.metaClass. 'changeCharacterToThingTwo'=
{-> delegate.character = 'Thing Two' }
a2.character= 'Cat in the Hat'
a2 .changeCharacterToThingTwo ()
assert a2.character == 'Thing Two'

//...which is handy for dynamically constructing method/property names...

['Hatted Cat', 'Thing', 'Boy', 'Girl', 'Mother'].each{p->
A.metaClass."changeTypeTo${p}"= {-> delegate.type= p}

}

a2 .changeTypeToBoy ()

assert a2.type == 'Boy'

a2.'changeTypeToHatted Cat' ()
assert a2.type == 'Hatted Cat'

We can also add methods for supplied Groovy classes, ones we don't define ourselves:

ExpandoMetaClass.enableGlobally ()
//call 'enableGlobally' method before adding to supplied class
List.metaClass.sizeDoubled = {-> delegate.size() * 2 }
//add method to an interface
def list = [] << 1 << 2
assert list.sizeDoubled() == 4

We can override MetaClass class methods such as 'invokeMethod' and 'getProperty' using ExpandoMetaClass's easy syntax:

class Bird{
def name= 'Tweety'
def twirp(){ 'i taught i saw a puddy cat' }
}
Bird.metaClass.invokeMethod= {name, args->
def metaMethod= Bird.metaClass.getMetaMethod (name, args)
//'getMetaMethod' gets method, which may be an added or an existing one
metaMethod? metaMethod.invoke (delegate,args): 'no such method'
}
def a= new Bird()
assert a.twirp() == 'i taught i saw a puddy cat'
assert a.bleet() == 'no such method'

Bird.metaClass.getProperty= {name->

def metaProperty= Bird.metaClass.getMetaProperty (name)

//'getMetaProperty' gets property, which may be an added or an existing one

metaProperty? metaProperty.getProperty(delegate): 'no such property'
}
def b= new Bird()
assert b.name == 'Tweety'
assert b.filling == 'no such property'

JN3535-Reflection

We can examine classes in Groovy to find out information in the form of strings.

Examining Classes

To find out a class's name and superclasses:

class A{}

assert A.name == 'A'

assert new A().class.name == 'A'

assert A.class.name == 'A' //'class' is optionally used here

class B extends A{}
assert B.name == 'B'

class C extends B{}
def hierarchy= []

def s = C
while(s != null){ hierarchy << s.name; s= s.superclass }
assert hierarchy == ['C', 'B', 'A', 'java.lang.Object']

To examine the interfaces:

interface A1{}
interface A2{}
class A implements Al, A2{}

def interfacesA = [] as Set //use a set because interfaces are unordered
A.interfaces.each{ interfacesA << it.name }
assert interfacesA == ['Al', 'A2', 'groovy.lang.GroovyObject'] as Set

interface B1{}
class B extends A implements B1{}

def interfacesB = [] as Set
B.interfaces.each{ interfacesB << it.name }
assert interfacesB == ['Bl'] as Set

//only immediately implemented interfaces are reported

We can check if a class is a class or an interface:

assert Observer.isInterface ()
assert ! Observable.isInterface()

We can examine public fields and their types:

class A{
def adyn //if no modifier, field is private
String astr
public apdyn
public String apstr
protected agdyn
}
interface B1{}
interface B2{}
class B extends A implements B1l, B2{
def bdyn
int bint
public bpdyn
public int bpint
protected bgdyn
}
def dets = [] as Set
B.fields.each{ //public fields only
dets << [it.name, it.type.name] //name of field and name of type

}

assert dets == [

["apstr', 'java.lang.String' 1,
['apdyn', 'java.lang.Object' 1,
['bpint', 'int'],

[

'bpdyn', 'java.lang.Object' 1,
[' timeStamp', 'java.lang.Long'], //added by Groovy
] as Set

We can look at a certain field of a class:

assert Math.fields.name as Set == ['E', 'PI'] as Set

assert Math.class.getField('PI') .toString() ==
'public static final double java.lang.Math.PI'

assert Math.class.getField('PI') .getDouble () == 3.141592653589793
//we must know the type of the value

We can also look at the constructors and methods of a class:

assert HashMap.constructors.collect{ it.parameterTypes.name } as Set ==
[['int'], [1, ['java.util.Map'l, ['int', 'float']] as Set
GroovyObject .methods.each{ println it }
//to print full details of each method of a class
assert GroovyObject.methods.name as Set ==
['invokeMethod', 'getMetaClass', 'setMetaClass',
'setProperty', 'getProperty'] as Set
assert GroovyObject.getMethod('getMetaClass').toString() ==
'public abstract groovy.lang.MetaClass groovy.lang.GroovyObject.getMetaClass() '

Some code to find out all the getters for a class:

getters= {
it.methods.name.findAll{ it =~ /“get[A-Z]/ }.
collect{ it[3].toLowerCase ()+it[4..-1] }.join(', ')
}

assert getters(GroovyObject) == 'metaClass, property'

To see all nested classes for a particular class (eg, of Character):

assert Character.classes.name as Set ==
['java.lang.Characters$Subset', 'java.lang.CharactersUnicodeBlock'] as Set

To query a particular nested class (eg, Character.UnicodeBlock):

Character.UnicodeBlock.fields.name.each{ println it }
//to list all public constants

Reflecting the Reflection classes themselves

We can use reflection on the reflection classes themselves. For example:

assert Class.methods [0].class == java.lang.reflect.Method
//find the class of any method of any class...

java.lang.reflect.Method.methods.each{ println it.name }
//...then find its method names...

//...to help us build a custom-formatted listing of method details
HashMap.class.methods.each{

println """$it.name(${it.parameterTypes.name.join(', ')}) returns \
$it.returnType.name ${it.exceptionTypes.size()>0?'throws ':''}\
${it.exceptionTypes.name.join(', ')}"""

}

We can look at the modifiers of methods and classes:

import java.lang.reflect.Modifier
Modifier.methods.name.sort{}.each{ println it }
//use reflection on the reflection classes themselves...

//...to help us build a custom-formatted listing of modifier details

[(ArrayList.getMethod('remove', [Object] as Class[])):
['public'] as Set,
(Collections.getMethod ('synchronizedList', [List] as Class[])):
['public', 'static'] as Set,
(Math) : ['public', 'final'] as Set,
(ClassLoader): ['public', 'abstract'] as Set,

] .each{ key, val->
def m= key.modifiers
def mods= [

({Modifier.isPublic (it)}): 'public',
({Modifier.1sProtected(1t)}) 'protected’,
({Modifier.isPrivate (it)}): 'private’,
({Modifier.lslnterface(1t)}) 'interface!',
({Modifier.isAbstract (it)}) 'abstract!',
({Modifier.isFinal (i)}) 'final',
({Modifier.isStatic (it)}): 'static',
({Modifier.lsVolatlle(t)}): 'volatile',
({Modifier.isNative (it)}): 'native!',
({Modifier.isStrict (it)}): 'strict!',
({Modifier.isSynchronized(it)}): 'synchronized',
({Modifier.isTransient (it)}): 'transient',

].collect{ k, v-> k(m)? v: null } as Set
mods.removeAll ([null])
assert mods == val

Manipulating Objects

When a class is unknown at compile time (eg, we only have a string representation of a class name), we can use reflection to create objects:

assert Class.forName ("java.util.HashMap") .newInstance() == [:]

def constructor = Class.forName ("java.util.HashMap") .

getConstructor([int, float] as Classl[])
assert constructor.toString() == 'public java.util.HashMap (int, float)
assert constructor.newlnstance(12, 34.5f) == [:]

We can examine and change public fields for a class refering using a String for the name:

class A{
public valuel
protected value2
A(int v){ valuel= v; value2 = v }

}

def a= new A(100)

assert A.getField('valuel').get(a) == 100 //public fields only
try{ A.getField('value2').get(a); assert false }

catch(Exception e){ assert e instanceof NoSuchFieldException }

A.getField('valuel').set(a, 350)
assert a.valuel == 350

And we can call methods using a string for the name:

assert String.getMethod('concat', [String] as Class[]).
invoke ('Hello, ', ['world!'] as Object[]) == 'Hello, world!'
Working with Arrays

We can examine and manipulate arrays. To enquire the public array fields of a class:

class A{
public boolean alive
public int[] codes
public Date[] dates
protected boolean|]

}

//find all public array fields

states

def pubFields= new A().class.fields.findAll{ it.type.isArray()

}.

[it.name,

it.type.name]

['dates',

assert pubFields == [
['codes',

YIv 1, // 01 me
' [Ljava.util.Date;

collect(

ans array of int
1, //means array of object java.util.Date

}

1

To enquire the component type/s of an array:

[(int([1): [
(Date[]): [
(new Date[6] .class): [

v[I', 'int' 1,
'[Ljava.util.Date; "',
'[Ljava.util.Date; "',

'java.util.Date'],
'java.util.Date' 1,
//instantiated class

(String[] [1): ['[[Ljava.lang.String;', '[Ljava.lang.String;'],
] .each{
k, v -> assert [k.name, k.componentType.name] == v

}

We can create and copy arrays when their component type and size is unknown at compile time:

import java.lang.reflect.Array
def al [55, 66] as int[]

//component type and size unknown at compile time...

def a2 = Array.newlInstance(al.class.componentType, al.size() * 2)
assert a2.class.componentType == int

assert a2.size() == 4

System.arraycopy(al, 0, a2, 0, al.size())

assert a2 as List == [55, 66, 0, 0] as List

We can create

multi-dimensional arrays in a similar way, where component type and array sizes can be unknown at compile time:

import java.lang.reflect.Array

//assertion checking code...
assertlD= {x,y->

assert x.size() == y.size()

for(int i: x.size() - 1) assert x[i] == yI[1]
}
assert2D= {x,y->

assert x.size() == y.size()

for(int i: x.size() - 1){

assert x[i].size() == y[i].size()
)

for(int j: x[1 l.size() - 1) assert x[1 1[] ==y[11[31

}
}

//each is a 1-D int array with 3 elts
def a0= new char[3]

def al= Array.newlnstance(char, 3
def a2= Array.newlInstance(char, [
assertlD(a0, al)

assertlD(a0, a2)

)
3] as int[])

//both are a 2-D 3x4 array of String elts

def b0= new String(3] [4]

def bl= Array.newlInstance(String, [3, 4] as int[])
assert2D(b0, bl)

//both are a 2-D array of 6 char arrays, with undefined tail dimension
def c0 = new char([6][]

def cl = Array.newInstance(char[]l, [6] as int[])

assertlD(cO, cl)

We can use set() and get() to copy the contents of one array index to another:

import java.lang.reflect.Array

def a= [12, 78] as int[], b= new int[4]
Array.set(b, 0, Array.get(a, 0))
assert b[0] == 12

This tutorial is loosely based on Sun's tutorial on Java Reflection, but using Groovy code instead.

Groovy for the Office

We all
as hap

know Groovy as our super hero for enhancing Java with all the latest programming features. When not in super hero mode, Groovy is just
py as a mild-mannered office worker. Here are some links to get you started if you need some help around the office:

The Scriptom Module can be used to script Word, Excel, PowerPoint etc. on Windows.
OpenXML4J is a Java library dedicated to the creation and manipulation of Office Open XML (ECMA-376) and OPC based documents
(for example Office 2007 Word, Excel and PowerPoint documents). OpenXML4J provides you a way to create and manipulate Open XML

documents for a bunch of scenarios without using any office suite.

Apache POI consists of APIs for manipulating various file formats based upon Microsoft's OLE 2 Compound Document format using pure
Java. In short, you can read and write MS Excel, Word, PowerPoint files (97-2003 with varying levels of support) using Java.

WebTest's Excel Steps lets you test Excel content. The examples are in XML (Ant build format) but you can use Groovy with AntBuilder
too.

Using Java to Crack Office 2007 is an article about using Java to read and write any Office 2007 document. You can use Groovy's XML
features to make these examples even simpler.

Ted Neward's Best of Both Worlds whitepaper describes how to make the Java and Microsoft/.Net worlds interoperate. Most of those
examples apply equally well to Groovy and .Net.

® JExcel is a commercial offering that provides an effective way to integrate Microsoft Excel into Swing applications.
® Groovy For OpenOffice is an OpenOffice Extension that adds support for scripting OpenOffice Macros in Groovy. Related Articles:

® Record macros in OpenOffice with Groovy
® Groovy as a business user language?

Groovy Quick Start Project

One of the first questions | face when | start playing with a new language, is about how to set a project using this language so that | can build and
package my code. While learning how to do this with Groovy | ended up putting together a starter project that has a reusable build script and
runner class that allows me to quickly get a new Groovy project up and running.

Groovy Quick Start is meant to help developers new to groovy to get started by providing a way to have a groovy project up and running with a
minimum effort. It provides a default layout and a reusable gant script that knows how to compile, test and package your project out of the box.

Compiling your project
prompt> gant compile

This target knows how to compile any source files that are available in the default source location. If you execute this target out of the box should
report the succesful creation of the required build output folders and the compilation of one sample java class and two sample groovy classes

Testing your project
prompt> gant test

The test target will compile the source code in the src and test_src folders, and then it will execute the unit tests located in the tests_src folder.
When you run this target out of the box it will succesfully report the execution of two sample test classes

Preparing to distribute your project

prompt> gant distro

the distro target will create a distribution folder in your build_output folder. This dist folder will contain a lib folder with all the jars from the project
lib folder, as well as the contents of the src folder packaged as a jar. Also in the dist folder is your README.txt file and a bin folder that contains
the sample batch file provided with the project. To test the distribution you can cd into your

%path%\groovyquickstart\build_output\dist\bin and run the file "run.bat". This launch script will print the help message:

usage: runner [option]

"-h" help Print out this message containing help.
"-n" name <name to greet> The name of the user to be greeted.
"-r" run Runs some target.

"-v" version Print version information.

To test the sample commands in the Runner class, enter the command "run -n "foo" -r" This will return the output:
prompt> Hello from the starter class foo

This sample Runner class demonstrates how to use the CLI builder to read parameters from the command line and to execute a class in the
project, based on those parameters.

Packaging your project
prompt> gant package

This target will create a zip file with the content of your dist folder in the
"\build_output\dist" folder

Customizing GroovyQuickStart

When you use the default folders for your project artifacts the gant script should work without modifications, If you feel that you need to add or
improve your build steps just modify the gant build script to suit your needs.

Eclipse Support

The GroovyQuickStart can be imported into Eclipse, once you use the Eclipse import facilities you will need to update the project build
dependencies to point to the correct location of the Groovy libraries.

For more information review the readme file located in the "groovyquickstart\docs" folder

| hope you can take advantage of Groovy Quick Start Project to get started on your groovy project and please feel free to contact me with any
questions at davilameister@gmail.com

Additional info for unix/linux users

An example 'run’ script to test the distribution: run

Use that instead of the 'run.bat' that comes packaged in the groovyquickstart.zip .

Update

It appears the original blog/site went down, the zip file is now attached: groovyquickstart.zip

Update (08/2008)

My blog was out of comission for a while , but | am working on updating this project to use the new joint compiler, in the meantime here is a new
zip file containing the run file for linux groovyquickstart1.zip

Quick Start

Before beginning...

Before playing with the examples you'll find below, you should first look at:

® Installing Groovy
® Running

Some optional more advanced topics you may also wish to peruse:

Command Line : Groovy can be launched in shell script mode

Compiling Groovy : Groovy can be launched as any Java program

Embedding Groovy : embedding Groovy in Java code using built-in capabilities
JSR 223 Scripting with Groovy : embedding Groovy in Java code using JSR 223
Bean Scripting Framework : embedding Groovy in Java code using the BSF

Your First Groovy

//hello.groovy
println "hello, world"
for (arg in this.args) {
println "Argument:" + arg;
}
// this is a comment
/* a block comment, commenting out an alternative to above:
this.args.each{ arg -> println "hello, ${arg}"}
*/

To run it from command line

groovy hello.groovy MyName yourName HisName

Overview

Groovy classes compile down to Java bytecode and so there's a 1-1 mapping between a Groovy class and a Java class.
Indeed each Groovy class can be used inside normal Java code - since it is a Java class too.

Probably the easiest way to get groovy is to try working with collections. In Groovy List (java.util.List) and Map (java.util.Map) are both first class
objects in the syntax. So to create a List of objects you can do the following...

def list = [1, 2, 'hello', new java.util.Date()]
assert list.size() == 4

assert list.get(2) == 'hello'

assert list[2] == 'hello'

Notice that everything is an object (or that auto-boxing takes place when working with numbers). To create maps...

def map = ['name':'James', 'location':'London']

assert map.size() == 2
assert map.get ('name') == 'James'
assert map['name']l == 'James'

Iterating over collections is easy...

def list = [1, 2, 3]
for (i in list) { println i }

Once you have some collections you can then use some of the new collection helper methods or try working with closures...

Working with closures

Closures are similar to Java's inner classes, except they are a single method which is invokable, with arbitrary parameters. A closure can have as
many parameters as you wish...

def closure = { param -> println("hello ${param}") }
closure.call ("world!")

closure = { greeting, name -> println(greeting + name) }
closure.call ("hello ", "world!")

If no parameter(s) is(are) specified before -> symbol then a default named parameter, called 'it' can be used. e.g.

def closure = { println "hello " + it }
closure.call ("world!")

Using closures allows us to process collections (arrays, maps, strings, files, SQL connections and so forth) in a clean way. e.g

[1, 2, 3].each ({ item -> print "${item}-" })
["kiv:vvin, "k2":"v2"] .each {key, value -> println key + "=" + value}

Note: If a given closure is the last parameter of a method, its definition can reside outside of the parentheses. Thus the following code is valid:

def fun(int i, Closure c) {
c.call (i)

}

// put Closure out of ()

[1, 2, 3].each() { item -> print "${item}-" } // 1-2-3-
fun(123) { i -> println i } // 123

// omit ()
[1, 2, 3].each ({ item -> print "${item}-" }) // 1-2-3-

// omit enclosing ()
[1, 2, 3].each { item -> print "${item}-" } // 1-2-3-

// normal
[1, 2, 3].each(({ item -> print "${item}-" })) // 1-2-3-

// using the fun function to do the same thing
[1,2,3].each {fun(it, {item -> print "${item}-"})} // 1-2-3-

def closure = { i -> println i}

//11, 2, 3].each() closure // error. closure has been previously defined

Here are a number of helper methods available on collections & strings...

each

iterate via a closure

[1, 2, 3].each { item -> print "${item}-" }

collect

collect the return value of calling a closure on each item in a collection

def value = [1, 2, 3].collect { it * 2 }
assert value == [2, 4, 6]

find

finds first item matching closure predicate

def value = [1, 2, 3].find { it > 1 }
assert value ==

findAll

finds all items matching closure predicate

def value = [1, 2, 3].findAll { it > 1 }
assert value == [2, 3]

inject

allows you to pass a value into the first iteration and then pass the result of that iteration into the next iteration and so on. This is ideal for counting
and other forms of processing

def value = [1, 2, 3].inject('counting: ') { str, item -> str + item }
assert value == '"counting: 123"
value = [1, 2, 3].inject(0) { count, item -> count + item }

assert value ==

In addition there's 2 new methods for doing boolean logic on some collection...

every

returns true if all items match the closure predicate

def value = [1, 2, 3].every { it < 5 }
assert value

value = [1, 2, 3].every { item -> item < 3 }
assert ! value

any

returns true if any item match the closure predicate

def value = [1, 2, 3].any { it > 2 }
assert value

value = [1, 2, 3].any { item -> item > 3 }
assert value == false

Other helper methods include:

max / min

returns the max/min values of the collection - for Comparable objects

value = [9, 4, 2, 10, 5] .max()
assert value == 10

value = [9, 4, 2, 10, 5].min()
assert value == 2

value = ['x', 'y', 'a', 'z']l.min()
assert value == 'a'

join

concatenates the values of the collection together with a string value

def value = [1, 2, 3].join('-")
assert value == '1-2-3'

Installing Groovy

These instructions describe how to install a binary distribution of Groovy.

first, Download a binary distribution of Groovy and unpack it into some file on your local file system
set your GROOVY_HOME environment variable to the directory you unpacked the distribution
add GROOVY_HOME/bin to your PATH environment variable

etc. If you've already installed tools like Ant or Maven you've probably already done this step.

You should now have Groovy installed properly. You can test this by typing the following in a command shell:

set your JAVA_HOME environment variable to point to your JDK. On OS X this is /Library/Java/Home, on other unixes its often /usr/java

groovysh

Which should create an interactive groovy shell where you can type Groovy statements. Or to run the Swing interactive console type:

groovyConsole

To run a specific Groovy script type:

groovy SomeScript.groovy

Installing Groovy and Grails on the Eee PC

Have an ASUS Eee PC?

Worried that framework bloat might cramp your development practices on such a small device? Why

not run Groovy and Grails on it! Shown here running Linux, several command shells, a Firefox browser,
the Groovy Console, a database, a web container and Grails (which itself includes Hibernate and
Spring) all in 512M of memory. And of course it has no (traditional) hard disk, so the whole footprint of
Groovy, Grails and Java 6 is just a few hundred meg of the available flash memory.

Installing Java

® Given the relatively humble processor in the Eee PC, you probably want to use Java 6. Install it
as per these instructions. This is a flash memory vs speed trade-off.

Installing Groovy

® Then download and install the Groovy linux distribution. Ctrl-Alt-T will start up a terminal, then type:

sudo dpkg -1 groovy-1.5.1.deb

Installing Grails
® You might also want to grab Grails and install that too by unzipping it or installing the deb from here.
Going further

® Google and you will find instructions for installing Eclipse and other applications too.

Running

Groovy scripts are a number of statements and class declarations in a text file. Groovy scripts can be used similarly to other scripting languages.
There are various ways of running Groovy scripts

Using the interactive console

Groovy has a Swing interactive console that allows you to type in commands and execute them rather like using an SQL query tool. History is
available and such like so you can move forwards and backwards through commands etc.

If you install a binary distribution of Groovy then you can run the Groovy Swing console by typing this on the command line.

groovyConsole

For a command line interactive shell type

groovysh

To see how to add things to the classpath see below.

Running Groovy scripts from your IDE

There is a helper class called GroovyShell which has a main(String[]) method for running any Groovy script. You can run any groovy script as
follows

java groovy.lang.GroovyShell foo/MyScript.groovy [arguments]

You can then run the above Groovy main() in your IDE to run or debug any Groovy script.

Running Groovy scripts from the command line

There are shell scripts called 'groovy' or 'groovy.bat' depending on your platform which is part of the Groovy runtime.
Once the runtime is installed you can just run groovy like any other script...

groovy foo/MyScript.groovy [arguments]

If you are using Groovy built from CVS Head (after Beta-5, see below if you want to upgrade), apart from Groovy scripts, you may also now run
different kind of classes from the command-line.

® Classes with a main method of course,
® Classes extending GroovyTestCase are run with JUnit's test runner,
® Classes implementing the Runnable interface are instanciated either with a constructor with String[] as argument, or with a no-args
constructor, then their run() method is called.
To work from the latest and greatest Groovy see Building Groovy from Source. Once built you'll then have a full binary distribution made for you in
groovy/target/install. You can then add groovy/target/install/bin to your path and you can then run groovy scripts easily from
the command line.

To see how to add things to the classpath see below.

Creating Unix scripts with Groovy

You can write unix scripts with Groovy and execute them directly on the command line as if they were normal unix shell scripts. Providing you
have installed the Groovy binary distribution (see above) and 'groovy' is on your PATH then the following should work.

The following is a sample script, which you should copy and save as helloWorld.groovy.

#!/usr/bin/env groovy

println("Hello world")

for (a in this.args) {
println("Argument: " + a)

}

Then to run the script from the command line, just make sure the script is executable then you can call it.

chmod +x helloWorld
./helloWorld

Adding things to the classpath

When running command line scripts or interactive shells you might want to add things to your classpath such as JDBC drivers or JMS
implementations etc. To do this, you have a few choices:

® Add things to your CLASSPATH environment variable

® Pass -classpath (or -cp) into the command you used to create the shell or run the script
L]

L]

It's also possible to create a ~/.groovy/lib directory and add whatever jars you need in there.
If the jars you need are in a Maven or Ivy repository, you can "grab" them with Grape.

Increasing Groovy's JVM Heap Size

To increase the amount of memory allocated to your groovy scripts, set your JAVA_OPTS environment variable. JAVA_OPTS="-Xmx..."

User Guide

User Guide

Welcome to the Groovy User Guide. We hope you find it useful.
The User Guide assumes you have already downloaded and installed Groovy. See the Getting Started Guide if this is not the case.

® OSGiand Groovy
® Advanced OO
® Groovy way to implement interfaces
® Annotations with Groovy
® Ant Integration with Groovy
® The groovy Ant Task
® The groovyc Ant Task
® The groovydoc Ant task
® Using Ant from Groovy
® Using Ant Libraries with AntBuilder
® Bean Scripting Framework
® Bitwise Operations
® Builders
® How Builders Work
® FactoryBuilderSupport
® Closures
® Closures - Formal Definition
® Closures - Informal Guide
® Collections
® Compile-time Metaprogramming - AST Transformations
® Bindable and Vetoable transformation
Building AST Guide
Category and Mixin transformations
Compiler Phase Guide
Delegate transformation
Immutable AST Macro
Immutable transformation
Lazy transformation
Newify transformation
PackageScope transformation
® Singleton transformation
® Control Structures
® Logical Branching
® Looping
® Returning values from if-else and try-catch blocks
® Database features
® Dynamic Groovy
® Evaluating the MetaClass runtime
® ExpandoMetaClass
ExpandoMetaClass - Borrowing Methods
ExpandoMetaClass - Constructors
ExpandoMetaClass Domain-Specific Language
ExpandoMetaClass - Dynamic Method Names
ExpandoMetaClass - GroovyObject Methods
ExpandoMetaClass - Interfaces
ExpandoMetaClass - Methods
ExpandoMetaClass - Overriding static invokeMethod
ExpandoMetaClass - Properties
ExpandoMetaClass - Runtime Discovery
® ExpandoMetaClass - Static Methods
Global AST Transformations
Local AST Transformations
Per-Instance MetaClass
Runtime mixins
Using invokeMethod and getProperty
® Using methodMissing and propertyMissing
GDK Extensions to Object
Generics
GPath
Grape
Groovy and JMX
® Groovy JmxBuilder
Groovy Categories
® Groovy CLI

Groovy Console
Groovy Math
Groovy Shell
Groovy Truth
Groovy Utils
® ConfigSlurper

® ObjectGraphBuilder

® ObservableMap

GUI Programming with Groovy

® Swing Builder
® Alphabe
L]

tical Widgets List

SwingBuidler.borderLayout
SwingBuilder.action
SwingBuilder.actions
SwingBuilder.bind
SwingBuilder.borderLayout
SwingBuilder.boundedRangeModel
SwingBuilder.box
SwingBuilder.boxLayout
SwingBuilder.button
SwingBuilder.buttonGroup
SwingBuilder.cardLayout
SwingBuilder.checkBox
SwingBuilder.checkBoxMenultem
SwingBuilder.closureColumn
SwingBuilder.colorChooser
SwingBuilder.comboBox
SwingBuilder.compoundBorder
SwingBuilder.container
SwingBuilder.desktopPane
SwingBuilder.dialog
SwingBuilder.editorPane
SwingBuilder.emptyBorder
SwingBuilder.etchedBorder
SwingBuilder.fileChooser
SwingBuilder.flowLayout
SwingBuilder.formattedTextField
SwingBuilder.frame
SwingBuilder.gridBagConstraints
SwingBuilder.gridBagLayout
SwingBuilder.gridLayout
SwingBuilder.imagelcon
SwingBuilder.internalFrame
SwingBuilder.JComponent
SwingBuilder.label
SwingBuilder.layeredPane
SwingBuilder.lineBorder
SwingBuilder.list
SwingBuilder.loweredBevelBorder
SwingBuilder.map
SwingBuilder.matteBorder
SwingBuilder.menu
SwingBuilder.menuBar
SwingBuilder.menultem
SwingBuilder.optionPane
SwingBuilder.overlayLayout
SwingBuilder.panel
SwingBuilder.passwordField
SwingBuilder.popupMenu
SwingBuilder.progressBar
SwingBuilder.propertyColumn
SwingBuilder.radioButton
SwingBuilder.radioButtonMenultem
SwingBuilder.raisedBevelBorder
SwingBuilder.raisedEtchedBorder
SwingBuilder.scrollBar
SwingBuilder.scrollPane
SwingBuilder.separator
SwingBuilder.slider
SwingBuilder.spinner
SwingBuilder.spinnerDateModel
SwingBuilder.spinnerListModel
SwingBuilder.spinnerNumberModel
SwingBuilder.splitPane
SwingBuilder.springLayout

SwingBuilder.tabbedPane
SwingBuilder.table
SwingBuilder.tableColumn
SwingBuilder.tableLayout
SwingBuilder.tableModel
SwingBuilder.td
SwingBuilder.textArea
SwingBuilder.textField
SwingBuilder.textPane
SwingBuilder titledBorder
SwingBuilder.toggleButton
SwingBuilder.toolBar
SwingBuilder.tr
SwingBuilder.tree
SwingBuilder.viewport
SwingBuilder.widget
® SwingBuilder.window

® Categorical Widget List

® Extending Swing Builder

® Multithreading with SwingBuilder
® SwingXBuilder
Effects
Extending SwingXBuilder
Graphs
MultiSplitPane
Painters
Widgets and Common Attributes

® |IDE Support
® Debugging with JSwat
® Eclipse Plugin
® About GroovyEclipse Plugin v1
® Compiler Switching within Groovy-Eclipse
® Create Your First Groovy Project
® Eclipse Plugin Development
® Code Completion Proposal
® GroovyEclipse Specifications and Technical Articles
® The Classloader Conundrum
Eclipse Plugin Refactoring
Eclipse Plugin V2 FAQ
Greclipse 2.0
Groovy Eclipse 1.5.7 Release Notes
Groovy-Eclipse 2.0.0M1 New and Noteworthy
Groovy-Eclipse 2.0.0M2 New and Noteworthy
How-To Start Contributing to Groovy Eclipse
Install GroovyEclipse Plugin
Old Pages
® Debugging with Eclipse
® Eclipse GroovyConsole
® Groovy Eclipse Roadmap

® Emacs Mode
® IntelliJ IDEA Plugin
® GroovyJ Features and Wish List
® GroovyJ Status
* IDEA Open API
¢ IntelliJ IDEA Plugin by JetBrains
® Wish List (JetBrains Edition)
JEdit Plugin
NetBeans Plugin
Oracle JDeveloper Plugin
Other Plugins
® Emacs Plugin
® UltraEdit Plugin
® TextMate
Input Output
Integration
JSR 223 Scripting with Groovy
Logging
Migration From Classic to JSR syntax
Operators
® Operator Overloading
® Processing XML
® Creating XML using Groovy's MarkupBuilder
® Creating XML using Groovy's StreamingMarkupBuilder
® Creating XML with Groovy and DOM
® Processing XML with XSLT

Reading XML using Groovy's DOMCategory
Reading XML using Groovy's XmlParser
Reading XML using Groovy's XmlISlurper
Reading XML with Groovy and DOM
Reading XML with Groovy and SAX
Reading XML with Groovy and StAX
Reading XML with Groovy and XPath
Updating XML with DOMCategory
Updating XML with XmlIParser
Updating XML with XmlISlurper
Using Other XML Libraries
Creating XML with Groovy and DOM4J
Creating XML with Groovy and JDOM
Creating XML with Groovy and XOM
Processing XML with XQuery
Reading XML with Groovy and DOM4J
Reading XML with Groovy and JDOM
® Reading XML with Groovy and XOM
Validating XML with a DTD
Validating XML with a W3C XML Schema
Validating XML with RELAX NG
® XML Example
Process Management
Regular Expressions
Reserved Words
Running Groovy on .NET 2.0 using IKVM
Scoping and the Semantics of "def"
Scripts and Classes
Statements
® Extended Guide to Method Signatures
Static Import Usage
Strings and GString
Things to remember
Things you can do but better leave undone
Using Enums
Using Spring Factories with Groovy
WebStart

OSGi and Groovy

The OSGi framework is a powerful Java tool providing component based service and dependency management. OSGi components can be
remotely installed, started, stopped, updated and uninstalled without shutting down your application. Also, OSGi provides far greater dependency
management than the basic Java classpath mechanism, allowing you to specify specific versions of dependencies and keep dependencies
private so that other components cannot load them. One of the most notable usages of OSGi is the Eclipse Plugin Container. A good starting
point for more information is the Wikipedia page and the Further Reading section of this document.

Loading Groovy as an OSGi service

The Groovy jar files are released with correct OSGi metadata, so they can be loaded into any OSGi compliant container, such as Eclipse Equinox
or Apache Felix. The metadata can be viewed by looking at the jar file's MANIFEST.MF file. For instance, your Jar manifest might contain these
lines:

Bundle-Version: 1.7.0

Export-Package: groovy.text;version="1.7.0.beta-1-SNAPSHOT", groovy.xml;
version="1.7.0.beta-1-SNAPSHOT",groovy.util;version="1.7.0.beta-1-SNA
PSHOT", groovy.lang;version="1.7.0.beta-1-SNAPSHOT",groovyjarjarcom. . .

This declares to the OSGi container that the Jar is version 1.7.0 and provides the specified packages for import by other components.
The following examples all use the Eclipse Equinox container, which can be downloaded from the Internet or found in an Eclipse installation.
Perform the following steps to install and start the Groovy Jar in an OSGi container:

Start the OSGi container in console mode:

java -jar org.eclipse.osgi_3.4.0.v20080605-1900.jar -console

This should bring up an OSGi console prompt:

osgis>

You can see the system status of the container at any time using the "ss" command.

osgi> ss
Framework is launched.

id State Bundle
0 ACTIVE org.eclipse.osgi_3.4.0.v20080605-1900

Install the Groovy jar file using "install" and a file URL to your groovy-all jar:

osgi>install file:///home/user/dev/groovy-core/target/dist/groovy-all-1.7-beta-1-SNAPSHOT. jar
Bundle id is 10

The container will assign the bundle an identifier. Start the bundle using the "start' command:

osgi> start 10

Verify the bundle is started using "ss":

osgi> ss

Framework is launched.

id State Bundle
0 ACTIVE org.eclipse.osgi_3.4.0.v20080605-1900
10 ACTIVE groovy-all_1.7.0.beta-1-SNAPSHOT

You can list all the packages the Groovy bundle provides with the "packages" command:

osgi>packages 10

groovy.xml.streamingmarkupsupport; version="1.7.0.beta-1-SNAPSHOT"<file:///hom
e/user/dev/groovy-core/target/dist/groovy-all-1.7-beta-1-SNAPSHOT.jar [10]>gro
ovyjarjarantlr.actions.java; version="1.7.0.beta-1-SNAPSHOT"<file:///home/user

Writing a Groovy OSGi Service

Once the Groovy jar is loaded into the container, writing an OSGi service that uses Groovy is as simple as creating a class that extends the
framework's BundleActivator interface.

package org.codehaus.groovy.osgi

import org.osgi.framework.BundleActivator
import org.osgi.framework.BundleContext

class Activator implements BundleActivator {
void start (BundleContext context) {

println "Groovy BundleActivator started"

void stop (BundleContext context) {
println "Groovy BundleActivator stopped"

The Activator's start(BundleContext) method will be invoked when the container starts the service, and the stop(BundleContext) method will be
invoked when the container stops the service.

The first step in deploying the new Groovy service is to create a jar file containing the Activator. The manifest for the Jar needs to specify the
name of the new service, the version, the fully qualified path to the Activator, and which packages from the groovy-all jar bundle to import. The
complete manifest for this example follows:

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.7.0

Created-By: 10.0-bl9 (Sun Microsystems Inc.)

Built-By: user

provider: org.codehaus.groovy.osgi

Bundle-ManifestVersion: 2

Bundle-Name: Groovy OSGi Example Bundle

Bundle-SymbolicName: org.codehaus.groovy.osgi.hello-groovy-bundle
Bundle-Version: 1.0.0

Bundle-Activator: org.codehaus.groovy.osgi.Activator

Bundle-Vendor: Groovy

Bundle-Localization: plugin

Import-Package: groovy.lang;version="1.7.0.beta-1-SNAPSHOT", org.codeha
us.groovy.reflection;version="1.7.0.beta-1-SNAPSHOT", org.codehaus.gro
ovy.runtime;version="1.7.0.beta-1-SNAPSHOT", org.codehaus.groovy.runti
me.callsite;version="1.7.0.beta-1-SNAPSHOT",org.w3c.dom,org.osgi.fram
ework;version="1.3.0"

Bundle-ClassPath:

The Import-Package statement is important. It states all the dependencies from the Groovy-all jar which are allowed to be referenced. The
Groovy-all Jar exports many, many more packages than just this... an Import-Package definition with just enough dependencies to get the printin
to work correctly is shown here. In a more meaningful Activator you'd want to import many more of the packages.

The complete Jar for this example has a layout as follows:

hello-bundle-imports-groovy.jar
--META-INF

----MANIFEST.MF

--org

----codehaus

Test the new Hello-Groovy bundle by running the OSGi console and issuing the following commands, using "ss" to verify that the correct
dependencies are loaded beforehand:

osgi> ss

Framework is launched.

id State Bundle
0 ACTIVE org.eclipse.osgi_3.4.0.v20080605-1900
10 ACTIVE groovy-all _1.7.0.beta-1-SNAPSHOT

osgi> install file:
///home/user/dev/groovy-core/src/examples/osgi/build/hello-bundle-imports-groovy.jar
Bundle id is 12

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.0.v20080605-1900

10 ACTIVE groovy-all _1.7.0.beta-1-SNAPSHOT

12 INSTALLED org.codehaus.groovy.osgi.hello-groovy-bundle_1.0.0

osgi> start 12
Groovy BundleActivator started

osgi> stop 12
Groovy BundleActivator stopped

The start and stop message shows that the Groovy service was correctly started and stopped.

Including the Groovy Jar within a Bundle

The previous example shows how to resolve an Activator's Groovy dependency from the container. The Activator can only be started after the
Groovy bundle is started. An alternative is to simply include the groovy-all jar within your bundle. This eliminates the need to declare
Import-Packages, but does bloat the size of the jar. Any Jar file included within your bundle has private visibility and cannot be referenced by any
other bundles that happen to be running in the container.

To include the groovy-all jar within your bundle, rather than loading it from the container, create your Jar with a layout as follows:

hello-bundle-contains-groovy.jar
--groovy-all-1.7-beta-1-SNAPSHOT.jar
--META-INF

----MANIFEST .MF

--org

----codehaus

And use this template as the MANIFEST.MF:

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.7.0

Created-By: 10.0-bl9 (Sun Microsystems Inc.)

Built-By: user

provider: org.codehaus.groovy.osgi

Bundle-ManifestVersion: 2

Bundle-Name: Groovy OSGi Example Bundle

Bundle-SymbolicName: org.codehaus.groovy.osgi.hello-groovy-bundle
Bundle-Version: 1.0.0

Bundle-Activator: org.codehaus.groovy.osgi.Activator
Bundle-Vendor: Groovy

Bundle-Localization: plugin

Import-Package: org.w3c.dom,org.osgi.framework;version="1.3.0"
Bundle-ClassPath: .,groovy-all-1.7-beta-1-SNAPSHOT.jar

The Jar can now be loaded and started in the container without first loading the Groovy Jar. Verify this but running the following within the
console:

osgi> install file:
///home/user/dev/groovy-core/src/examples/osgi/build/hello-bundle-contains-groovy.jar
Bundle id is 14

osgi> ss

Framework is launched.

id State Bundle
0 ACTIVE org.eclipse.osgi_3.4.0.v20080605-1900
14 INSTALLED org.codehaus.groovy.osgi.hello-groovy-bundle_1.0.0

osgi> start 14
Groovy BundleActivator started

Publishing a Service Written in Groovy

Publishing a service written in Groovy requires one extra step that a Java service does not. This is because of the way Groovy makes extensive
use of ClassLoaders and reflection. When registering a service with the BundleContext, you must be sure to temporarily set the current thread's
ContextClassLoader to the target object's ClassLoader, and then set it back when you're done. It's actually quite easy, and this example walks
you through this one detail.

In order to demonstrate registering a service, we need to create a sample service in Groovy. This is just a POGO interface and implementation.
Consider the GroovyGreeter which simply prints a message to the console.

GroovyGreeter.groovy defines the interface:

package org.codehaus.groovy.osgi

interface GroovyGreeter {
void sayHello()

}

And GroovyGreeterlmpl.groovy defines the implementation:

package org.codehaus.groovy.osgi

class GroovyGreeterImpl implements GroovyGreeter {
void sayHello() {
println "Hello from the Groovy Greeter!"

Now the Activator can create an instance of GroovyGreeterlmpl and register it with the container as a GroovyGreeter provider. In Java, you'd

need one line to call BundleContext.registerService(String, Object, Dictionary), but in Groovy we need to change the ContextClassLoader while
we do this. Here is a complete and correct Activator:

package org.codehaus.groovy.osgi

import org.osgi.framework.BundleActivator
import org.osgi.framework.BundleContext
import org.osgi.framework.ServiceRegistration

class Activator implements BundleActivator {
ServiceRegistration registration
void start (BundleContext context) {
ClassLoader originalClassLoader = Thread.currentThread() .contextClassLoader
try {
Thread.currentThread () .contextClassLoader = getClass () .classLoader
GroovyGreeter myService = new GroovyGreeterImpl ()
registration = context.registerService (GroovyGreeter.class.getName (), myService, null)

}

finally {
Thread.currentThread () .contextClassLoader = originalClassLoader

}
void stop (BundleContext context) {
registration.unregister ()

The Jar file for this bundle is similar to the first example's:

hello-bundle-imports-groovy.jar
--META-INF

----MANIFEST.MF

--org

----codehaus

__________ GroovyGreeter.class
__________ GroovyGreeterImpl.class

The Jar Manifest is almost the same as the first example. The change is the Export-Package statement. Since we are registering the a service
org.codehaus.groovy.osgi,GroovyGreeter, we need to specify that package and version in an Export-Package statement:

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.7.0

Created-By: 10.0-bl9 (Sun Microsystems Inc.)

Built-By: user

provider: org.codehaus.groovy.osgi

Bundle-ManifestVersion: 2

Bundle-Name: Groovy OSGi Example Bundle

Bundle-SymbolicName: org.codehaus.groovy.osgi.hello-groovy-bundle
Bundle-Version: 1.0.0

Bundle-Activator: org.codehaus.groovy.osgi.Activator

Bundle-Vendor: Groovy

Bundle-Localization: plugin

Import-Package: groovy.lang;version="1.7.0.beta-1-SNAPSHOT",org.codeha
us.groovy.reflection;version="1.7.0.beta-1-SNAPSHOT", org.codehaus.gro
ovy.runtime;version="1.7.0.beta-1-SNAPSHOT", org.codehaus.groovy.runti
me.callsite;version="1.7.0.beta-1-SNAPSHOT",org.w3c.dom,org.osgi.fram
ework;version="1.3.0"

Export-Package: org.codehaus.groovy.osgi;version="1.0.0"
Bundle-ClassPath:

Notice, also, how this bundle is importing the Groovy Jar from the container, it does not contain the Groovy Jar within itself. To verify and test this,

use the OSGi console to install and start the groovy-all Jar and then install and start this Jar.

Consuming a Service from Groovy

It is easy to consume an OSGi service from a Groovy Activator. This example shows how to locate and invoke the service from the previous
section, but could just as easily work with a different service. It does not matter at all whether the service was written in Groovy, Java, or any other
language. The implementation details of a service should be completely hidden from you by the OSGi module system. Also, while this example is

written in Groovy, it is not very different from how it would look in Java.

To consume the service from the previous section, you will need an Activator that retrieves the service from the BundleContext in the

start(BundleContext) method:

package org.codehaus.groovy.osgi.harness

import org.osgi.framework.BundleActivator
import org.osgi.framework.BundleContext
import org.osgi.framework.ServiceRegistration
import org.osgi.framework.ServiceReference
import org.codehaus.groovy.osgi.GroovyGreeter

class HarnessActivator implements BundleActivator {

void start (BundleContext context) {
String serviceName = GroovyGreeter.class.name

references?.each { ServiceReference ref ->
Object serviceHandle = context.getService (ref)
GroovyGreeter service = serviceHandle
service.sayHello ()

void stop (BundleContext context) {

}

ServiceReference [] references = context.getAllServiceReferences (serviceName,

println "${ references ? references.size() : 0 } GroovyGreeter services found."

The service was registered by the interface name, so this Activator queries for that interface, printing out all the providers found. Notice the
package and name of this Activator changed. Since the previous example exported the org.codehaus.groovy.osgi, this example needed to pick a
different package to avoid conflicts. Also, the variables types in the code sample were explicitly declared to make the samplee easier to read.

To package and run this example you'll need to make a Jar with the following layout:

hello-groovy-test-harness.jar
--META-INF

----MANIFEST .MF

--org

----codehaus

------------ HarnessActivator.class
____________ HarnessActivator$_start_closurel.class

And the manifest needs to import the org.codehaus.groovy.osgi in the previous example:

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.7.0

Created-By: 10.0-bl9 (Sun Microsystems Inc.)

Built-By: user

provider: org.codehaus.groovy.osgi.harness

Bundle-ManifestVersion: 2

Bundle-Name: Groovy OSGi Test Harness

Bundle-SymbolicName: org.codehaus.groovy.osgi.harness.hello-groovy-tes
t-harness

Bundle-Version: 1.0.0

Bundle-Activator: org.codehaus.groovy.osgi.harness.HarnessActivator

Bundle-Vendor: Groovy

Bundle-Localization: plugin

Import-Package: org.codehaus.groovy.runtime.typehandling;version="1.0.
0", org.codehaus.groovy.osgi;version="1.0.0",groovy.lang;version="1.7.
0.beta-1-SNAPSHOT", org.codehaus.groovy.reflection;version="1.7.0.beta
-1-SNAPSHOT", org.codehaus.groovy.runtime;version="1.7.0.beta-1-SNAPSH
OT", org.codehaus.groovy.runtime.callsite;version="1.7.0.beta-1-SNAPSH
OT", org.w3c.dom,org.osgi.framework;version="1.3.0"

Bundle-ClassPath:

Install and test this bundle in the OSGi console. To install this bundle you'll need the groovy-all bundle installed first:

osgi> install file:
///home/user/dev/groovy-core/src/examples/osgi/../../../target/dist/groovy-all-1.7-beta-1-SNAPSHOT.jar
Bundle id is 6

osgi> install file:
///home/user/dev/groovy-core/src/examples/osgi/build/hello-groovy-test-harness.jar
Bundle id is 7

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.0.v20080605-1900

6 INSTALLED groovy-all_1.7.0.beta-1-SNAPSHOT

7 INSTALLED org.codehaus.groovy.osgi.harness.hello-groovy-test-harness_1.0.0

To start the bundle, you'll need the groovy-all bundle started and the hello-groovy bundle installed:

osgi> install file:
///home/user/dev/groovy-core/src/examples/osgi/build/hello-bundle-imports-groovy.jar
Bundle id is 8

osgi> start 6

osgi> start 7
0 GroovyGreeter services found.

To see the GroovyGreeter service locate and invoke the service, start the hello-groovy bundle and the restart the harness:

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.0.v20080605-1900

6 ACTIVE groovy-all _1.7.0.beta-1-SNAPSHOT

7 ACTIVE org.codehaus.groovy.osgi.harness.hello-groovy-test-harness_1.0.0
8 RESOLVED org.codehaus.groovy.osgi.hello-groovy-bundle_1.0.0

osgi> start 8
Groovy BundleActivator started

osgi> stop 7
osgi> start 7

1 GroovyGreeter services found.
Hello from the Groovy Greeter!

Exploring the OSGi console can be a valuable learning experience. Now that all the bundles are loaded, try playing with the "bundle", "headers",
"services", and "packages" commands. Help is available by typing "help".

Common Errors

Diagnosing runtime exceptions can be a frustrating experience for the OSGi beginner and expert alike. Here are some common errors and
solutions you might experience running these code samples:

ClassNotFoundException - The Java and Groovy compiler use a classpath to resolve dependencies, while the OSGi container does not. This
means that code that compiles fine might still receive ClassNotFound exceptions when running in the container. Here are some steps to diagnose
the issue:

® Find out which class is missing but reading the exception stack trace

® Find out which Jar contains the missing class

® Does that Jar's Manifest contain an Export-Package statement for the class' package? If not, then the Jar was built incorrectly and you
need to add the package to the Export-Package statement of the Jar.

® Does your Jar's Manifest contain an Import-Package statement for the imported package? If not, then your Jar was built incorrectly and
you need to add the package to the Import-Package statement of your Jar.

® Does the Export-Package version number match your Import-Package version number? If not, then update your manifest to import the
correct version, or update the missing class' jar to export the correct version?

® Is the missing class' bundle correctly installed and started in the container? The results of an "ss" command must show the Jar as
"Active" or else it won't be resolved. Use the "install" and "start" commands to start the jar correctly.

Missing Constraint - This means that one of your declared Import-Package statements cannot be satisfied by the container. The error message
will state exactly which dependency is missing, for instance it might say: Missing Constraint groovy.lang; version="1.7.0.beta-1-SNAPSHOT".

® |s the missing constraint's bundle correctly installed and started in the container? The results of an "ss" command must show the Jar as
"Active" or else it won't be resolved. Use the "install" and "start" commands to start the jar correctly.

ClassCastException - This error occurs when retrieving services out of the BundleContext and takes the form of the mysterious error message
"Cannot cast foo.bar.Class to foo.bar.Class". This means that the ClassLoader of your bundle has a different version of foo.bar.Class than the
one you're retrieving.

® Look at how the service's Activator is adding foo.bar.Class to the BundleContext. If the class is implemented in Groovy then you must
add the service using the ClassLoader code in the Publishing a Service Written in Groovy of this document.

® Look at how your Activator is resolving the reference to the class. If your bundle already defines foo.bar.Class and you're trying to retrieve
a foo.bar.Class from a different bundle, then the versions of the classes won't match. Declare the type as an interface that is imported the
same way between both bundles to resolve this issue.

Further Reading

The great part about using Groovy for OSGi is that the existing tutorials for Java and OSGi are all easily converted to Groovy.

® JavaWorld.com has a good three part introduction to Java and OSGi. Part 1 details the basics os a Hello World service. Part 2 describes
the Spring DM product and adding Spring to OSGi. And Part 3 covers several web deployment scenarios and issues. Part 2 describes
the Spring DM product and adding Spring to OSGi. And Part 3 covers several web deployment scenarios and issues.

® TheServerSide.com also has an OSGi for Beginners article.

® Hamlet D'Arcy has a Groovy and OSGi on the Desktop tutorial on his blog.

® Groovy and Sling (using OSGi): Apache Sling doco, blog

Advanced OO

Implement Interfaces using a Closure or a Map

Groovy way to implement interfaces

Groovy provides some very convenient ways to implement interfaces.

Implement interfaces with a closure

An interface with a single method can be implemented with a closure like so:

// a readable puts chars into a CharBuffer and returns the count of chars added
def readable = { it.put("12 34".reverse()); 5 } as Readable

// the Scanner constructor can take a Readable
def s = new Scanner (readable)
assert s.nextInt() == 43

You can also use a closure to implement an interface with more than one method. The closure will be invoked for each method on the interface.
Since you need a closure whose parameter list matches that of all of the methods you typically will want to use an array as the sole parameter.
This can be used just as it is for any Groovy closure and will collect all of the arguments in an array. For example:

interface X

{ void £(); void g(int n); void h(String s, int n); }

x = {Object[] args -> println "method called with $Sargs"} as X
x.£()

x.g9(1)

X

.h("hello",?2)

Implement interfaces with a map

More commonly an interface with multiple methods would be implemented with a map like so:

impl = [
i: 10,
hasNext: { impl.i > 0 },
next: { impl.i-- },
]
iter = impl as Iterator
while (iter.hasNext ())
println iter.next ()

Note this is a rather contrived example, but illustrates the concept.

You only need to implement those methods that are actually called, but if a method is called that doesn't exist in the map a NullPointerException
is thrown. For example:

interface X

{ void £(); void g(int n); void h(String s, int n); }
x = [£: {println "f called"}] as X

x.£()

//x.9() // NPE here

Be careful that you don't accidentally define the map with { }. Can you guess what happens with the following?

f: {println "f called"} } as X

What we've defined here is a closure with a label and a block. Since we've just defined a single closure every method call will invoke the closure.
Some languages use { } to define maps so this is an easy mistake until you get used to using [:] to define maps in Groovy.

Note that using the "as" operator as above requires that you have a static reference to the interface you want to implement with a map. If you
have a reference to the java.lang.Class object representing the interface (i.e. do not know or can not hard code the type at script write time) you
want to implement, you can use the asType method like this:

def loggerInterface = Class.forName('my.LoggerInterface')
def logger = [
log : { Object[] params -> println "LOG: ${params[0]}"; if(params.length > 1)
params [1] .printStackTrace() },
close : { println "logger.close called" }
] .asType (loggerInterface)

See also:

® Developer Testing using Closures instead of Mocks

Annotations with Groovy

Introduction

Java 5 and above supports the use of annotations to include metadata within programs. Groovy 1.1 and above also supports such annotations.
Annotations are used to provide information to tools and libraries. They allow a declarative style of providing metadata information and allow it to
be stored directly in the source code. Such information would need to otherwise be provided using non-declarative means or using external files.

We won't discuss guidelines here for when it is appropriate to use annotations, just give you a quick run down of annotations in Groovy.

Annotations are defined much like Java class files but use the @interface keyword. As an example, here is how you could define a
FeatureRequest Annotation in Java:

// Java
public @interface FeatureRequest {
String key();
String summary () ;
String assignee() default "[unassigned]";
String status() default " [open]";
String targetVersion() default "[unassigned]";

This annotation represents the kind of information you may have in an issue tracking tool. You could use this annotation in a Groovy file as
follows:

@FeatureRequest (
key="GROOVY-9999",
summary="Support Graphical Annotations",
assignee="Pete",
status="Open",
targetVersion="5.0"
)
class SomeClassWhereFeatureCouldBeUsed {
//
}

Now if you had tools or libraries which understood this annotation, you could process this source file (or the resulting compiled class file) and
perform operations based on this metadata.

As well as defining your own annotations, there are many existing tools, libraries and frameworks that make use of annotations. See some of the
examples referred to at the end of this page. As just one example, here is how you could use annotations with Hibernate or JPA:

import javax.persistence.*

@Entity
@Table (name="staff")
class Staff implements Serializable {
@Id @GeneratedValue
Long id
String firstname
String lastname
String position

Example

As another example, consider this XStream example. XStream is a library for serializing Java (and Groovy) objects to XML (and back again if you
want). Here is an example of how you could use it without annotations:

// require (groupld:'com.thoughtworks.xstream', artifactId:'xstream', version:'1.3')
import com.thoughtworks.xstream.*

class Staff {
String firstname, lastname, position

}

def xstream = new XStream()

xstream.classLoader = getClass().classLoader

def john = new Staff (firstname:'John',
lastname:'Connor',
position: 'Resistance Leader')

println xstream.toXML (john)

This results in the following output:

<Staff>
<firstname>John</firstname>
<lastname>Connor</lastname>
<position>Resistance Leader</position>
</Staff>

Just as an aside, not related to annotations, here is how you could write the XML to a file:

new File ("john.xml").withOutputStream { out ->
xstream. toXML (john, out)

}

And how you would read it back in:

// require (groupld:'com.thoughtworks.xstream', artifactId:'xstream', version:'1.3')
// require(groupId:'xpp3', artifactId:'xpp3 _min', version:'l.l.4c')
import com.thoughtworks.xstream.*

class Staff {
String firstname, lastname, position

}

def xstream = new XStream()

def john

// now read back in

new File("john.xml").withInputStream { ins ->
john = xstream.fromXML (ins)

}

println john.dump ()
// => <Staff@l2d96f2 firstname=John lastname=Connor position=Resistance Leader>

Now, on to the annotations ...

XStream also allows you to have more control over the produced XML (in case you don't like its defaults). This can be done through API calls or
with annotations. Here is how we can annotate our Groovy class with XStream annotations to alter the resulting XML:

//

import com.thoughtworks.xstream.annotations.*

@XStreamAlias ("person")

class Associate {
@XStreamAsAttribute
@XStreamAlias ('first-name')
String firstname

@XStreamAlias ('surname')
String lastname

@XStreamOmitField
String position

msg = new Associate(firstname:'Sarah',
lastname: 'Connor',
position:'Protector')
Annotations.configureAliases (stream, Associate)
println stream.toXML (msg)

When run, this produces the following output:

<person first-name="Sarah"s>
<surname>Connors</surname>
</persons>

Differences to Java

Annotations may contain lists. When using such annotations with Groovy, remember to use the square bracket list notation supported by Groovy
rather than the braces used by Java, i.e.:

// Java

@ManagedOperationParameters ({
@ManagedOperationParameter (name="x", description="The first number"),
@ManagedOperationParameter (name="y", description="The second number")})

Would become:

// Groovy

@ManagedOperationParameters ([
@ManagedOperationParameter (name="x", description="The first number"),
@ManagedOperationParameter (name="y", description="The second number")])

More Examples

Annotations are also used in examples contained within the following pages:

Using JUnit 4 with Groovy

Using TestNG with Groovy

Using Instinct with Groovy

Using Popper with Groovy
Singleton Pattern

Using Spring Factories with Groovy
Groovy and JMX

Ant Integration with Groovy

Introduction

Ant is the predominant build environment for Java projects. Groovy is a leading Scripting language for the JVM. The good news is that you can
use them together easily and with many benefits.

¥ Existing Ant Users (Java Projects): If you are already familiar with using Ant with a traditional build.xml file, then you can continue to do
so with almost no changes. If you want you can begin to use the <groovy> Ant task to bring the full power of a scripting language to your build
scripts.

k. Existing Ant Users (Groovy or mixed Groovy/Java Projects): If you wish to pre-compile your Groovy scripts as part of your build process
(it can help catch syntactic errors earlier if you do) then you need to know about the <groovyc> Ant task. You will find it almost identical to the
javac task which you are probably already familiar with.

L. Existing Groovy Users: You probably want to consider how you can use AntBuilder to leverage the many available Ant tasks directly in your
code using a DSL-style notation. You can leverage Ant Libraries in the same way.

Further Information

See also:

® Ant Task Troubleshooting
® Ant Manual

A few articles related to this topic:

Build scripts with Groovy and Ant

Practically Groovy: Ant scripting with Groovy
Scripting a Groovy Ant

Using Groovy to Send Emails: AntBuilder
Using WebTest with AntBuilder

The groovy Ant Task
<groovy>

Description

Executes a series of Groovy statements. Statements can either be read in from a text file using the src attribute or from between the enclosing
Groovy tags.

Required taskdef

Assuming groovy-all-VERSION jar is in my.classpath you will need to declare this task at some point in the build.xml prior to using this task.

<taskdef name="groovy"
classname="org.codehaus.groovy.ant .Groovy"
classpathref="my.classpath"/>

<groovy> attributes

Attribute Description Required

src File containing Groovy statements. Yes, unless statements enclosed within tags
The directory containing the file is added to the classpath

classpath the classpath to use No

classpathref = the classpath to use, given as reference to a PATH defined elsewhere = No

Parameters specified as nested elements

<classpath>

Groovy's classpath attribute is a PATH like structure and can also be set via a nested classpath element.

<arg> (since 1.1)

Arguments can be set via one or more nested <arg> elements using the standard Ant command line conventions.

Available bindings

A number of bindings are in scope for use within your Groovy statements.

Name Description
ant an instance of AntBuilder that knows about the current ant project
project the current ant project

properties = a Map of ant properties

target the owning target that invoked this groovy script

task the wrapping task, can access anything needed in org.apache.tools.ant.Task
args command line arguments, if any

Examples

Hello world, version 1:

<groovys>
println "Hello World"

</groovy>

Hello world, version 2:

<groovy>
ant.echo "Hello World"

</groovy>

List all xml files in the current directory:

<groovy>
xmlfiles = new File(".").listFiles().findAll{ it =~ "\.xml$" }
xmlfiles.sort().each { println it.toString() }

</groovy>

List all xml files within a jar:

<zipfileset id="found" src="foobar.jar"
includes="**/* . xml"/>
<groovy>
project.references.found.each {
println it.name
}

</groovy>

To run a script:

<groovy src="/some/directory/some/file.groovy">
<classpath>
<pathelement location="/my/groovy/classes/directory"/>
</classpath>
</groovy>

To find all the 'Builder' classes having an 'org.*' package within a directory of jars:

<property name="local.target" value="C:/Projects/GroovyExamples"/>

<groovys>
import java.util.jar.JarFile
def classes = []

def resourceNamePattern = /org\/.*\/.*Builder.class/
def jarNamePattern = /.* (beta|commons).*jar$/

def libdir = new File("${properties['local.target']}/lib")
libdir.listFiles() .grep(~jarNamePattern) .each { candidate ->
new JarFile (candidate) .entries().each { entry -»>
if (entry.name ==~ resourceNamePattern) classes += entry.name
}
}
properties["builder-classes"] = classes.join(' ')
</groovy>
<echo message='${builder-classes}'/>

Which might result in something like:

org/apache/commons/cli/PatternOptionBuilder.class org/apache/commons/cli/OptionBuilder.class
org/codehaus/groovy/tools/groovydoc/GroovyRootDocBuilder.class

org/custommonkey/xmlunit /HTMLDocumentBuilder.class
org/custommonkey/xmlunit/TolerantSaxDocumentBuilder.class

FileScanner version of above (with a slight variation on collecting the names):

<groovys>
import java.util.jar.JarFile
def resourceNamePattern = /org\/.*\/.*Builder.class/
def candidates = ant.fileScanner {
fileset (dir: '${local.target}/lib') ({
include (name: '*beta*.jar')
include (name: '*commons*.jar')

}

def classes = candidates.collect {
new JarFile (it) .entries().collect { it.name }.findAll {

it ==~ resourceNamePattern
}
}.flatten()
properties["builder-classes"] = classes.join(' ')
</groovy>

Setting arguments

<target name="run'">
<groovys>
<arg line="1 2 3"/>
<arg value="4 5"/>
println args.size()
println args[2]
args.each{ ant.echo (message:it) }
</groovy>
</target>

Buildfile: GROOVY-2087.xml

run:
[groovy]
[groovy]
[echo]
[echo]
[echo]
[echo]

BWw N R W

BUILD SUCCESSFUL

Forking Groovy

Since 1.5.7 and 1.6-beta-2, <groovy> also supports a fork="true" attribute. In fact, many of the attributes from the <java> Ant task are
supported. More details to come ...

More examples

® Ant, Groovy and the Database

The groovyc Ant Task

<groovyc>
Description
Compiles Groovy source files and, if the joint compilation option is used, Java source files.

Required taskdef

Assuming groovy-all-VERSION jar is in my.classpath you will need to declare this task at some point in the build.xml prior to the groovyc task
being invoked.

<taskdef name="groovyc"
classname="org.codehaus.groovy.ant .Groovyc"
classpathref="my.classpath"/>

<groovyc> Attributes

Attribute Description Required
srcdir Location of the Groovy (and possibly Java) source files. Yes
destdir Location to store the class files. Yes

classpath The classpath to use. No

classpathref The classpath to use given as a path references. No

sourcepath The sourcepath to use. No
sourcepathref The sourcepath to use given as a path reference. No
encoding Encoding of source files. No
verbose Asks the compiler for verbose output; defaults to no. No
includeAntRuntime Whether to include the Ant run-time libraries in the classpath; defaults to yes. No
includeJavaRuntime Whether to include the default run-time libraries from the executing VM in the classpath; defaults to no. No
fork Whether to execute groovyc using a spawned instance of the JVM; defaults to no. No
memoryInitialSize The initial size of the memory for the underlying VM, if using fork mode; ignored otherwise. Defaults to No

the standard VM memory setting. (Examples: 83886080, 81920k, or 80m)

memoryMaximumSize The maximum size of the memory for the underlying VM, if using fork mode; ignored otherwise. Defaults = No
to the standard VM memory setting. (Examples: 83886080, 81920k, or 80m)

failonerror Indicates whether compilation errors will fail the build; defaults to true. No
listfiles Indicates whether the source files to be compiled will be listed; defaults to no. No
stacktrace if true each compile error message will contain a stacktrace No

jointCompilationOptions* = Enable joint compilation, specifying the command line options. (Using a nested javac task is preferred.) = No
Notes: Joint compilation is only available since 1.1-beta-2, jointCompilationOptions is no longer supported, use the nested javac instead

<groovyc> Nested Elements

element kind Required Replaces Attribute

src a path structure | Yes (unless srcdir is used) = srcdir

classpath ' a path structure No classpath

javac javac task No jointCompilationOptions
Notes:

® For path structures see for example http://ant.apache.org/manual/using.html#path

® For usages of the javac task see http://ant.apache.org/manual/CoreTasks/javac.html

® The nested javac task behaves more or less as documented for the top-level javac task. srcdir, destdir, classpath, encoding for the
nested javac task are taken from the enclosing groovyc task. If these attributes are specified then they are added, they do not replace. In
fact, you should not attempt to overwrite the destination. Other attributes and nested elements are unaffected, for example fork,
memoryMaximumSize, etc. may be used freely.

Joint Compilation

Joint compilation means that the Groovy compilation will parse the Groovy source files, create stubs for all of them, invoke the Java compiler to
compile the stubs along with Java sources, and then continue compilation in the normal Groovy compiler way. This allows mixing of Java and
Groovy files without constraint.

To invoke joint compilation with the jointCompilationOptions attribute, you have to simulate the command line with compiler switches. -j enables
the joint compilation mode of working. Flags to the Java compiler are presented to the Groovy compiler with the -F option. So, for example, flags
like nowarn are specified with -Fnowarn. Options to the Java compiler that take values are presented to the Groovy compiler using -J options. For
example -Jtarget=1.4 -Jsource=1.4 is used to specify the target level and source level. So a complete joinCompilationOptions value may look like:
"-j -Fnowarn -Jtarget=1.4 -J-source=1.4". Clearly, using this way of specifying things is a real nuisance and not very Ant-like. In fact there are
thoughts to deprecate this way of working and remove it as soon as is practical.

The right way of working is, of course, to use a nested tag and all the attributes and further nested tags as required. It is rare to specify srcdir and
destdir, the nested javac task is provided with the srcdir and destdir values from the enclosing groovyc task, and it is invariable the right thing to
do just to leave this as is. Here is an example:

<groovyc srcdir="${testSourceDirectory}" destdir="${testClassesDirectory}">
<classpath>
<pathelement path="3${mainClassesDirectory}"/>
<pathelement path="3${testClassesDirectory}"/>
<path refid="testPath"/>
</classpath>
<javac source="1l.4" target="1.4" debug="on" />
</groovycs>

To restate: the javac task gets the srcdir, destdir and classpath from the enclosing groovyc task.

The groovydoc Ant task

<groovydoc>

Description
Generates documentation from Groovy and Java source files.

Required taskdef

Assuming groovy-all-VERSION jar is in my.classpath you will need to declare this task at some point in the build.xml prior to the groovydoc task
being invoked.

<taskdef name="groovydoc"
classname="org.codehaus.groovy.ant .Groovydoc"
classpathref="my.classpath"/>

<groovydoc> Attributes

Attribute Description Required
destdir Location to store the class files. Yes
sourcepath The sourcepath to use. No
packagenames = Comma separated list of package files (with terminating wildcard). No
use Create class and package usage pages. No
windowtitle Browser window title for the documentation (text). No
doctitle Include title for the package index(first) page (html-code). No
header Include header text for each page (html-code). No
footer Include footer text for each page (html-code). No
overview Read overview documentation from HTML file. No
private Show all classes and members (i.e. including private ones) if set to "true". ' No

<groovydoc> Nested Elements
link
Create link to groovydoc/javadoc output at the given URL.

Attribute Description Required

packages Comma separated list of package prefixes = Yes

href Base URL of external site Yes

Example

<taskdef name="groovydoc" classname="org.codehaus.groovy.ant.Groovydoc" classpathref=
"path to groovy all"/s
<groovydoc
destdir="%{docsDirectory}/gapi"
sourcepath="3${mainSourceDirectory}"
packagenames="** * !
use="true"
windowtitle="${title}"
doctitle="${title}"
header="${title}"
footer="${docFooter}"
overview="src/main/overview.html"
private="false">
<link packages="java.,org.xml.,javax.,org.xml." href="http://java.sun.com/j2se/1.5.0/docs/api"
/>
<link packages="org.apache.ant.,org.apache.tools.ant." href=
"http://www.dpml.net/api/ant/1.7.0"/>
<link packages="org.junit.,junit.framework." href=
"http://junit.sourceforge.net/junit3.8.1/javadoc/"/>
<link packages="groovy.,org.codehaus.groovy." href="http://groovy.codehaus.org/api/"/>
</groovydoc>

Using Ant from Groovy

If ever you've been working with a build.xml file or some Jelly script and found yourself a little restricted by all those pointy brackets, or found it a
bit wierd using XML as a scripting language and wanted something a little cleaner and more straight forward, then maybe Ant scripting with
Groovy might be what you're after.

Groovy has a helper class called antBuilder which makes the scripting of Ant tasks really easy; allowing a real scripting language to be used
for programming constructs (variables, methods, loops, logical branching, classes etc). It still looks like a neat concise version of Ant's XML
without all those pointy brackets; though you can mix and match this markup inside your script. Ant itself is a collection of jar files. By adding them
to your classpath, you can easily use them within Groovy as is. We believe using AntBuilder leads to more concise and readily understood
syntax.

Below are some examples (most taken from Groovy's own AntBuilder tests) which demonstrate:
® the use of Ant inside Groovy using the AntBuilder DSL notation

® ademo of iterating through an Ant FileSet using fileScanner
® that normal variables can be used to pass state into the Ant tasks and that Groovy code can be embedded anywhere in the markup.

def ant = new AntBuilder ()

// lets just call one task
ant.echo ("hello")

// here is an example of a block of Ant inside GroovyMarkup
ant.sequential

echo ("inside sequential")

myDir = "target/AntTest/"

mkdir (dir:myDir)

copy (todir:myDir) {

fileset (dir:"src/test") {
include (name: "**/* .groovy")

}

echo ("done")

// now lets do some normal Groovy again
file = new File("target/AntTest/groovy/util/AntTest.groovy")
assert file.exists()

def ant = new AntBuilder ()

// lets create a scanner of filesets
scanner = ant.fileScanner {
fileset (dir:"src/test")
include (name:"**/Ant* .groovy")

// now lets iterate over
def found = false
for (f in scanner) {
println("Found file $f")
found = true
assert f instanceof File
assert f.name.endsWith(".groovy")

}

assert found

def ant = new AntBuilder ()

ant.junit {
test (name: 'groovy.util.SomethingThatDoesNotExist')

}

def ant = new AntBuilder ()
value = ant.path {

fileset (dir:"xdocs") {
include (name:"* . wiki")

assert value != null

println "Found path of type ${value.class.name}"
println value

def ant = new AntBuilder ()

def taskContainer = ant.parallel(){ // "Parallel" serves as a sample TaskContainer
ant.echo () // "Echo" without message to keep tests silent

}

// not very elegant, but the easiest way to get the ant internals...

assert taskContainer.dump() =~ /nestedTasks=\[org.apache.tools.ant.taskdefs.Echo@\w+\]/

Compiling and running a Java file:

def ant = new AntBuilder ()
ant.echo (file:'Temp.java', '''

class Temp { public static void main(String[] args) { System.out.println("Hello"); }}
)

ant.javac(srcdir:'.', includes:'Temp.java', fork:'true')

ant.java (classpath:'.', classname:'Temp', fork:'true')

ant.echo ('Done")

/] =>

// [javac] Compiling 1 source file

// [javal Hello

// [echo] Done

Sniffing around ...

def ant = new AntBuilder ()
SpoofTaskContainer.spoof.length = 0
def PATH = 'task.path'
ant.path (id:PATH) {ant .pathelement (location: 'classes') }
['spoofcontainer': 'SpoofTaskContainer', 'spoof':'SpoofTask'].each{ pair ->
ant . taskdef (name:pair.key, classname:'groovy.util.'+pair.value, classpathref:PATH)
}

ant.spoofcontainer () {
ant . spoof ()
}

expectedSpoof =
"SpoofTaskContainer ctor\n'"+
"SpoofTask ctor\n"+
"in addTask\n"+
"begin SpoofTaskContainer execute\n'"+
"begin SpoofTask execute\n"+
"end SpoofTask execute\n"+
"end SpoofTaskContainer execute\n"
assertEquals expectedSpoof, SpoofTaskContainer.spoof.toString()

Using the joint compiler

Here is a small build file which uses the joint compiler to compile Groovy and Java source files together, and put them in WEB-INF/classes:

def ant = new AntBuilder().sequential {
webinf = "deploy/WEB-INF"
taskdef name: "groovyc", classname: "org.codehaus.groovy.ant.Groovyc"
groovyc srcdir: "src", destdir: "${webinf}/classes", {
classpath {
fileset dir: "${webinf}/lib", {
include name: "*.jar"
}
pathelement path: "${webinf}/classes"
}
javac source: "1.5", target: "1.5", debug: "on"
}
}

Using Ant Libraries with AntBuilder

Introduction

Recent version of Ant have included a mechanism called Antlibs. These allow you to define your own custom tasks, group them together with the
appropriate definitions needed by Ant and use them in your Ant environment without nameclashes. Nameclashes are avoided by using
namespaces. Numerous Antlibs are now available from both Apache (the developers of Ant) and other sources. Using these libraries with Groovy
is fairly easy - though you have to be careful with some of the details.

AntUnit

The AntUnit antlib includes predefined <assert> tasks corresponding to the most common kind of checks you want to do within your build files.
They are using thoughout the Ant codebase to test many of the ant tasks but you can use these assertions in your own build files (or any Groovy
code) too.

Here is an example the uses the assertFileDoesntExist and assertFileExists checks.

First, we'll consider the traditional way of incorporating this antlib, by using namespaces (you'll need the antunit jar in your classpath before you
begin - as we are relying on Ant's autodiscovery of antlibs mechanism here):

def ant = new AntBuilder ()

ant.'antlib:org.apache.ant.antunit:assertFileDoesntExist' (file:'copytestl.tmp')
ant.copy (file:'src/antunit.groovy', tofile:'copytestl.tmp')
ant.'antlib:org.apache.ant.antunit:assertFileExists' (file:'copytestl.tmp')
ant.delete(file: 'copytestl.tmp')
ant.'antlib:org.apache.ant.antunit:assertFileDoesntExist' (file:'copytestl.tmp')

Notice that the antunit assertions all exist within their own namespace. That's OK for now, Groovy allows special symbols in method names so
long as you include the method name in quotes.

We can also incorporate the antlib directly into the default namespace as follows:

import org.apache.tools.ant.taskdefs.Antlib

def ant = new AntBuilder ()

def url = this.class.getResource ('org/apache/ant/antunit/antlib.xml"')
Antlib.createAntlib (ant.antProject, url, 'antlib:org.apache.ant.antunit') .execute ()

ant.assertFileDoesntExist (file: 'copytestl.tmp')

ant.copy (file:'src/antunit.groovy', tofile:'copytestl.tmp')
ant.assertFileExists(file:'copytestl.tmp')
ant.delete(file:'copytestl.tmp')
ant.assertFileDoesntExist (file: 'copytestl.tmp')

This makes our code look simpler for this example but be careful with this approach though as you need to avoid name clashes. The preferred
way is to use the NamespaceBuilder. Using this, our code becomes:

import groovy.xml.NamespaceBuilder

def ant = new AntBuilder ()

def antunit = NamespaceBuilder.newlInstance(ant, 'antlib:org.apache.ant.antunit')
def destfile = 'copytestl.tmp'

antunit.assertFileDoesntExist (file:destfile)
ant.copy (file: 'src/antunit.groovy', tofile:destfile)
antunit.assertFileExists (file:destfile)
ant.delete(file:destfile)
antunit.assertFileDoesntExist (file:destfile)

Maven Ant Tasks

Another useful antlib is the Maven Ant Tasks. They allow you to use Maven's artifact handling features from within Ant including:
® Dependency management - including transitive dependencies, scope recognition and SNAPSHOT handling
® Artifact deployment - file and SSH based deployment to a Maven repository

®* POM processing - for reading a Maven 2.0.x pom.xml file

Here is how you could use these tasks to download some required jars into your local maven repository cache (~/ .m2 directory).

import groovy.xml.NamespaceBuilder
def ant = new AntBuilder ()

items = [[groupId:'jfree', artifactId:'jfreechart',6 version:'1.0.5'],
[groupId: 'jfree', artifactId:'jcommon', version:'1.0.9']]

def mvn = NamespaceBuilder.newInstance (ant, 'antlib:org.apache.maven.artifact.ant')

// download artifacts

mvn.dependencies (filesetId: 'artifacts') { items.each { dependency(it) } }
// print out what we downloaded

ant.fileScanner { fileset(refid:'artifacts') }.each { println it }

When run, this produces a log of the maven ant task activity, such as:

Downloading: jfree/jfreechart/1.0.5/jfreechart-1.0.5.pom

Transferring 298K
C:\Users\Paul\.m2\repository\jfree\jcommon\1.0.9\jcommon-1.0.9.jar
C:\Users\Paul\.m2\repository\jfree\jfreechart\1.0.5\jfreechart-1.0.5.jar

We can take this example further and show how to create the JFreeChart example from Plotting graphs with JFreeChart without having the
JFreeChart jars statically defined in our classpath.

First another helper class:

class MavenDependency {
static void require (params) {
MavenDependencyHelper.getInstance () .require (params)
}

static MavenDependencyHelper using(classLoader) {
MavenDependencyHelper.getInstance (classLoader)

}

private class MavenDependencyHelper {
private classLoader
private MavenDependencyHelper (classLoader) {
this.classLoader = classLoader

static MavenDependencyHelper getInstance (classLoader) {
return new MavenDependencyHelper (classLoader)

static MavenDependencyHelper getInstance () {
return new MavenDependencyHelper (MavenDependencyHelper.classLoader)

MavenDependencyHelper require(params) {
def ant = new AntBuilder ()
def mvn = groovy.xml.NamespaceBuilder.newInstance (ant, 'antlib:org.apache.maven.artifact.ant!')

mvn.dependencies (filesetId:"artifact ${params.groupId} ${params.artifactId} ${params.version}"
) { dependency (params) }

ant.fileScanner { fileset (refid:
"artifact ${params.groupld} ${params.artifactId} ${params.version}") }.each {
classLoader.addClasspath(it.toString())
}

this

Now, here is the code we require to dynamically download the JFreeChart jars and add them to our classpath then run the script:

// no jfreechart imports required (we'll find them programmatically)
import groovy.swing.SwingBuilder
import static javax.swing.WindowConstants.EXIT ON_CLOSE

def classLoader = Thread.currentThread() .contextClassLoader

// load jars and add to classpath

def maven = MavenDependency.using(classLoader)

maven.require (groupId:'jfree', artifactId:'jfreechart', version:'1.0.5"')
maven.require (groupId:'jfree', artifactId:'jcommon', version:'1.0.9')

// define used classes/instances programmatically

def factoryClass = classLoader.loadClass ('org.jfree.chart.ChartFactory"')

def orientationClass = classLoader.loadClass ('org.jfree.chart.plot.PlotOrientation')

def dataset = classLoader.loadClass('org.jfree.data.category.DefaultCategoryDataset') .newInstance ()

// normal code below here

dataset.addvalue 150, "no.1", "Jan"
dataset.addvalue 210, "no.1l", "Feb"
dataset.addvalue 390, "no.1", "Mar"
dataset.addvalue 300, "no.2", "Jan"
dataset.addvalue 400, "no.2", "Feb"
dataset.addvalue 200, "no.2", "Mar"

def labels = ["Bugs", "Month", "Count"]
def options = [true, true, true]

def chart = factoryClass.createLineChart (*labels, dataset,
orientationClass.VERTICAL, *options)

def swing = new SwingBuilder ()

def frame = swing.frame(title:'Groovy LineChart',
defaultCloseOperation:EXIT_ON_CLOSE) ({

panel (id:'canvas') { rigidArea(width:400, height:400) }

}

frame.pack ()

frame . show ()

chart .draw(swing.canvas.graphics, swing.canvas.bounds)

lvy Tasks

We can also download jars using Ivy. In this case we use MarkupBuilder to build an XML file that the vy retrieve task will use:

import groovy.xml.NamespaceBuilder

def ant = new AntBuilder ()
def ivyfile = 'ivy.xml' // default file used by Ivy
ant.delete(file:ivyfile, quiet:true)

new File(ivyfile) .withWriter { writer -»>
def builder = new groovy.xml.MarkupBuilder (writer)
builder. 'ivy-module' (version:'1.0") {
info (organisation: "codehaus", module:'"GroovyExamples")
dependencies {
dependency (org: 'jfree', name:'jfreechart', rev:'1.0.5')
dependency (org: 'jfree', name:'jcommon', rev:'1.0.9')

def ivy = NamespaceBuilder.newInstance (ant, 'antlib:org.apache.ivy.ant')
ivy.retrieve ()
ivy.report (toDir: 'reports') // optional

When run, this results in the files being downloaded:

[antlib:org.apache.ivy.ant:retrieve] :: Ivy 2.0.0-alpha-1l-incubating - 20070416155158

[antlib:org.apache.ivy.ant:retrieve] downloading
http://repol.maven.org/maven2/jfree/jfreechart/1.0.5/jfreechart-1.0.5.jar

[antlib:org.apache.ivy.ant:retrieve] [SUCCESSFUL] [jfree | jfreechart | 1.0.5]/jfreechart.jar[jar]
(16735ms)

[antlib:org.apache.ivy.ant:retrieve] downloading
http://repol.maven.org/maven2/jfree/jcommon/1.0.9/jcommon-1.0.9.jar

[antlib:org.apache.ivy.ant:retrieve] [SUCCESSFUL] [jfree | jcommon | 1.0.9]/jcommon.jar [jar]

(6812ms)

[antlib:org.apache.ivy.ant:retrieve] :: resolution report

| | modules || artifacts |

| conf | number| search|dwnlded|evicted|| number|dwnlded |

| default | 2 | 2 | 0 | 0 || 2 | 2 |
[antlib:org.apache.ivy.ant:retrieve] :: retrieving :: [codehaus | grails]

[antlib:org.apache.ivy.ant:retrieve] confs: [default]
[antlib:org.apache.ivy.ant:retrieve] 2 artifacts copied, 0 already retrieved

If you included the optional report step (and add ant-trax.jar from your ant distribution to our classpath), then you would have some additional
log information and it would produce the following pretty report on dependencies:

GroovyExamples by codehaus
vesolved oo MOF-08-25 #1: 14000

I-'- ilt
Dependencies Stats
Ciodibi 2
Farvivions 2 (0 searched %, 0 downloaded #, 0 evicted B, 0 errors @)
Ertitacis 2 10 dowrdoaded, O failed)
Aaitacti iz 1456 kB (0 kB downloaded, 1456 k8 in cache)
Dependencies Overdew
[Hodnle | mevisten | staras | Besolver | Defanit | Licsnsas | Size
Integration public falee 1157 kB
Intepration pubdic Falue T kB
Indegration public false FA kA
Details
jfreechart by Jfree reoveds dofsu
Revision: 1.0.5
Stabus finbegration
Prubslie atigsn 200T0E0TIII IR
Fesatwer public
enfiguratinm pysnem, defsult, compile, provided, runtime, metter
Artitacts shre 15T K (0 kB downloaded, 1957 K incache)
Required by
| Organisation I Hama I In Configurations | Asked Bevisloa
| codehms | GroovyExamples defalt 1.0.%
Depenidencies
[Hodala [Reridioa | Sravas [Besclrer | Dafanic [Liceadad | Siza
| | fintegration | public | falss | C maka | |
Artifacts
| Fame Ty Ext bownlcad Siza
| jfreechart far ar | na | TIST M
jeommon by Jfree e sy detaun
Revision: 1.0.9
Seatui integration
Pubstication ricerge er e LR R
onfigurations systems, defadt, compils, provided, nentims, master
Aartitacts iz 2% ki (0 kB downloaded, 299 kB in cachel
Required by
| argani sation] Hama] In Configurations | Askad Bavinicn
flros freechar oompdle, muntime e
coduhms T vEamples de it 1.0.%
Depenidencies
o depesndency
Artifacts
| Hazen 1 Tree Ext 1 Dorwm Toaecd 1 Hiam
Joormman jar s) 299 kB

Bean Scripting Framework

Groovy integrates cleanly with BSF (the Bean Scripting Framework) which allows you to embed any scripting engine into your Java code while

keeping your Java code decoupled from any particular scripting engine specifics.
The BSF engine for Groovy is implementated by the GroovyEngine class; however, that fact is normally hidden away by the BSF APIs. You just

treat Groovy like any of the other scripting languages via the BSF API.
Note: Groovy has its own native support for integration with Java. See Embedding Groovy for further details. So you only need to worry about
BSF if you want to also be able to call other languages from Java, e.g. JRuby or if you want to remain very loosely coupled from your scripting

language.

Getting started

Provided you have Groovy and BSF jars in your classpath, you can use the following Java code to run a sample Groovy script:

String myScript = "println('Hello World')\n return [1, 2, 3]1";
BSFManager manager = new BSFManager () ;
List answer = (List) manager.eval ("groovy", "myScript.groovy", 0, 0, myScript) ;

assertEquals (3, answer.size());

Passing in variables

BSF lets you pass beans between Java and your scripting language. You can register/unregister beans which makes them known to BSF. You
can then use BSF methods to lookup beans as required. Alternatively, you can declare/undeclare beans. This will register them but also make
them available for use directly in your scripting language. This second approach is the normal approach used with Groovy. Here is an example:

manager.declareBean("xyz", new Integer(4), Integer.class);
Object answer = manager.eval ("groovy", "test.groovy", 0, 0, "xyz + 1");
assertEquals (new Integer (5), answer) ;

Other calling options

The previous examples used the eval method. BSF makes multiple methods available for your use (see the BSF documentation for more details).
One of the other available methods is apply. It allows you to define an anonymous function in your scripting language and apply that function to
arguments. Groovy supports this function using closures. Here is an example:

Vector ignoreParamNames = null;
Vector args = new Vector();
args.add (new Integer(2));
args.add (new Integer(5));
args.add (new Integer (1)) ;
Integer actual = (Integer) manager.apply ("groovy", "applyTest", 0, O,
"def summer = { a, b, ¢ -> a * 100 + b * 10 + ¢ }", ignoreParamNames, args);
assertEquals (251, actual.intValue()) ;

Access to the scripting engine

Although you don't normally need it, BSF does provide a hook that lets you get directly to the scripting engine. One of the functions which the
engine can perform is to invoke a single method call on an object. Here is an example:

BSFEngine bsfEngine = manager.loadScriptingEngine ("groovy") ;

manager.declareBean ("myvar", "hello", String.class);
Object myvar = manager.lookupBean ("myvar") ;
String result = (String) bsfEngine.call (myvar, "reverse', new Object[]{});

assertEquals ("olleh", result);

Legacy points of interest

If you must integrate with early version of BSF (i.e. prior to bsf 2.3.0-rc2) then you'll need to manually register the Groovy language with BSF
using the following snippet of code:

BSFManager.registerScriptingEngine (
"groovy",
"org.codehaus.groovy.bsf .GroovyEngine",
new Stringl[] { "groovy", "gy" }
)i

Bitwise Operations

From Groovy 1.0 beta 10, Groovy supports bitwise operations:
<<, >> >>> | &, A and ~.

Operator Symbol Meaning

<< Bitwise Left Shift Operator
>> Bitwise Right Shift Operator
>>> Bitwise Unsigned Right Shift Operator

| Bitwise Or Operator
& Bitwise And Operator
A Bitwise Xor Operator

~ Bitwise Negation Operator

<<= Bitwise Left Shift Assign Operator
>>= Bitwise Right Shift Assign Operator
>>>= Bitwise Unsigned Right Shift Assign Operator

|= Bitwise Or Assign Operator

&= Bitwise And Assign Operator
Az Bitwise Xor Operator
For example,
assert (1 << 2) == 4 // bitwise left shift
assert (4 >> 1) == 2 // bitwise right shift
assert (15 >>> 1) == 7 // bitwise unsigned right shift
assert (3 | 6) == 7 // bitwise or
assert (3 & 6) == 2 // bitwise and
assert (3 * 6) == 5 // bitwise xor
int mostlyOnes = OXFFFFFFFE
assert ~mostlyOnes == 1 // bitwise negation
Builders

Tree Based Syntax

Groovy has special syntax support for List and Maps. This is great because it gives a concise representation of the actual object being defined, so
its easier to keep track of what a program or script is doing. But what about programs which contain arbitrary nested tree structures. Surely, they
are the hardest ones to keep track of what is going on. Isn't that an area where syntactic help will be most beneficial?

The answer is definitely yes and Groovy comes to the party with its builder concept. You can use it for DOM-like APIs or Ant tasks or Jelly tags or

Swing widgets or whatever. Each may have their own particular factory mechanism to create the tree of objects - however they can share the
same builder syntax to define them - in a concise alternative to XML or lengthy programming code. See How Builders Work

Example
[Note: the syntax in some of these examples is slightly out-dated. See chapter 8 of GINA in the mean-time until these examples are updated.]

Here's an example:

def £ = framesize: [300,300], text:'My Window' {
labelbounds: [10,10,290,30], text:'Save changes'
panelbounds: [10,40,290,290] {
buttontext:'OK', action:{ save close }
buttontext:'Cancel', action:{ close }

The above invokes a number of methods on the owner class using named-parameter passing syntax. Then the button method would create
JButton etc. The { } is used to define a closure which adds its content to the newly created node. Also notice that the action parameter is passed

as a closure - which is ideal for working with Ul centric listeners etc.

Note that within the 'markup’ you can embed normal expressions - i.e. this markup syntax is a normal part of the Groovy language. e.g.

def f = frametext: calculateFieldNamefoo, 1234

// lets iterate through some map
map = [1l:"hello", 2:"there"]

for e in map {
labelname:e.value
textfieldname:e.value

Using this simple mechanism we can easily create any structured tree of data - or provide an event based model too. Note in Groovy you can just
overload the invokeMethodname, arguments to have a simple polymorphic tree creation - such as for DOM is structures or Ant tasks or Jelly tags

etc.

Here's an example of some HTML using some mixed content which is typically hard to do neatly in some markup languages

html {
head {
title"XML encoding with Groovy"
}
body {
h1"XML encoding with Groovy"
p"this format can be used as an alternative markup to XML"

/ an element with attributes and text content /
ahref: 'http://groovy.codehaus.org' ["Groovy"]

/ mixed content /
p [
"This is some",
b"mixed",
"text. For more see the"
ahref: 'http://groovy.codehaus.org' ["Groovy"],
"project"
]

p "some text"

Finally here's an example of creating some name-spaced XML structure XSD...

def builder = NodeBuilder.newInstance ()
def xmlns = new groovy.xml.NamespaceBuilder (builder)

def xsd = xmlns.namespace('http://www.w3.0org/2001/XMLSchema', 'xsd')

def root = xsd.schema (xmlns: ['foo': 'http://someOtherNamespace']) {
annotation {
documentation ("Purchase order schema for Example.com.")
//documentation (xmlns=[xml.lang:'en']) ["Purchase order schema for Example.com."]

element (name: 'purchaseOrder', type:'PurchaseOrderType')
element (name: 'comment', type:'xsd:string')
complexType (name: ' PurchaseOrderType') {
sequence {
element (name: 'shipTo', type:'USAddress')
element (name: 'billTo', type:'USAddress')
element (minOccurs:'0', ref:'comment')
element (name:'items', type:'Items')
}
attribute (name: 'orderDate', type:'xsd:date')
}
complexType (name: 'USAddress') {
sequence {
element (name: 'name', type:'xsd:string')
element (name: 'street', type:'xsd:string')
(
(
(

element (name:'city', type:'xsd:string')
element (name: 'state', type:'xsd:string')
element (name:'zip', type:'xsd:decimal')

}
attribute (fixed:'US', name:'country', type:'xsd:NMTOKEN')
}
complexType (name: 'Items') {
sequence {
element (maxOccurs: 'unbounded', minOccurs:'0', name:'item') {
complexType {
sequence {
element (name: 'productName', type:'xsd:string')
element (name: 'quantity') {
simpleType {
restriction (base: 'xsd:positiveInteger') {
maxExclusive (value: '100")
}
}
}
element (name: 'USPrice', type:'xsd:decimal')
element (minOccurs:'0', ref:'comment')
element (minOccurs:'0', name: 'shipDate', type:'xsd:date')
}
attribute (name: 'partNum', type:'SKU', use:'required')
}
}
}
}
/* Stock Keeping Unit, a code for identifying products */
simpleType (name: 'SKU') {
restriction (base: 'xsd:string') {
pattern(value:'\\d{3}-[a-2]{2}")
}
}
}

There's a converter org. codehaus.groovy.tools.xml.DomToGroovy from XML to groovy markup so you can try out this new markup
language on any XML documents you have already.

Special cases

To output elements or attributes with a '-' in their name, you need to quote the names. For example, to generate a web-app descriptor for a

Servlet app:

def builder = new groovy.xml.MarkupBuilder ()
builder. 'web-app' {
'display-name' 'My Web Application'

}

generates:

<web-app>
<display-name>My Web Application</display-names>
</web-app>

Read from external variable

Most builder examples are inline usage. To use a builder to build for an external variable, you may use:

class MyConfig{
static nodes = {
'first entry' (key:

}

'value')

}

def result = new YourBuilder () .invokeMethod ('rootNode',

MyConfig.nodes)

Related links

Andy Glover introduces builders through an astronomical example

How Builders Work

| Workin Progress

This section | will discuss how builders work and how you can create your own builder. Builders are based on the builder pattern from the GOF
design pattern book. It provides a way to build your own DSL and represents a powerful concept in Groovy. Let me start by saying | am not an
expert on the subject of Groovy and this is a good thing for the following reasons. | will take you through a step ny step example from anovice
point of view. Much of the Groovy documentation is very useful but you have to know a lot to get the most out of the pages. | an starting smae
pages to learn more about the power of Groovy and share that undestanding to other novices like me. It is also my hope that this will encourage

other novices to take up the challange and write their own pages.

Things you need to know

Hierarchic structures - XML data in groovy
Closures

Method Handlers

Properties

presentation short.

| find it easier to understand concrete examples so | will start by using a standard builder MarkupBuilder; so let us see it in use:

Meta ProgrammingLet me also add that here are many examples of creating builders in Groovy, so | will use those examples to keep this

MarkupBuilder Example

// create a builder, (note: this is not in one of the packages that are automatically imported
def builder = new groovy.xml.MarkupBuilder() // construct a builder step (1l

// create a simple xml markup

builder.stocks { // step (2)
stock (symbol: 'JAVA') // step (3-1)
stock (symbol: 'MSFT') // step (3-2)

stock (symbol: 'IBM')

}

==== result output =====>
<stocks>
<stock symbol='JAVA' />
<stock symbol='MSFT' />
<stock symbol='IBM' />
</stocks>

So what is going on here:
step(1) - we just create a MarkupBuilder and save in in the variable builder, pretty much standard Groovy
step(2) - we invoke the method stocks on builder

The first thing to note is that builder does not know the method stocks so in java for example the compiler will give an error. In a dynamic
language, where these decisions are made at runtime, the builder will missing method exception.

WORK IN PROGRESS

FactoryBuilderSupport

FactoryBuilderSupport

SwingBuilder is one of the most used Groovy builders. It follows the standard structure of BuilderSupport but uses the concept of factories to build
each node. Seeing that the concept was useful enough for other builders the basic implementation was taken out of SwingBuilder and
FactoryBuilderSupport was born (and SwingBuilder was retrofitted of course). How Builders Work

The Factory interface is the basic building block, the builder will call the factory's methods at specific points during node building, let's see them in
their invocation order:

® Object newlnstance(FactoryBuilderSupport builder, Object name, Object value, Map attributes) throws InstantiationException,
lllegalAccessException
Responsible for creating the object that responds to the node 'name’ and its called during builder.createNode
® boolean onHandleNodeAttributes(FactoryBuilderSupport builder, Object node, Map attributes)
Gives the factory the ability to process the attributes as it may see fit with the option of stopping the builder to process them itself (by
returning true).
® void setParent(FactoryBuilderSupport builder, Object parent, Object child)
void setChild(FactoryBuilderSupport builder, Object parent, Object child)
allows the factory to setup parent/child relationships.
® boolean isLeaf()
Lets the builder know if the node allows for further nodes to be nested on the current node.
® void onNodeCompleted(FactoryBuilderSupport builder, Object parent, Object node)
Is the last method called from the factories perspective, it will let you handle any cleanup the node may require.

But that's not everything FactoryBuilderSupport has to offer. The factories may require contextual information on the current node being built to do
its work, onNodeCompleted may require information that it is only available when newlInstance is invoked, or newlnstance may need to inspect

the parent to decide what is the best way to create the node, just to mention a few scenarios, that's why FactoryBuilderSupport enables the
following helping methods:

Method Description

Map getContext() returns the context of the current node*

Map getParentContext() returns the context of the parent of the current node**
Factory getCurrentFactory() = returns the factory that built the current node

Factory getParentFactory() ' returns the factory of the parent of the current node (if any)
Object getParentNode() returns the parent of the current node (if any)**

Object getCurrent() returns the current node*

* Note: In the newlnstance(...) method, since the "current" node has not yet been created, getCurrent() and getContext() will return the parent
node or parent context of the node that is currently being constructed.

** Note: In the newlnstance(...) method, since the "current" node has not yet been created, getParentNode() and getParentContext() will return
the grandparent node or grandparent context of the node that is currently being constructed.

The builder is marked as abstract so you are required to create a subclass for your own builders, despite that it doesn't enforce the
implementation of any method at all. There are a couple of protected methods though, that when overwritten will give you more control over the
builder's internal workings:

® Factory resolveFactory(Object name, Map attributes, Object value)
Usually what you would like in a subclass of FactoryBuilderSupport is a 1 to 1 relation on node names to factories, but for those cases
where you would like n to 1 you can override this method and plug in your custom selection mechanism.

® void prelnstantiate(Object name, Map attributes, Object value)
void postinstantiate(Object name, Map attributes, Object node)
void handleNodeAttributes(Object node, Map attributes)
Object postNodeCompletion(Object parent, Object node)
These methods are called during the lifecycle of a node, you can override them at any time but there is also a way to extend the behavior
associated with those calls without overwriting the methods: you may register a closure, in fact as many as you like, to hook your own
logic. The closures will be called from last to first as they were registered.

TODO document build() methods

Closures

What is a Closure?

A Groovy Closure is like a "code block" or a method pointer. It is a piece of code that is defined and then executed at a later point. It has some
special properties like implicit variables, support for currying and support for free variables (which we'll see later on). We'll ignore the nitty gritty
details for now (see the formal definition if you want those) and look at some simple examples.

Simple Example

def clos = { println "hello!" }

println "Executing the Closure:"
clos () //prints "hello!"

Note that in the above example, "hello!" is printed when the Closure is called, not when it is defined.

Parameters

Closure parameters are listed before the -> token, like so:

def printSum = { a, b -> print a+b }
printSum(5, 7) //prints "12"

The -> token is optional and may be omitted if your Closure definition takes fewer than two parameters.

Parameter notes

A Closure without -> , i.e. {} , is a Closure with one argument that is implicitly named as 'it'. (see below for details) In some cases, you need to

construct a Closure with zero arguments, e.g. using GString for templating, defining EMC Property etc. You have to explicity define your Closure
as { -> }instead of just { }

You can also use varargs as parameters, refer to the Formal Guide for details. A JavaScript-style dynamic args could be simulated, refer to the
Informal Guide.

Free variables

Closures may refer to variables not listed in their parameter list. Such variables are referred to as "free" variables. They are "bound" to variables
within the scope where they are defined:

def myConst = 5
def incByConst = { num -> num + myConst }
println incByConst (10) // => 15

Or another example:

def localMethod () ({
def localVariable = new java.util.Date ()
return { println localVariable }

}

def clos = localMethod ()

println "Executing the Closure:"
clos () //prints the date when "localVariable" was defined

Implicit variables
Within a Groovy Closure, several variables are defined that have special meaning:
it

If you have a Closure that takes a single argument, you may omit the parameter definition of the Closure, like so:

def clos = { print it }
clos("hi there") //prints "hi there"

this, owner, and delegate

this : as in Java, this refers to the instance of the enclosing class where a Closure is defined

owner : the enclosing object (this or a surrounding Closure)

delegate : by default the same as owner, but changeable for example in a builder or ExpandoMetaClass

Example:

class Classl {
def closure = {
println this.class.name
println delegate.class.name
def nestedClos =
println owner.class.name

}

nestedClos ()

def clos = new Classl().closure
clos.delegate = this
clos ()
/* prints:
Classl
Scriptl
Classl$_closurel */

Closures as Method Arguments

When a method takes a Closure as the last parameter, you can define the Closure inline, like so:

def list = ['a','b','c','d']
def newList = []

list.collect (newList) {
it.toUpperCase ()

}

println newList // ["An, wBw, wgn, wpn]

In the above example, the collect method accepts a List and a Closure argument. The same could be accomplished like so (although it

more verbose):

def list = ['a','b','c','d']
def newList = []

def clos = { it.toUpperCase() }
list.collect (newList, clos)

assert newList == ["A", "B", "C", "D"]

More Information

Groovy extends java.lang.Object and many of the Collection and Map classes with a number of methods that accept Closures as

arguments. See GDK Extensions to Object for practical uses of Groovy's Closures.
See Also:

® Closures - Formal Definition
® Closures - Informal Guide

Closures - Formal Definition

Formal Guide

A closure in Groovy is an anonymous chunk of code that may take arguments, return a value, and reference and use variables declared in its
surrounding scope. In many ways it resembles anonymous inner classes in Java, and closures are often used in Groovy in the same way that

S

Java developers use anonymous inner classes. However, Groovy closures are much more powerful than anonymous inner classes, and far more
convenient to specify and use.

In functional language parlance, such an anonymous code block might be referred to as an anonymous lambda expression in general or lambda
expression with unbound variables or a closed lambda expression if it didn't contain references to unbound variables (like threshold in the
earlier example). Groovy makes no such distinction.

Strictly speaking, a closure can't be defined. You can define a block of code that refers to local variables or fields/properties, but it becomes a
closure only when you "bind" (give it a meaning) this block of code to variables. The closure is a semantic concept, like an instance, which you
cannot define, just create. Strictly spoken a closure is only a closure if all free variables are bound. Unless this happens it is only partially closed,
hence not really a closure. Since Groovy doesn't provide a way to define a closed lambda function and a block of code might not be a closed
lambda function at all (because it has free variables), we refer to both as closure - even as syntactic concept. We are talking about it as syntactic
concept, because the code of defining and creating an instance is one, there is no difference. We very well know that this terminology is more or
less wrong, but it simplifies many things when talking about code in a language that doesn't "know" the difference.

Syntax for Defining a Closure

A closure definition follows this syntax:

{ [closureArguments->] statements }

Where [closureArguments->] is an optional comma-delimited list of arguments, and statements are 0 or more Groovy statements. The arguments
look similar to a method's parameter list, and these arguments may be typed or untyped. When a parameter list is specified, the -> character is
required and serves to seperate the arguments from the closure body. The statements portion consists of 0, 1, or many Groovy statements.

Some examples of valid closure definitions:

—_~

item++ }

—_~

println it }
{ ++it }

{ name -> println name }

—_~

String x, int y -> println "hey ${x} the value is ${y}" }

—_~

reader ->
while (true)
def line = reader.readLine ()
}
}

++++ Note: The examples could definitely be made more real-life MWS

Closure semantics

Closures appear to be a convenient mechanism for defining something like an inner classs, but the semantics are in fact more powerful and
subtle than what an inner class offers. In particular, the properties of closures can be summarized in this manner:

1. They have one implicit method (which is never specified in a closure definition) called doCall()

2. A closure may be invoked via the call() method, or with a special syntax of an unnamed () invocation. Either invocation will be translated
by Groovy into a call to the Closure's doCall() method.

3. Closures may have 1...N arguments, which may be statically typed or untyped. The first parameter is available via an implicit untyped
argument named it if no explicit arguments are named. If the caller does not specify any arguments, the first parameter (and, by
extension, it) will be null.

4. The developer does not have to use it for the first parameter. If they wish to use a different name, they may specify it in the parameter list.

5. Closures always return a value. This may occur via either an explicit return statement, or as the value of the last statement in the closure
body (e.g. an explicit return statement is optional).

6. A closure may reference any variables defined within its enclosing lexical scope. Any such variable is said to be bound to the closure

7. Any variables bound to a closure are available to the closure even when the closure is returned outside of the enclosing scope.

8. Closures are first class objects in Groovy, and are always derived from the class Closure. Code which uses closures may reference them
via untyped variables or variables typed as Closure.

9. The body of a closure is not executed until it is explicitly invoked e.g. a closure is not invoked at its definition time

10. A closure may be curried so that one a copy the closure is made with one or more of its parameters fixed to a constant value

These properties are explained further in the following sections.

Closures are anonymous

Closures in Groovy are always represented as anonymous blocks. Unlike a Java or Groovy class, you cannot have a named closure. You may
however reference closures using untyped variables or variables of type Closure, and pass such references as method arguments and arguments
to other closures.

Implicit method

Closures are considered to have one implicitly defined method, which corresponds to the closure's arguments and body. You cannot override or
redefine this method. This method is always invoked by the call() method on the closure, or via the special unnamed () syntax. The implicit
method name is doCall().

Closure Arguments

A closure always has at least one argument, which will be available within the body of the closure via the implicit parameter it if no explicit
parameters are defined. The developer never has to declare the it variable - like the this parameter within objects, it is implicitly available.

If a closure is invoked with zero arguments, then it will be null.

Explicit closure arguments may be specified by the developer as defined in the syntax section. These arguments are a list of 1 or more argument
names which are comma seperated. The parameter list is terminated with a -> character. Each of these arguments may be specified "naked" e.g.
without a type, or with an explicit static type. If an explicit parameter list is specified, then the it variable is not available.

For arguments that have a declared type, this type will be checked at runtime. If a closure invocation has 1 or more arguments which do not
match the declared argument type(s), then an exception will be thrown at runtime. Note that this argument type checking always occurs at
runtime; there is no static type checking involved, so the compiler will not warn you about mis-matched types.

Groovy has special support for excess arguments. A closure may be declared with its last argument of type Object[]. If the developer does this,
any excess arguments at invocation time are placed in this array. This can be used as a form of support for variable numbers of arguments. For
example:

def ¢ = {
format, Object[] args ->
aPrintfLikeMethod (format, args)}
("one", "two", "three");

[}
c ("1m);

Both invocations of ¢ are valid. Since the closure defines two arguments (format and args) and the last argument is of type Object]], the first
parameter in any call to ¢ will be bound to the format argument and the remaining parameters will be bound to the args argument. In the first call
of c the closure will receive the parameter args with 2 elements ("two", "three") while the format parameter will contain the string "one". In the
second call the closure will receive the parameter args with no elements and the format parameter will contain the string "1".

++++ What Exception is thrown? MWS

Closure Return Value

Closures always have a return value. The value may be specified via one or more explicit return statement in the closure body, or as the value of
the last executed statement if returnis not explicitly specified. If the last executed statement has no value (for example, if the last statement is a
call to a void method), then null is returned.

There is currently no mechanism for statically declaring the return type of a closure.

References to External Variables

Closures may reference variables external to their own definition. This includes local variables, method parameters, and object instance
members. However, a closure may only reference those variables that the compiler can lexically deduce from the physical location of the closure
definition within the source file.

Some examples might serve to clarify this. The following example is valid and shows a closure using a method's local variables and a method
parameter:

public class A {

private int member = 20;

private String method()

{
}

return "hello";

def publicMethod (String name_)
{
def localVar = member + 5;
def localVar2 = "Parameter: ${name }";
return {
println "${member} ${name_} ${localvar} ${localvar2} ${method()}"
}
}

A sample = new A();
def closureVar = sample.publicMethod("Xavier") ;
closurevVar () ;

The above code will print out:

20 Xavier 25 Parameter:

Xavier hello

Looking at the definition of class A, the closure inside of publicMethodhas access to all variables that publicMethod may legally access. This is
true whether the variables are local variables, parameters, instance members, or method invocations.

When a closure references variables in this way, they are bound to the closure. At the same time, the variables are still available normally to the
enclosing scope, so the closure may read/change any such values, and code from the outer scope may read/change the same variables.

If such a closure is returned from its enclosing scope, the variables bound with the closure also live on. This binding occurs when the closure is
instantiated. If an object method or instance member is used within a closure, then a reference to that object is stored within the closure. If a local
variable or parameter is referenced, then the compiler re-writes the local variable or parameter reference so that the local variable or parameter is
taken off the stack and stored in an heap based object.

It's important to keep in mind that these references only are ever allowed according to the lexical structure available to the compiler (in this case,
the A class). This process does not occur dynamically by looking at the call stack. So the following will not work:

class A {
private int member = 20;

private void method ()

{

return "hello";

}

def publicMethod (String name_)

{

def localVar = member + 5;

def localVar2 = "Parameter: name ";
return {
// Fails!
println "${member} ${name } ${localvar} ${localvar2} ${method ()} ${bMember}"
}
}
}
class B {

private int bMember = 12;

def bMethod (String name_)
{
A aInsideB = new A();
return (aInsideB.publicMethod (name_));

}

B aB = new B();
closureVar = aB.publicMethod("Xavier") ;
closureVar () ;

The above code is similar to the first example, except that we now have a class B which dynamically instantiates an object of type Aand then calls
A.publicMethod(). However, in this code the closure within publicMethod() is trying to reference a member from B, and this is not allowed since

the compiler cannot statically determine that this is available. Some older languages allowed this sort of reference to work, by dynamically
examining the call stack at runtime, but this is disallowed in Groovy.

Groovy supports the special owner variable which can be used when a closure argument is hiding an object member variable. For example:

class HiddenMember {
private String name;

def getClosure (String name)
{
return { name -> println (name)}
}
}

In the above code the printin (name) call is referencing the parameter name. If the closure needs to access the name instance variable of class

HiddenMember, it can use the owner variable to indicate this:

class HiddenMember {
private String name;

def getClosure (String name)
{
return { name -> println ("Argument: ${name}, Object: ${owner.name}")}
}
}

The Closure Type

All closures defined in Groovy are derived from the type Closure. Each unique closure definition with a Groovy program creates a new unique

class which extends Closure. If you wish the specify the type of a closure in a parameter, local variable, or object member instance, then you
should use the Closure type.

The exact type of a closure is not defined unless you are explicitly subclasses the Closure class. Using this example:

def ¢ = { println it}

The exact type of the closure referenced by cis not defined, we know only that it is a subclass of Closure.

Closure creation and invocation

Closures are created implicitly when their surrounding scope encounters them. For example, in the following code two closures are created:

class A {
private int member = 20;

private method()

{
}

println ("hello");

def publicMethod (String name_)

{
def localVar = member + 5
def localVar2 = "Parameter: name ";
return {

println "${member} ${name_} ${localvar} ${localvar2} ${method()}"

}

}

}

A anA = new A();

closureVar = anA.publicMethod ("Xavier") ;
closureVar () ;

closureVar2 = anA.publicMethod ("Xavier") ;
closureVar2 () ;

In the above example, closureVar holds a reference to a different closure object than closureVar2. Closures are always implicitly created in this
manner - you cannot new a closure programmatically.

Closures may be invoked using one of two mechanisms. The explict mechanism is to use the call() method:

closureVar.call () ;

You may also use the implict nameless invocation approach:

closureVar () ;

If you are looking at the Closure javadoc, you may notice that the call method within the Closure class is defined as:

public Object call (Objectl[] args);

Despite this method signature, you do not have to manually write code to turn parameters into the Object[] array. Instead, invocations use the
normal method argument syntax, and Groovy converts such calls to use an object array:

closure ("one", "two", "three")
closure.call ("one", "two", "three")

Both calls above are legal Groovy. However, if you are dealing with a Closure from Java code you will need to create the Object[] array yourself

Fixing Closure Arguments to Constant Values Via Currying

You can fix the values for one or more arguments to a closure instance using the curry() method from the Closuretype. In fact, this action is often
referred to as currying in functional programming circles, and the result is generally referred to as a Curried Closure. Curried closures are very
useful for creating generic closure definitions, and then creating several curried versions of the original with differing parameters bound to them.

When the curry() method is called on a closure instance with one or more arguments, a copy of the closure is first made. The incoming arguments
are then bound permanently to the new closure instance so that the parameters 1..N to the curry() call are bound to the 1..N parameters of the
closure. The new curried closure is then returned the caller.

Callers to the new instance will have their invocation parameters bound to the new closure in the N+1 parameter position of the original closure.

A simple example of this would be:

def ¢ = { argl, arg2-> println "s${argl} s{arg2}" }
def d = c.curry("foo"
d(”bar”)

The above code defines a closure ¢, and then calls c.curry("foo"). This returns a curried closure with the arg? value permanently bound to the
value "foo". On the invocation d("bar”), the "bar" parameter comes into the closure in the arg2 argument. The resulting output would be foo bar.

See also: Functional Programming with Groovy

Special Case: Passing Closures to Methods

Groovy has a special case for defining closures as method arguments to make the closure syntax easier to read. Specifically, if the last argument
of a method is of type Closure, you may invoke the method with an explicit closure block outside of the parenthesis. For example, if a class has a
method:

class SomeCollection {
public void each (Closure c)

}

Then you may invoke each() with a closure definition outside of the parenthesis:

SomeCollection stuff = new SomeCollection() ;
stuff.each() { println it }

The more traditional syntax is also available, and also note that in Groovy you can elide parenthesis in many situations, so these two variations
are also legal:

SomeCollection stuff = new SomeCollection() ;
stuff.each { println it } // Look ma, no parens
stuff.each ({ println it }) // Strictly traditional

The same rule applies even if the method has other arguments. The only restriction is that the Closure argument must be last:

class SomeCollection {
public void inject (x, Closure c)

}

stuff.inject (0) {count, item -> count + item } // Groovy
stuff.inject (0, {count, item -> count + item }) // Traditional

This syntax is only allowed when explicitly defining a closure within the method call. You cannot do this with a variable of type closure, as this
example shows:

class SomeCollection {
public void inject (x, Closure c)

}

counter = {count, item -> count + item }
stuff.inject (0) counter // Illegal! No Groovy for you!

When you are not defining a closure inline to a method call, you cannot use this syntax and must use the more verbose syntax:

class SomeCollection {
public void inject (x, Closure c)

}

def counter = {count, item -> count + item }
stuff.inject (0, counter)

Comparing Closures to Anonymous Inner Classes

Groovy includes closures because they allow the developer to write more concise and more easily understood code. Where Java developers may
use single-method interfaces (Runnable, the Command pattern) combined with anonymous inner classes, Groovy allows you to accomplish the
same sort of tasks in a less verbose manner. In addition, closures have fewer constraints than anonymous inner classes and include extra
functionality.

Most closures are relatively short, isolated, and anonymous snippets of code that accomplish one specific job. Their syntax is streamlined to make
closure definitions very short and easy to read without additional clutter. For example, in Java code you might see code like this for an imaginary
GUI system:

Button b = new Button ("Push Me");
b.onClick (new Action() {
public void execute (Object target)
{
buttonClicked() ;
}
1

The same code in Groovy would look like this:

Button b = new Button ("Push Me");
b.onClick { buttonClicked() }

The Groovy code accomplishes the same task but is much clearer and without extra syntactical clutter. This is the first

rule of Groovy closures - closures are frivially easy to write. In addition, closures may reference any variables in its outer

defining scope without the restrictions of anonymous inner classes - in particular, such variables do not need to be final.

Closures also carry their state around with them, even when they reference local variables and parameters. Closures may also take advantage of
Groovy's optional dynamic typing so that you don't have to statically declare all of your closure arguments or return types (in fact, a Groovy
closure can take varying numbers of parameters from invocation to invocation).

What Groovy closures lack compared to an approach using Command-like interfaces is the level of static typing involved. A Java interface rigidly

enforces what type of objects can be used and the method(s) that may be called in it. In Groovy, all closures type equally as Closure and type
checking of arguments (if specified in the closure definition) is deferred until Runtime.

Closures as map keys and values
It's possible to put closures in a map, both as keys and values.

Closures as keys

You can use a closure as a key. However, when putting it into the map you must "escape” it (as you would any other identifier you don't want
treated as a string) by enclosing it in parens, like so:

f = { println "f called" }
m= [(£): 123]

When accessing the value of the closure in the map you must use get(f) or m[f] as m.f will treat f as a string.

println m.get (f) // 123
println m[£] // 123
println m.f // null

Closures as values

You can use a closure as a value and call that closure as if it were a method on the map, similarly to Expandos.

= [£: { println 'f called' }]
£0 // £ called

8 3

m = new Expando(f: { println 'f called' })
£0) // £ called

8

Extending groovy with the use directive

You can provide your own specialized methods supporting closures by implementing a Java class containing such methods. These methods must
be static and contain at least two parameters. The first parameter to the method must be the type on which the method should operate, and the

last parameter must be a Closure type.

Consider the example below, which is a variant of the eachFile method which simply ignores files, and just prints the directories within the dir
object on which the method operates.

dir = new File("/tmp")
use (ClassWithEachDirMethod.class) {
dir.eachDir {
println it
}
}

Take note of the use() directive. This will tell groovy where the eachDir method is implemented. Below is the Java code required to support the
eachDir method on the File object, as shown.

public class ClassWithEachDirMethod {
public static void eachDir (File self, Closure closure) {
File[] files = self.listFiles();
for (int i = 0; i < files.length; i++) {
if (files[i].isDirectory()) ({
closure.call(files[i]);

To support additional parameters, these should be placed between the first and last.
Closures - Informal Guide

Informal Guide

When using the Java programming language most executable code is enclosed in either static class methods or instance methods. (Code can
also be enclosed in constructors, initializers, and initialization expressions, but those aren't important here.) A method encloses code within curly
brackets and assigns that block of code a method name. All such methods must be defined inside of a class of some type. For example, if you
were to write a method that returned the square of any integer it may look like this:

package example.math;

public class MyMath {
public static int square(int numberToSquare) {
return numberToSquare * numberToSquare;

}

Now in order to use the square() method you need to reference the class and the method by name as follows:

import example.math.MyMath;

int x, y;
X = 2;
y = MyMath.square(x); // y will equal 4.

You can do the same thing in Groovy, but in groovy you can alternatively define the code without having to declare a class and a method as
follows:

{ numberToSquare -> numberToSquare * numberToSquare }

In Groovy, this anonymous code block is referred to as a closure definition (see the Formal Guide section below for a more elaborate definition of
terms). A closure definition is one or more program statements enclosed in curly brackets. A key difference between a closure and method is that
closures do not require a class or a method name.

As you can see, the executable code is the same except you didn't need to declare a class or assign the code a method name. While illustrative,
the previous example is not all that useful because there is no way to use that closure once its created. It has no identifier (method name) so how
can you call it? To fix that you assign the closure to a variable when it's created. You can than treat that variable as the identifier of the closure
and make calls on it.

The following shows the square () method re-written as a closure:

def x = 2

// define closure and assign it to variable 'c'
def ¢ = { numberToSquare -> numberToSquare * numberToSquare }

// using 'c' as the identifer for the closure, make a call on that closure
def y = ¢(x) // shorthand form for applying closure, y will equal 4
def z = c.call(x) // longhand form, z will equal 4

What is really nice about closures is that you can create a closure, assign it to a variable, and then pass it around your program like any other
variable. At first this seems a bit, well useless, but as you learn more about Groovy you'll discover that closures are used all over the place.

As an example, let's extend the java.util.Vector class from Java by adding a single method that allows you to apply a closure to every
element in the vector. My new class, GVector, looks as follows:

package example

public class GVector extends java.util.Vector {
public void apply(c){
for (i in 0..<size()) {
this[i] = c(this[i])

}

The apply () method takes a closure as an input parameter. For each element in the GVector, the closure is called passing in the element. The
resulting value is then used to replace the element. The idea is that you can modify the contents of the GVector in place using a closure which
takes each element and converts into something else.

Now we can call our new apply () method with any closure we want. For example, we will create a new Gvector, populate it with some
elements, and pass in the closure we created earlier, the one that squares an integer value.

import example

def gVect = new GVector (
gVect .add (2)

gVect .add (3)

gVect .add (4)

def ¢ = { numberToSquare -> numberToSquare * numberToSquare }

gVect.apply(c) // the elements in the GVector have all been squared.

Because the apply() method on the GVector can be used with any closure, you can use any closure. For example, the following uses a closure
that simply prints out the item its passed.

import example

def gVect = new GVector (
gVect .add (2)
gVect .add (3)
gVect .add (4)

def c2 = { value -> println(value) }

gVect.apply(c2) // the elements in the GVector have all been printed.

If you were to run the above script, assuming Gvectoxr from earlier is on your classpath, the output would look like this:

C:/> groovy myscript.groovy
4

9

16

Cc:/>

In addition to assigning closures to variables, you can also declare them directly as arguments to methods. For example, the above code could be
re-written in the following manner:

import example

def gVect = new GVector (
gVect .add (2)

gVect .add (3)

gVect .add (4)

gVect.apply{ value -> println(value) } // elements in GVector have been printed.

This example accomplishes the same thing as the first, but the closure is defined directly as an argument to the apply method of GVector.

The other important difference of a closure to a normal method is that a closure can refer to variables from the scope in which it is called (in fact
this is where this language construct gets its name). Here is an example:

class Employee {
def salary
}
def highPaid (emps) {
def threshold = 150
return emps.findAll{ e -> e.salary > threshold }

}

def emps = [180, 140, 160].collect{ val -> new Employee(salary:val) }

println emps.size() // prints 3
println highPaid(emps) .size() // prints 2

In this example, the closure block { e -> e.salary > threshold } refers to the threshold variable defined in the highPaid () method. The
example also used a closure to create the emps list.

Simulate Javascript-style variable arguments

Groovy supports varargs as Closure parameter, but that requires the use of a Object[] and the closure code has to access the varargs as an
Array.

In JavaScript, function arguments are fully dynamic and you could call a function with any number of arguments different from the number of
arguments defined in a function, e.g.

//javascript
function doSomething(var0, varl) {
alert('var0O: ' + var0 + ', varl: ' + varl);
}
doSomething('value0O', 'valuel', 'value2'); //one argument more than in the defined function

If your closure defined more argument than closure call, then you could use:

def doSomething = {var0, varl = null -> }
doSomething('valueO')

doSomething('valueO' , 'valuel')

However, you can't do the job exactly like a JavaScript function when your closure has defined less argument than the closure call. If you are the
implementer of the closure, you could use varargs (as described in the Formal Guide) to allow your closure to take more arguments than it is
defined, and you have to access the extra variables as an Object[].

There are cases you may want to take more arguments but not using varargs/Object[]. For example, as an API provider, you expose an API that
take a closure as argument. The closure may define one or two parameters up to the user. (this is a typical case when passing JavaScript
function) The following is an example about how to simulate such behaivior:

// sample entity
class User(
def username, password, version, salt = 'RANDOM';

}

// your API, provide a Map of changes to update a entity. the map value may be static value, or a
closure that take up to 2 params
def update(entity, Map changes) {
changes?.each {k, v ->
def newValue;
if (v instanceof Closure) {
switch (v.parameterTypes.length) {

case 0: newValue = v(); break;
case 1: newValue = v(entityl[k]); break; // if one params, the closure is called with the field
value

case 2: newValue = v(entityl[k],entity); break; // if two params, the closure is called with teh field
value and the entity
}
}elsef
newValue =
}
entity[k] = newValue
}
}

|
<

// user code

def userl = new User (username: 'userl', password:'passl', version:0)

update (userl, [password:{p,e-> Hash.md5(p, e.salt) }, version:{v-> v+1 }] //assume there is a MD5
util

Other Examples

® You could define a closure that take a closure as argument, and combine the use of other Groovy techniques to do a lot of things. See
the Closure, Category and JPA example

Closures vs. Code Blocks

A closure looks a lot like a regular Java or Groovy code block, but actually it's not the same. The code within a regular code block (whether its a
method block, static block, synchronized block, or just a block of code) is executed by the virtual machine as soon as it's encountered. With
closures the statements within the curly brackets are not executed until the call() is made on the closure. In the previous example the closure is
declared in line, but it's not executed at that time. It will only execute if the call() is explicitly made on the closure. This is an important differentiator
between closures and code blocks. They may look the same, but they are not. Regular Java and Groovy blocks are executed the moment they
are encountered; closures are only executed if the call() is invoked on the closure.

Collections

Groovy has native language support for collections, lists, maps and arrays.

Lists

You can create lists as follows. Notice that [] is the empty list expression.

def list = [5, 6, 7, 8]
assert list.get(2) == 7
assert list([2] == 7

assert list instanceof java.util.List

def emptyList = []

assert emptyList.size() == 0
emptyList.add(5)

assert emptyList.size() == 1

Each list expression creates an implementation of java.util.List.

See Lists and Sets for more information on using Lists.

Ranges

Ranges allow you to create a list of sequential values. These can be used as Lists since Range extends java.util.List.
Ranges defined with the .. notation are inclusive (that is the list contains the from and to value).
Ranges defined with the ..< notation are exclusive, they include the first value but not the last value.

// an inclusive range
def range = 5..8
assert range.size() ==
assert range.get(2) =
assert range[2] == 7
assert range instanceof java.util.List
assert range.contains (5)

assert range.contains (8)

4
7

// lets use an exclusive range
range = 5..<8

assert range.size() ==
assert range.get(2) =
assert range[2] == 7
assert range instanceof java.util.List
assert range.contains (5)

assert ! range.contains(8)

3
7

//get the end points of the range without using indexes
def range = 1..10

assert range.from ==

assert range.to == 10

Note that ranges are implemented efficiently, creating a lightweight Java object containing a from and to value.

Ranges can be used for any Java object which implements java.lang.Comparable for comparison and also have methods next() and previous() to
return the next / previous item in the range.
e.g. you can use Strings in a range

// an inclusive range

def range = 'a'..'d’

assert range.size() == 4

assert range.get(2) == 'c'

assert range[2] == 'c!

assert range instanceof java.util.List
assert range.contains('a')

assert range.contains('d')

assert | range.contains('e')

Ranges can be used to iterate using the for statement.

for (i in 1..10) {
println "Hello ${i}"

}

but alternatively you can achieve the same effect, by iterating a range with each method:

(1..10) .each { i ->
println "Hello ${i}"

}

Ranges can be also used in the switch statements:

switch (years) {
case 1..10: interestRate = 0.076; break;
case 11..25: interestRate = 0.052; break;
default: interestRate = 0.037;

Maps
Maps can be created using the following syntax. Notice that [:] is the empty map expression.

Map keys are strings by default: [a:1] is equivalent to ["a":1]. But if you really want a variable to become the key, you have to wrap it between
parentheses: [(a):1].

def map = [name:"Gromit", likes:'"cheese", id:1234]
assert map.get ("name") == "Gromit"

assert map.get ("id") == 1234

assert map["name"] == "Gromit"

assert map['id'] == 1234

assert map instanceof java.util.Map

def emptyMap = [:]

assert emptyMap.size() == 0
emptyMap .put ("foo", 5)

assert emptyMap.size() == 1
assert emptyMap.get("foo") == 5

Maps also act like beans so you can use the property notation to get/set items inside the Map provided that the keys are Strings which are valid
Groovy identifiers.

def map = [name:"Gromit", likes:'"cheese", 1id:1234]
assert map.name == "Gromit"

assert map.id == 1234

def emptyMap = [:]

assert emptyMap.size() == 0

emptyMap.foo = 5

assert emptyMap.size() == 1

assert emptyMap.foo == 5

Note: by design map.foo will always look for the key foo in map. This means foo.class will return null on an empty map and not result in calling the
method getClass()

See Maps for more information on using maps.

Getting efficient with the star-dot "."' operator

You can perform operations on all the members of a collection using the "." operator, e.g.:

assert [1, 3, 5] == ['a', 'few', 'words']*.size()

Enhanced Collection Methods

In addition to providing the literal syntax for collections, Groovy adds some additional methods to make working with collections more convenient.
As an example, you can find big words from a list as follows:

def words = ['ant', 'buffalo', 'cat', 'dinosaur']
assert words.findAll{ w -> w.size() > 4 } == ['buffalo’', 'dinosaur']

Or you can find the first letters of some words as follows:

def words = ['ant', 'buffalo', 'cat', 'dinosaur']
assert words.collect{ it[0] } == ['a', 'b', 'c', 'd'l

In addition to findAll and collect shown above, you have methods like findIndexOf, grep, any, every, min, max, flatten, intersect, disjoint, sort, join
and others. Simply look up the GDK doco for more details. You might want to look up the added methods for Collection, List and Object to start
with.

Some more details about these methods can also be found in the Quick Start Guide under JN1015-Collections.

Slicing with the subscript operator

You can index into Strings, Lists, arrays, Maps, regexs and such like using the subscript expression.

def text = "nice cheese gromit!"
def x = text[2]

assert x == "c"
assert x.class == String

def sub = text[5..10]

assert sub == 'cheese'

def map = [name:"Gromit", likes:'"cheese", 1id:1234]
assert map["name"] == "Gromit"

assert map.name == "Gromit'

def list = [10, 11, 12]

def answer = list[2]

assert answer == 12

Notice that you can use ranges to extract part of a List/array/String/regex. This is often referred to as slicing in scripting languages like Python.
You can also use a list of indexes too.

def list = 100..200
def sub = list[1, 3, 20..25, 33]
assert sub == [101, 103, 120, 121, 122, 123, 124, 125, 133]

You can update items using the subscript operator too

def list = ["a", "b", "c"]
list[2] = "dr

list[0] = 1list[1]

list[3] = 5

assert list == ["b", "b", "d", 5]

You can use negative indices to count from the end of the List, array, String etc.

def text = "nice cheese gromit!"
def x = text[-1]
assert x == "I"

def name = text[-7..-2]
assert name == "gromit"

Also if you use a backwards range (the starting index is greater than the end index) then the answer is reversed.

def text = "nice cheese gromit!"
def name = text[3..1]
assert name == "eci!

Dynamic objects (Expandos)

The Expando is not a collection in the strictest sense, but in some ways it is similar to a Map, or objects in JavaScript that do not have to have
their properties defined in advance. It allows you to create dynamic objects by making use of Groovy's closure mechanisms. An Expando is
different from a map in that you can provide synthetic methods that you can call on the object.

def player = new Expando ()
player.name = "Dierk"
player.greeting = { "Hello, my name is $name" }

println player.greeting()
player.name = "Jochen"
println player.greeting()

The player.greeting assignment passes in a closure to execute when greeting() is called on the Expando. Notice that the closure has access to
the properties assigned to the Expando, even though these values may change over time, using Groovy's GString "$variableOrProperty" notation.

Compile-time Metaprogramming - AST Transformations

AST Transformations

Although at times, it may sound like a good idea to extend the syntax of Groovy to implement new features (like this is the case for instance for
multiple assignments), most of the time, we can't just add a new keyword to the grammar, or create some new syntax construct to represent a
new concept. However, with the idea of AST (Abstract Syntax Tree) Transformations, we are able to tackle new and innovative ideas without
necessary grammar changes.

When the Groovy compiler compiles Groovy scripts and classes, at some point in the process, the source code will end up being represented in
memory in the form of a Concrete Syntax Tree, then transformed into an Abstract Syntax Tree. The purpose of AST Transformations is to let
developers hook into the compilation process to be able to modify the AST before it is turned into bytecode that will be run by the JVM.

AST Transformations provides Groovy with improved compile-time metaprogramming capabilities allowing powerful flexibility at the

language level, without a runtime performance penalty.
There are two kinds of transformations: global and local transformations.

® Global transformations are applied to by the compiler on the code being compiled, wherever the transformation apply. A JAR added to
the classpath of the compiler should contain a service locator file at
META-INF/services/org.codehaus.groovy.transform.AST Transformation with a line with the name of the transformation class. The
transformation class must have a no-args constructor and implement the org.codehaus.groovy.transform.AST Transformationinterface. It
will be run against every source in the compilation, so be sure to not create transformations which scan all the AST in an expansive and
time-consuming manner, to keep the compiler fast.

® Local transformations are transformations applied locally by annotating code elements you want to transform. For this, we reuse the
annotation notation, and those annotations should implement org.codehaus.groovy.transform.AST Transformation. The compiler will
discover them and apply the transformation on these code elements.

One hook for accessing this capability is via annotations (for local AST transformation)s. In your Groovy code you will make use of one of more
annotations. Behind the scenes, an AST processor relevant to the annotation you are using is inserted into the compiler phases at the appropriate
point. You can explore some of the more popular Annotations below:

Bindable and Vetoable transformation
Building AST Guide

Category and Mixin transformations
Compiler Phase Guide

Delegate transformation

Immutable AST Macro

Immutable transformation

Lazy transformation

Newify transformation
PackageScope transformation
Singleton transformation

Grape also provides its own transformation with @Grab.

Implementing your own AST Transformations

There are two kinds of AST Transformations, local and global transformations:

® implementing a Global AST Transformations
® implementing a local AST transformation

When writing an AST Transformation, you may find the following guides helpful:

® Compiler Phase Guide - decide on the compiler phase in which to perform the work
® Building AST Guide - decide how best to create AST

Bindable and Vetoable transformation

To wrap up our overview of AST transformations, let's finish by speaking about two transformations very useful to Swing developers: @Bindable
and @Vetoable. When creating Swing Uls, you're often interested in monitoring the changes of value of certain Ul elements. For this purpose, the
usual approach is to use JavaBeans PropertyChangeListeners to be notified when the value of a class field changes. You then end up writing this
very common boiler-plate code in your Java beans:

import java.beans.PropertyChangeSupport;
import java.beans.PropertyChangelListener;

public class MyBean {
private String prop;

PropertyChangeSupport pcs = new PropertyChangeSupport (this) ;

public void addPropertyChangelListener (PropertyChangeListener 1) {
pcs.add (1) ;
}

public void removePropertyChangeListener (PropertyChangelListener 1) {
pcs.remove (1) ;
}

public String getProp() {
return prop;

}

public void setProp(String prop) {
pcs. firePropertyChanged ("prop", this.prop, this.prop = prop) ;

}

Fortunately, with Groovy and the @Bindable annotation, this code can be greatly simplified:

class MyBean {
@Bindable String prop

}

Now pair that with Groovy's Swing builder new bind() method, define a text field and bind its value to a property of your data model:

textField text: bind(source: myBeanInstance, sourceProperty: 'prop')

Or even:

textField text: bind { myBeanInstance.prop }

The binding also works with simple expressions in the closure, for instance something like this is possible too:

bean location: bind { pos.x + ', ' + pos.y }

You may also be interested in having a look at ObservableMap and ObservableList, for a similar mechanism on maps and lists.

Along with @Bindable, there's also a @Vetoable transformation for when you need to be able to veto some property change. Let's consider a
Trompetist class, where the performer's name is not allowed to contain the letter 'z':

import java.beans.*
import groovy.beans.Vetoable

class Trumpetist {
@Vetoable String name

}

def me = new Trumpetist()
me.vetoableChange = { PropertyChangeEvent pce ->
if (pce.newValue.contains('z'))
throw new PropertyVetoException("The letter 'z' is not allowed in a name", pce)

me.name = "Louis Armstrong"
try {
me.name = "Dizzy Gillespie"

assert false: "You should not be able to set a name with letter 'z' in it."
} catch (PropertyVetoException pve) {
assert true

}

Looking at a more thorough Swing builder example with binding:

import groovy.swing.SwingBuilder
import groovy.beans.Bindable
import static javax.swing.JFrame.EXIT_ON_CLOSE

class TextModel {
@Bindable String text

}

def textModel = new TextModel ()

SwingBuilder.build {
frame(title: 'Binding Example (Groovy)', size: [240,100], show: true,
locationRelativeTo: null, defaultCloseOperation: EXIT ON_CLOSE)
gridLayout cols: 1, rows: 2
textField id: 'textField'
bean textModel, text: bind{ textField.text }
label text: bind{ textModel.text }

Running this script shows up a frame with a text field and a lable below, and the label's text is bound on the text field's content.

SwingBuilder has evolved so nicely in the past year that the Groovy Swing team decided to launch a new project based on it, and on the Grails
foundations: project Griffon was born. Griffon proposes to bring the Convention over Configuration paradigm of Grails, as well as all its project
structure, plugin system, gant scripting capabilities, etc.

If you are developing Swing rich clients, make sure to have a look at Griffon.

Building AST Guide

Building AST in Groovy 1.6 and Prior

In Groovy 1.6 (and prior) there is one way to build Abstract Syntax Trees (AST) in code: using the constructors on the ASTNode subclasses.

Here is an example of building a block of code that returns the String 'Hello'. A use case for this would be to create a method body implementation
that simply returns 'Hello":

AstNode node = new BlockStatement (
[new ReturnStatement (
new ConstantExpression("Hello")
)1
new VariableScope ())

Advantages

® Documentation is available in Javadoc/Groovydoc

® Supports being invoked from Java

® Supported in all Groovy versions

® Some IDEs support code completion and parameter lookup

Disadvantages

It can be difficult to determine what AST you need to write

Verbose - does not communicate the source being created

Fragile - AST may need to change between major releases

Author must know what AST looks like in a particular CompilePhase

Building AST in Groovy 1.7

Groovy 1.7 introduces three new ways to build AST:
® From Strings

® From Code
® From a DSL-like Specification

AstBuilder.buildFromString

The AstBuilder object provides an API to build AST from Strings of Groovy source code. The original example using buildFromString is:

List<ASTNode> nodes = new AstBuilder() .buildFromString("\"Hello\"")

Advantages

Does not require author to understand ASTNode subtypes

Allows author to target a CompilePhase

Communicates source code being generated

Robust - Should need no changes even if AST is updated in a release

Disadvantages

® |DE cannot check syntax or grammar
® |DE cannot refactor across String
® Some entities cannot be created, like the AST for a field declaration

AstBuilder.buildFromCode

The AstBuilder object also provides an API to create AST from source code. The original example using buildFromCode is:

List<ASTNode> nodes = new AstBuilder().buildFromCode { "Hello" }

Advantages

® Clearly communicates source being generated
® Does not require author to understand ASTNode subtypes

® Allows author to target a CompilePhase
® Robust - Should need no changes even if AST is updated in a release
® |IDE supports syntax checking and refactoring in Closure

Disadvantages

® Some entities cannot be created, like the AST for a field declaration
® buildFromCode requires that the left hand side of the invocation be of type AstBuilder. The best way to ensure this is to invoke it with:

new AstBuilder () .buildFromCode { ... }

rather than having a local variable or field of type AstBuilder.

AstBuilder.buildFromSpec

The AstBuilder object also provides a DSL like API for building AST. The original example using buildFromSpec is:

List<ASTNode> nodes = new AstBuilder().buildFromSpec {
block {
returnStatement {
constant "Hello"

}

Advantages

® Allows conditionals (or any Groovy code) to be executed during the AST building process.
® Allows any ASTNode subtype to be created
® Fully documented with lengthy examples in TestCase

Disadvantages

® |t can be difficult to determine what AST you need to write
® Verbose - does not always communicate the source being created

® Fragile - AST may need to change between major releases

® Author must know what AST looks like in a particular CompilePhase
® |DE does not <i>yet</i> provide code tips

Mixing Methods

Sometimes the best solution is to mix several types of the AST Builders. For instance, consider the following method:

public String myMethod(String parameter) {
println 'Hello from a synthesized method!!
println "Parameter value: Sparameter"

It might be best to use buildFromSpec to build the method declaration and buildFromCode to create the method body:

List<ASTNode> result = new AstBuilder () .buildFromSpec {
method ('myMethod', Opcodes.ACC_PUBLIC, String) {
parameters {
parameter 'parameter': String.class
}
exceptions {}
block {
owner.expression.addAll new AstBuilder().buildFromCode {
println 'Hello from a synthesized method!'!
println "Parameter value: S$parameter"
}
}

annotations {}

Further Resources

The test cases shipping with Groovy are an excellent resource.
More examples can be found in GEP-2, the original proposal. http://docs.codehaus.org/display/GroovyJSR/GEP+2+-+AST+Builder+Support
Examples and questions can be found on the groovy-user and groovy-dev mailing lists.

Category and Mixin transformations

If you've been using Groovy for a while, you're certainly familiar with the concept of Categories. It's a mechanism to extend existing types (even
final classes from the JDK or third-party libraries), to add new methods to them. This is also a technique which can be used when writing
Domain-Specific Languages. Let's consider the example below:

final class Distance {
def number
String toString() { "${number}m" }

}

class NumberCategory {
static Distance getMeters (Number self) {
new Distance (number: self
}
}

use (NumberCategory) {
def dist = 300.meters

assert dist instanceof Distance
assert dist.toString() == "300m"

We have a simplistic and fictive Distance class which may have been provided by a third-party, who had the bad idea of making the class final so
that nobody could ever extend it in any way. But thanks to a Groovy Category, we are able to decorate the Distance type with additional methods.
Here, we're going to add a getMeters() method to numbers, by actually decorating the Number type. By adding a getter to a number, you're able
to reference it using the nice property syntax of Groovy. So instead of writing 300.getMeters(), you're able to write 300.meters.

The downside of this category system and notation is that to add instance methods to other types, you have to create static methods, and
furthermore, there's a first argument which represents the instance of the type we're working on. The other arguments are the normal arguments
the method will take as parameters. So it may be a bit less intuitive than a normal method definition we would have added to Distance, should we
have had access to its source code for enhancing it. Here comes the @Category annotation, which transforms a class with instance methods into
a Groovy category:

@Category (Number)
class NumberCategory {
Distance getMeters() {
new Distance (number: this

}

No need for declaring the methods static, and the this you use here is actually the number on which the category will apply, it's not the real this of
the category instance should we create one. Then to use the category, you can continue to use the use(Category) {} construct. What you'll notice
however is that these kind of categories only apply to one single type at a time, unlike classical categories which can be applied to any number of

types.

Now, p

air @Category extensions to the @Mixin transformation, and you can mix in various behavior in a class, with an approach similar to

multiple inheritance:

@Category (Vehicle) class FlyingAbility {
def fly() { "I'm the ${name} and I fly!" }

}

@Category (Vehicle) class DivingAbility {
def dive() { "I'm the ${name} and I dive!" }

}

interface Vehicle {
String getName ()

}

@Mixin (DivingAbility)
class Submarine implements Vehicle {
String getName() { "Yellow Submarine" }

}

@Mixin (FlyingAbility)
class Plane implements Vehicle {
String getName () { "Concorde" }

}

@Mixin([DivingAbility, FlyingAbility])
class JamesBondVehicle implements Vehicle {
String getName () { "James Bond's vehicle" }

}

assert new Plane() .fly() ==
"I'm the Concorde and I fly!"
assert new Submarine() .dive() ==
"I'm the Yellow Submarine and I divel!™"

assert new JamesBondVehicle() .fly() ==
"I'm the James Bond's vehicle and I fly!"

assert new JamesBondVehicle () .dive ()
"I'm the James Bond's vehicle and I dive!"

You don't inherit from various interfaces and inject the same behavior in each subclass, instead you mixin the categories into your class. Here, our
marvelous James Bond vehicle gets the flying and diving capabilities through mixins.

An important point to make here is that unlike @Delegate which can inject interfaces into the class in which the delegate is declared, @Mixin just
does runtime mixing — as we shall see in the metaprogramming enhancements further down in this article.

Compiler Phase Guide

Groovy AST transformations must be performed in one of the nine defined compiler phases.

Global
Briefly,

transformations may be applied in any phase, but local transformations may only be applied in the semantic analysis phase or later.
the compiler phases are:

Initialization: source files are opened and environment configured

Parsing: the grammar is used to to produce tree of tokens representing the source code

Conversion: An abstract syntax tree (AST) is created from token trees.

Semantic Analysis: Performs consistency and validity checks that the grammar can't check for, and resolves classes.
Canonicalization: Complete building the AST

Instruction Selection: instruction set is chosen, for example java5 or pre java5

Class Generation: creates the binary output in memory

Output: write the binary output to the file system

Finalization: Perform any last cleanup

Generally speaking, there is more type information available later in the phases. If your transformation is concerned with reading the AST, then a

later phase where information is more plentiful might be a good choice. If your transformation is concerned with writing AST, then an earlier phase
where the tree is more sparse might be more convenient.

Static Property Transformations

As a particular example, Groovy aggressively and statically types the static properties of a class, as demonstrated here:

class Foo {

static doLog() { log.info("This won't even compile!") }
}
Foo.metaClass.static.log = [info:{ println it }] // Intended to enable the above code to work (but
doesn't work)
/*

org.codehaus.groovy.control .MultipleCompilationErrorsException: startup failed,
/Users/robert/dev/workspace/Groovy-WithLog/test /Bogus.groovy: 2: Apparent variable 'log' was found in
a static scope but doesn't refer to a local variable, static field or class. Possible causes:
You attemped to reference a variable in the binding or an instance variable from a static context.
You mispelled a classname or statically imported field. Please check the spelling.
You attempted to use a method 'log' but left out brackets in a place not allowed by the grammar.
@ line 2, column 19.

static doLog() { log.info("This won't even compile!") }

1 error

*/

So if you want to create an AST transform that creates a static property, you have to hook in before this check is performed: in practice, this
means the Conversion phase (Semantic Analysis is where you get busted). In using a phase that early, though, most types won't be resolved,
and so insofar as type resolution is significant (e.g. in checking for annotations of a particular class), it will have to be hand-rolled.

Further Information

To learn more about what AST is produced in each phase, you can use the AST viewer in Groovy console to explore the output in different
phases.

Delegate transformation

Java doesn't provide any built-in delegation mechanism, and so far Groovy didn't either. But with the @Delegate transformation, a class field or
property can be annotated and become an object to which method calls are delegated. In the following example, an Event class has a date
delegate, and the compiler will delegate all of Date's methods invoked on the Event class to the Date delegate. As shown in the latest assert, the
Event class has got a before(Date) method, and all of Date's methods.

import java.text.SimpleDateFormat

class Event {
@Delegate Date when
String title, url

def df = new SimpleDateFormat ("yyyy/MM/dd")

def gr8conf = new Event (title: "GR8 Conference",
url: "http://www.gr8conf.org",
when: df.parse("2009/05/18"))
def javaOne = new Event (title: "JavaOne",
url: "http://java.sun.com/javaone/",
when: df.parse("2009/06/02"))

assert gr8conf.before (javaOne.when)

The Groovy compiler adds all of Date's methods to the Event class, and those methods simply delegate the call to the Date field. If the delegate is
not a final class, it is even possible to make the Event class a subclass of Date simply by extending Date, as shown below. No need to implement
the delegation ourselves by adding each and every Date methods to our Event class, since the compiler is friendly-enough with us to do the job
itself.

class Event extends Date {
@Delegate Date when
String title, url

In the case you are delegating to an interface, however, you don't even need to explictely say you implement the interface of the delegate. The
@Delegate transformation will take care of this and implement that interface. So the instances of your class will automatically be instanceof the
delegate's interface.import java.util.concurrent.locks.*

class LockableList {
@Delegate private List list = \[\]
@Delegate private Lock lock = new ReentrantLock ()

def list = new LockableList ()

list.lock ()

try {
list << 'Groovy'
list << 'Grails'
list << 'Griffon'

} finally {
list.unlock ()

}

assert list.size() == 3
assert list instanceof Lock
assert list instanceof List

In this example, our LockableList is now a composite of a list and a lock and is instanceof of List and Lock. However, if you didn't intend your
class to be implementing these interfaces, you would still be able to do so by specifying a parameter on the annotation:@Delegate(interfaces =
false) private List list = []

Let's have a look at another simple usage of @Delegate, for wrapping an existing class, delegating all calls to the delegate:

class Photo {
int width
int height

}

class PhotoSelection {
@Delegate Photo photo

String title

String caption

def photo = new Photo(width: 640, height: 480)
def selection = new PhotoSelection(title: "Groovy", caption: "Groovy", photo: photo)

assert selection.title == "Groovy"
assert selection.caption == "Groovy"
assert selection.width == 640

assert selection.height == 480

Immutable AST Macro

The @Immutable Annotation

Immutable objects are ones which don't change after initial creation. Such objects are frequently desirable because they are simple and can be
safely shared even in multi-threading contexts. This makes them great for functional and concurrent scenarios. The rules for creating such objects
are well-known:

No mutators (methods that modify internal state)

Class must be final

Fields must be private and final

Defensive copying of mutable components

equals, hashCode and toString must be implemented in terms of the fields if you want to compare your objects or use them as keys in
e.g. maps

Writing classes that follow these rules is not hard but does involve a fair bit of boiler plate code and is prone to error. Here is what such a class
might look like in Java:

// Java

public final class Punter {
private final String first;
private final String last;

public Punter(String first, String last) {
this.first = first;
this.last = last;

public String getFirst() {
return first;

public String getLast () {
return last;

@Override

public int hashCode() {
final int prime = 31;
int result = 1;

result = prime * result + ((first == null)
? 0 : first.hashCode());
result = prime * result + ((last == null)

? 0 : last.hashCode()) ;
return result;

@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;

if (getClass() != obj.getClass())
return false;

Punter other = (Punter) obj;

if (first == null) {
if (other.first != null)

return false;
} else if (!first.equals(other.first))
return false;
if (last == null)
if (other.last != null)
return false;
} else if (!last.equals(other.last))
return false;
return true;

@Override
public String toString() {
return "Punter (first:" + first
+ ", last:" + last + ")";

Groovy makes it easier to create such classes using the @Ilmmutable annotation. You only need this:

@Immutable final class Punter {
String first, last

}

The "other code" shown above is added at compile time. All of the methods you see above will be there (and you can use them from Java of
course). You just don't need to develop and maintain them.

The Details

A class created using @Immutable has the following characteristics:

Properties automatically have private, final backing fields with getters.

Attempts to update the property will result in @ ReadOnlyPropertyException.

A map-based constructor is provided which allows you to set properties by name.

A tuple-style constructor is provided which allows you to set properties in the same order as they are defined.

Default equals, hashCode and toString methods are provided based on the property values.

Date objects, Cloneable objects and arrays are defensively copied on the way in (constructor) and out (getters).

Arrays and cloneable objects use the c1one method. For your own classes, it is up to you to define this method and use deep cloning if
appropriate.

Collection objects and Map objects are wrapped by immutable wrapper classes (but not deeply cloned!).

Attempts to update them will result in an UnsupportedOperationException.

Fields that are enums or other @Immutable classes are allowed but for an otherwise possible mutable property type, an error is thrown.
You don't have to follow Groovy's normal property conventions, e.g. you can create an explicit private field and then you can write explicit
get and set methods. Such an approach, isn't currently prohibited (to give you some wiggle room to get around these conventions) but
any fields created in this way are deemed not to be part of the significant state of the object and aren't factored into the equals or
hashCode methods. Use at your own risk!

Immutable transformation

Immutable objects are ones which don't change after initial creation. Such objects are frequently desirable because they are simple and can be
safely shared even in multi-threading contexts. This makes them great for functional and concurrent scenarios. The rules for creating such objects
are well-known:

No mutators (methods that modify internal state)

Class must be final

Fields must be private and final

Defensive copying of mutable components

equals(), hashCode() and toString() must be implemented in terms of the fields if you want to compare your objects or use them as keys
in e.g. maps

Instead of writing a very long Java or Groovy class mimicking this immutability behavior, Groovy lets you just write an immutable class as follow:

@Immutable final class Coordinates {
Double latitude, longitude

}

def cl = new Coordinates (latitude: 48.824068, longitude: 2.531733)
def c2 = new Coordinates (48.824068, 2.531733)

assert cl == c2

All the boiler-plate code is generated at compile-time for you! The example shows that to instantiate such immutable coordinates, you can use
one of the two constructors created by the transformation, one taking a map whose keys are the properties to set to the values associated with
those keys, and the other taking the values of the properties as parameters. The assert also shows that equals() was implemented and allows us
to properly compare such immutable objects.

You can have a look at the details of the implementation of this transformation. For the record, the Groovy example above using the @Ilmmutable
transformation is over 50 lines of equivalent Java code.

Lazy transformation

Another transformation is @Lazy. Sometimes, you want to handle the initialization of a field of your clas lazily, so that its value is computed only
on first use, often because it may be time-consuming or memory-expensive to create. The usual approach is to customize the getter of said field,
so that it takes care of the initialization when the getter is called the first time. But in Groovy 1.6, you can now use the @Lazy annotation for that
purpose:

class Person {
@Lazy pets = ['Cat', 'Dog', 'Bird']

}

def p = new Person()
assert ! (p.dump().contains('Cat'))

assert p.pets.size() == 3
assert p.dump () .contains ('Cat')

In the case of complex computation for initializing the field, you may need to call some method for doing the work, instead of a value like our pets
list. This is then possible to have the lazy evaluation being done by a closure call, as the following example shows:

class Person {
@Lazy List pets = { /* complex computation here */ } ()

}

There is also an option for leveraging Soft references for garbage collection friendliness for expensive data structures that may be contained by
such lazy fields:

class Person {
@Lazy(soft = true) List pets = ['Cat', 'Dog', 'Bird']

}

def p = new Person()
assert p.pets.contains('Cat')

The internal field created by the compiler for pets will actually be a Soft reference, but accessing p.pets directly will return the value (ie. the list of
pets) held by that reference, making the use of the soft reference transparent to the user of that class.

Newify transformation

The @Newify transformation proposes two new ways of instantiating classes. The first one is providing Ruby like approach to creating instances
with a new() class method:

@Newify rubyLikeNew() {
assert Integer.new(42) == 42

}

rubyLikeNew ()

But it is also possible to follow the Python approach with omitting the new keyword. Imagine the following tree creation:

class Tree {
def elements
Tree (Object... elements) { this.elements = elements as List }

}

class Leaf {
def value
Leaf (value) { this.value = value }

}

def buildTree() {
new Tree (new Tree (new Leaf (1), new Leaf (2)), new Leaf (3))

}

buildTree ()

The creation of the tree is not very readable because of all those new keywords spread across the line. The Ruby approach wouldn't be more
readable, since a new() method call for creating each element is needed. But by using @Newify, we can improve our tree building slightly to make

it easier on the eye:

@Newify ([Tree, Leaf]) buildTree() ({
Tree (Tree (Leaf (1), Leaf (2)), Leaf (3))

}

You'll also notice that we just allowed Tree and Leaf to be newified. By default, under the scope which is annotated, all instantiations are newified,
but you can limit the reach by specifying the classes you're interested in. Also, note that for our example, perhaps a Groovy builder may have
been more appropriate, since its purpose is to indeed create any kind of hierarchical / tree strucutre.

If we take another look at our coordinates example from a few sections earlier, using both @Immutable and @Newify can be interesting for
creating a path with a concise but type-safe manner:

@Immutable final class Coordinates {
Double latitude, longitude

}

@Immutable final class Path {
Coordinates[] coordinates

}

@Newify ([Coordinates, Path])
def build() {
Path (
Coordinates(48.824068, 2.531733),
Coordinates (48.857840, 2.347212),
Coordinates (48.858429, 2.342622)

}

assert build() .coordinates.size() == 3

A closing remark here: since a Path(Coordinates[] coordinates) was generated, we can use that constructor in a varargs way in Groovy, just as if
it had been defined as Path(Coordinates... coordinates).

PackageScope transformation

Groovy's convention for properties is that any field without any visibility modifier is exposed as a property, with a getter and a setter transparently
generated for you. For instance, this Person class exposes a getter getName() and a setter setName() for a private name field:

class Person {
String name

}

Which is equivalent to this Java class:

public class Person {
private String name;
public String getName () { return name; }
public void setName (name) { this.name = name; }

That said, this approach has one drawback in that you don't have the possibility to define a field with package-scope visibility. To be able to
expose a field with package-scope visibility, you can now annotate your field with the @PackageScope annotation.

Singleton transformation

Whether the singleton is pattern or an anti-pattern, there are still some cases where we need to create singletons. We're used to create a private
constructor, a getinstance() method for a static field or even an initialized public static final field. So instead of writing code like this in Java:

public class T {
public static final T instance = new T();
private T() {}

You just need to annotate your type with the @Singleton annotation:

@Singleton class T {}

The singleton instance can then simply be accessed with T.instance (direct public field access).

You can also have the lazy loading approach with an additional annotation parameter:

@Singleton(lazy = true) class T {}

Would become more or less equivalent to this Groovy class:

class T {
private static volatile T instance
private T() {}

static T getInstance () {
if (instance) {
instance
} else {

synchronized (T) {
if (instance) {
instance
} else {
instance = new T ()

}

Lazy or not, once again, to access the instance, simply do T.instance (property access, shorcut for T.getInstance()).

Control Structures

® Logical Branching
® Looping
® Returning values from if-else and try-catch blocks

Logical Branching

if - else statement

Groovy supports the usual if - else syntax from Java

def x = false
def y = false
if (1x) |

X = true
}
assert x == true
if (x) |

x = false
} else {

Yy = true
}
assert x ==y

Groovy also supports the normal Java "nested" if then else if syntax:

ternary operator

Groovy also supports the ternary operator:

def y =5
def x = (y > 1) ? "worked" : "failed"
assert x == "worked"

See also: the elvis operator

switch statement

The switch statement in Groovy is backwards compatible with Java code; so you can fall through cases sharing the same code for multiple
matches.

One difference though is that the Groovy switch statement can handle any kind of switch value and different kinds of matching can be performed.

def x = 1.23
def result = ""

switch (x) {
case "foo":
result = "found foo"
// lets fall through

case "bar":
result += "bar"

case [4, 5, 6, 'inList']:
result = "list"
break

case 12..30:
result = "range"
break

case Integer:
result = "integer"

break

case Number:

result = "number"
break
default:
result = "default"
}
assert result == "number"

Switch supports the following kinds of comparisons

® (Class case values matches if the switchValue is an instanceof the class

® Regular expression case value matches if the string of the switchValue matches the regex

® Collection case value matches if the switchValue is contained in the collection. This also includes ranges too (since they are Lists)

® if none of the above are used then the case value matches if the case value equals the switch value
default: must go at the end of the switch/case as Jochen outlined in this thread from the groovy-user mailing list which Jochen states:
"because a Java switch/Case does not work like a Groovy switch/case. In Java a case can take only int compatible constants, in Groovy it can
take expressions. In Java all cases share a scope, in Groovy each case has its own scope. In Groovy we call the isCase method, in Java it has to
be a number we switch with. If we for example use a closure as case, then this might cause side effects. There are cases where we can let them
behave the same and usually when using the java version you won't see a difference in Groovy besides the placement and logic of default."

So, while in Java the default can be placed anywhere in the switch/case, the default in Groovy is used more as an else than assigning a default
case.

How switch works

The case statement performs a match on the case value using the isCase(switchValue) method, which defaults to call equals(switchValue) but
has been overloaded for various types like Class or regex etc.

So you could create your own kind of matcher class and add an isCase(switchValue) method to provide your own kind of matching.

Looping

Groovy supports the usual while {...} loops like Java.

o o
o O
HhoHh
Ko
o
v o

while (y-- > 0) {

assert x == 5

for loop

The for loop in Groovy is much simpler and works with any kind of array, collection, Map etc.
Note: you can also use the standard Java / C for loop if you wish.

// for (int i = 0; i < 5; \++i) // not implemented by beta-10.

// iterate over a range
def x = 0
for (i in 0..9) {
X += 1
}

assert x == 45

// iterate over a list

x =0

for (i in [0, 1, 2, 3, 41) {
X += 1

}

assert x == 10

// iterate over an array

array = (0..4).toArray()
x =0
for (i in array) {
X += 1
}
assert x == 10

// iterate over a map
def map = ['abc':1, 'def':2, 'xyz':3]
x =0
for (e in map) {
x += e.value

}

assert x == 6

// iterate over values in a map

x =0

for (v in map.values()) {
X 4= v

}

assert x ==

// iterate over the characters in a string
def text = "abc"
def list = []
for (c in text) {
list.add (c)

}

assert list == ["a", "b", "c"]

closures

In addition, you can use closures in place of most for loops, using each() and eachWithIndex():

def stringList = ["java", "perl", "python", "ruby", "c#", "cobol"

"groovy", "jython", "smalltalk", "prolog", "m", "yacc"];
def stringMap = ["Su" : "Sunday", "Mo" : "Monday", "Tu" : "Tuesday",
"We" : "Wednesday", "Th" : "Thursday", "Fr" : "Friday",
"Sa" : "Saturday" 1;

stringlist.each() { print " ${it}" }; println "";
// java perl python ruby c# cobol groovy jython smalltalk prolog m yacc

stringMap.each() { key, value -> println "${key} == ${value}" };
// Su == Sunday

// We == Wednesday

// Mo == Monday

// Sa == Saturday

// Th == Thursday

// Tu == Tuesday

// Fr == Friday

stringlist.eachWithIndex () { obj, i -> println " ${i}: ${obj}" };

// 0: java
// 1: perl
// 2: python
// 3: ruby
// 4: cH

// 5: cobol
// 6: groovy
// 7: jython
// 8: smalltalk
// 9: prolog
// 10: m

// 11: yacc

stringMap.eachWithIndex() { obj, i -> println " ${i}: ${obj}" };
// 0: Su=Sunday
// 1: We=Wednesday

// 2: Mo=Monday
// 3: Sa=Saturday
// 4: Th=Thursday
// 5: Tu=Tuesday
// 6: Fr=Friday

Returning values from if-else and try-catch blocks

Since Groovy 1.6, it is possible for if/else and try/catch/finally blocks to return a value when they are the last expression in a method or a closure.

No need to explicitly use the return keyword inside these constructs, as long as they are the latest expression in the block of code.

As an example, the following method will return 1, although the return keyword was omitted.

def method()
if (true) 1 else 0O

assert method() == 1

For try/catch/finally blocks, the last expression evaluated is the one being returned. If an exception is thrown in the try block, the last expression in

the catch block is returned instead. Note that finally blocks don't return any value.

def method (bool) {
try {
if (bool) throw new Exception("foo"
1
} catch(e) {
2
} finally {
3
}
}
assert method(false) == 1
assert method(true) == 2

Database features

Groovy supports a few neat ways to work with SQL more easily and to make SQL more Groovy. You can perform queries and SQL statements,
passing in variables easily with proper handling of statements, connections and exception handling thanks to closures.

import groovy.sgl.Sgl

def foo = 'cheese'
def sgl = Sgl.newlnstance("jdbc:mysgl://localhost:3306/mydb", "user",
"pswd", "com.mysqgl.jdbc.Driver")

sqgl.eachRow("select * from FOOD where type=${foo}") {
println "Gromit likes ${it.name}"

}

In the above example, you can refer to the various columns by name, using the property syntax on the row variable (e.g. it.name) or you can refer
to the columns by their index (e.g. it[0]) For example:

import groovy.sgl.Sgl

def foo = 'cheese'
def sgl = Sgl.newlnstance("jdbc:mysgl://localhost:3306/mydb", "user",
"pswd", "com.mysqgl.jdbc.Driver")

def answer = 0
sql.eachRow("select count(*) from FOOD where type=${foo}") { row ->
answer = row([0]

}

assert answer > 0

Or you can create a DataSet which allows you to query SQL using familar closure syntax so that the same query could work easily on in memory
objects or via SQL. e.g.

import groovy.sgl.Sgl

def sgl = Sgl.newlnstance("jdbc:mysgl://localhost:3306/mydb", "user",
"pswd", "com.mysqgl.jdbc.Driver")

def food = sgl.dataSet ('FOOD')
def cheese = food.findAll { it.type == 'cheese' }
cheese.each { println "Eat ${it.name}" }

Advanced Usage

In this example, we create a table, make changes to it and confirm the changes worked.

def sqgl = Sgl.newInstance("jdbc:mysgl://localhost:3306/mydb",
"user", "pswd", "com.mysql.jdbc.Driver")

// delete table if previously created
try {

sgl.execute ("drop table PERSON")
} catch(Exception e) {}

// create table

sqgl.execute('''create table PERSON (
id integer not null primary key,
firstname varchar (20),
lastname varchar (20),
location_id integer,
location_name varchar(30)

)

// now let's populate the table

def people = sqgl.dataSet ("PERSON")

people.add(firstname:"James", lastname:"Strachan", id:1, location_id:10, location_name:'London')

people.add(firstname:"Bob", lastname:"Mcwhirter", id:2, location_id:20, location_name:'Atlanta')

people.add(firstname:"Sam", lastname:"Pullara", id:3, location id:30, location name:'California')

// do a query to check it all worked ok

def results = sqgl.firstRow("select firstname, lastname from PERSON where id=1").firstname
def expected = "James"

assert results == expected

// allow resultSets to be able to be changed
sql.resultSetConcurrency = java.sql.ResultSet.CONCUR_UPDATABLE

// change the data
sql.eachRow("select * from PERSON") {
it.firstname = it.firstname * 2

// reset resultSetsConcurrency back to read only (no further changes required)
sql.resultSetConcurrency = java.sql.ResultSet.CONCUR_READ_ ONLY

// do a query to confirm that our change actually worked

results = sgl.firstRow("select firstname, lastname from PERSON where id=1").firstname
expected = "JamesJames"

assert results == expected

Combining with MarkupBuilder Example

Here's an example of using Groovy SQL along with GroovyMarkup

import groovy.sgl.Sgl
import groovy.xml.MarkupBuilder

def sgl = Sgl.newlnstance("jdbc:mysgl://localhost:3306/mydb", "user",
"pswd", "com.mysqgl.jdbc.Driver")

// lets output some XML builder
// could be SAX / StAX / DOM / TrAX / text etc
def xml = new MarkupBuilder ()

def ignore = 'James'
sql.eachRow("select * from person where firstname != ${ignore}") { person ->
// lets process each row by emitting some markup
xml.customer (id:person.id, type:'Customer',
name: "$person.firstname $person.lastname")

This could generate, dynamically something like

<customers>
<customer id="123" type="Customer" foo="whatever's
<rolespartner</role>
<name>James</name>
<location id="5" name="London"/>
</customers>
</customers>

There's an example test case which demonstrates all of these query mechanisms in action.

Stored procedure support

import java.sql.Connection

import java.sql.DriverManager

import javax.sgl.DataSource

import groovy.sgl.Sgl

import oracle.jdbc.driver.OracleTypes

driver = oracle.jdbc.driver.OracleDriver
Connection conn = DriverManager.getConnection (
'jdbc:oracle:thin:sirtest/sirtesteduck.aplpi.lan:1521:0rcl') ;

/*
*
* Here we call a procedural block with a closure.
* ${Sqgl.INTEGER} and ${Sql.VARCHAR} are out parameters
* which are passed to the closure.
*
*/
Sql sqgl = new Sql(conn) ;
def a="foo";
String foo = "x";
println "${a}=5{a}"
undefinedvar = null
println """
--Simple demonstration of call with closure.
--Closure is called once with all returned values.
sqgl.call ("begin ${Sqgl.INTEGER}:=20; ${Sql.VARCHAR}:='hello world';end;")
answer, string ->

println "number=[${answer}] string=[${string}]"
println "answer is a ${answer.class}";

println "string is a ${string.class}";

answer += 1;

println "now number=${answer}"

println """ [${string.replaceAll('oc','0')}]"un

* Here we execute a procedural block. The block returns four out
* parameters, two of which are cursors. We use Sgl.resultSet function
* to indicate that the cursors should be returned as GroovyResultSet.

*

*

*/
println """--next we see multiple return values including two ResultSets
-- (ResultSets become GroovyResultSets)

--Note the GroovyResultSet.eachRow () function!!

def tableClosure = {println "table:${it.table name}"};
println("tableClosure is a ${tableClosure.class}");
String owner = 'SIRTEST';

sql.call ("""declare
type crsr is ref cursor;
tables crsr;
objects crsr;
begin
select count (*) into ${Sql.INTEGER} from all_tables where owner= ${owner} ;
open tables for select * from all_ tables where owner= ${owner} ;
${sqgl.resultSet OracleTypes.CURSOR} := tables;
select count (*) into ${Sql.INTEGER} from all objects where owner= ${owner} ;
open objects for select * from all_objects where owner= ${owner};
${sqgl.resultSet OracleTypes.CURSOR} := objects;
end;
) {t,user_tables,o,user objects ->
println "found ${t} tables from a total of ${o} objects"

// eachRow is a new method on GroovyResultSet
user_tables.eachRow() {x ->println "table:${x.table name}"}
user_objects.eachRow () {println "object:${it.object name}"}

}

/*

* Determine if we have the stored procedure 'fred' needed

* for the next test.

*

*/

Integer procLines = 0

sqgl.eachRow("select count(*) lines from user source where name='FRED' and type='FUNCTION'") {
procLines = it.lines

}

if (procLines ==0) {
print """
--to demonstrate a function accepting an inout parameter
--and returning a value, create the following function in your schema
create or replace function fred(foo in out varchar2) return number is
begin
foo:="howdy doody' ;
return 99;
end;

telse{
/*
* Here 1s a call to a function, passing in inout parameter.
* The function also returns a value.
*/
println "Next call demonstrates a function accepting inout parameter and returning a value"
sql.call("{ ${Sgl.INTEGER} = call fred(${Sql.inout (Sql.VARCHAR (foo))}) }") {
answer, string ->
println "returned number=[${answer}] inout string coming back=[${string}]l"

println "--Same again, but this time passing a null inout parameter"
sql.call("{ ${Sql.INTEGER} = call fred(${Sqgl.inout (Sql.VARCHAR (undefinedvar))}) }") {
answer, string ->
println "returned number=[${answer}] inout string coming back=[${string}]l"
answer = answer + 1;
println "Checked can increment returned number, now number=${answer}"
println """ [${string.replaceAll('oc','0")}]"un

* Finally a handy function to tell Sgl to expand a variable in the
* GString rather than passing the value as a parameter.

*/

["user tables","all tables"].each() {table ->

sql.eachRow ("select count (*) nrows from ${Sgl.expand table}")
println "${table} has ${it.nrows} rows"

{

Clob Notes

CLOB are objects that cannot be extracted with a piece of code like:

data = sgl.rows("select clobdata from")

because later

data.each { ... do something ... }

can fail. This happens cause the object is not reachable any more since the connection might be already closed: note | say might cause at least

on Oracle the errors are random (and hard to understand).

A possible way to act on CLOB data is to use eachRow

data = sqgl.eachRow("select clobdata from") { ... do something ... }

Further Information

There is also an additional GSQL module you might want to check out.

Dynamic Groovy

This section details how to go about using the dynamic features of Groovy such as implementing the GroovyObject interface and using

ExpandoMetaClass, an expandable MetaClass that allows adding of methods, properties and constructors.

Using invokeMethod and getProperty

Using methodMissing and propertyMissing
Evaluating the MetaClass runtime

Using ExpandoMetaClass to add behaviour
Customizing MetaClass for a single instance
Runtime mixins

Compile-time metaprogramming is also available using Compile-time Metaprogramming - AST Transformations

Dynamic Method Invocation

You can invoke a method even if you don't know the method name until it is invoked:

class Dog {

def bark() { println "woof!" }
def sit() { println "(sitting)" }
def jump() { println "boing!" }

}

def doAction(animal, action) {
animal."Saction" () //action name is passed at invocation

}
def rex = new Dog()

doAction(rex, "bark") //prints 'woof!'
doAction(rex, "jump") //prints 'boing!’

You can also "spread" the arguments in a method call, when you have a list of arguments:

def max(int i1, int i2) {
Math.max (il, 1i2)

}

def numbers = [1, 2]

assert max(*numbers) == 2

This also works in combination of the invocation with a GString:

someObject. "smethodName" (*args)

Evaluating the MetaClass runtime

Evaluating the MetaClass runtime

Since 1.1, Groovy supports a much richer set of APIs for evaluating the MetaClass runtime. Using these APIs in combination with
ExpandoMetaClass makes Groovy an extremely powerful language for meta-programming

Finding out methods and properties

To obtain a list of methods (or MetaMethod instances in Groovy speak) for a particular Groovy class use can inspect its MetaClass:

println obj.metaClass.methods
println obj.metaClass.methods.find { it.name.startsWith("to") }

The same can be done for properties:

println obj.metaClass.properties
println obj.metaClass.properties.find { it.name.startsWith("to") }

Using respondsTo and hasProperty

Obtaining a list of methods sometimes is a little more than what you want. It is quite common in meta-programming scenarios to want to find out if
an object supports a particular method.

Since 1.1, you can use respondsTo and hasProperty to achieve this:

class Foo {
String prop
def bar() { "bar" }
def bar(String name) { "bar $name" }
def add(Integer one, Integer two) { one + two}

}
def £ = new Foo()

if (f .metaClass.respondsTo (£, "bar")) {
// do stuff

}

if (f .metaClass.respondsTo (£, "bar", String)) ({
// do stuff

}

if (! f.metaClass.respondsTo (f, "bar", Integer)) {
// do stuff

}

if (f .metaClass.respondsTo(f, "add", Integer, Integer)) {
// do stuff

}

if (f .metaClass.hasProperty (f, "prop")) {
// do stuff

}

The respondsTo method actually returns a List of MetaMethod instances so you can use it to both query and evaluate the resulting list.

respondsTo only works for "real" methods and those added via ExpandoMetaClass and not for cases where you override
invokeMethod or methodMissing. It is impossible in these cases to tell if an object responds to a method without actually
invoking the method.

ExpandoMetaClass

Using ExpandoMetaClass to add behaviour

Groovy 1.1 includes a special MetaClass called an ExpandoMetaClass that allows you to dynamically add methods, constructors, properties and

static methods using a neat closure syntax.

How does it work? Well every java.lang.Class is supplied with a special "metaClass" property that when used will give you a reference to an
ExpandoMetaClass instance.

For example given the Java class java.lang.String to obtain its ExpandoMetaClass you can use:

String.metaClass.swapCase = {—>
def sb = new StringBuffer()

delegate.each {
sb << (Character.isUpperCase (it as char) ? Character.toLowerCase (it as char)

Character.toUpperCase (it as char))

}

sb.toString()

This adds a method called swapCase to the String class.

/L, By default ExpandoMetaClass doesn't do inheritance. To enable this you must call ExpandoMetaClass.enableGlobally() before
your app starts such as in the main method or servlet bootstrap

Further Reading:

ExpandoMetaClass - Borrowing Methods — Borrowing methods from other classes
ExpandoMetaClass - Constructors — Adding or overriding constructors

ExpandoMetaClass Domain-Specific Language

ExpandoMetaClass - Dynamic Method Names — Dynamically creating method names
ExpandoMetaClass - GroovyObject Methods — Overriding invokeMethod, getProperty and setProperty
ExpandoMetaClass - Interfaces — Adding methods on interfaces

ExpandoMetaClass - Methods — Adding or overriding instance methods

ExpandoMetaClass - Overriding static invokeMethod — Overriding invokeMethod for static methods
ExpandoMetaClass - Properties — Adding or overriding properties

ExpandoMetaClass - Runtime Discovery — Overriding invokeMethod for static methods
ExpandoMetaClass - Static Methods — Adding or overriding static methods

ExpandoMetaClass - Borrowing Methods

ExpandoMetaClass - Borrowing Methods from other classes

With ExpandoMetaClass you can also use Groovy's method pointer syntax to borrow methods from other classes. For example:

class Person {
String name

}
class MortgageLender {
def borrowMoney () {
"buy house"

}
}

def lender = new MortgageLender (
Person.metaClass.buyHouse = lender.&borrowMoney
def p = new Person()

assert "buy house" == p.buyHouse ()

ExpandoMetaClass - Constructors

ExpandoMetaClass - Adding constructors

Adding constructors is a little different to adding a method with ExpandoMetaClass. Essentially you use a special "constructor" property and either
use the << or = operator to assign a closure. The arguments to the closure are of course the constructor arguments

class Book {
String title

}

Book.metaClass.constructor << { String title -> new Book (title:title) }

def b = new Book ("The Stand")

Be careful when adding constructors however, as it is very easy to get into stack overflow troubles. For example this code which overrides the
default constructor:

class Book {
String title

}

Book.metaClass.constructor = { new Book() }

def b = new Book ("The Stand")

The above would produce a StackOverflowError as it rescursively keeps calling the same constructor through Groovy's MetaClass system. You
can get around this by writing helper code to instantiate an instance outside of Groovy. For example this uses Spring's BeanUtils class and does
not cause a StackOverflow:

class Book {
String title

}

Book.metaClass.constructor = { BeanUtils.instantiateClass(Book) }

def b = new Book ("The Stand")

ExpandoMetaClass Domain-Specific Language

Initially developed under the Grailsumbrella and integrated back into Groovy 1.5, ExpandoMetaClass is a very handy way for changing the
runtime behavior of your objects and classes, instead of writing full-blow MetaClass classes. Each time, we want to add / change several
properties or methods of an existing type, there is too much of a repetition of Type.metaClass.xxx. Take for example this extract of a Unit
manipulation DSL dealing with operator overloading:

Number.metaClass.multiply =
Number.metaClass.div =

—_~

Amount amount -> amount.times (delegate) }
Amount amount -> amount.inverse().times(delegate) }

—_~

Amount .metaClass.div =
Amount .metaClass.div =
Amount .metaClass.multiply
Amount .metaClass.power =
Amount .metaClass.negative =

Number factor -> delegate.divide(factor) }
Amount factor -> delegate.divide (factor) }
Number factor -> delegate.times(factor) }

Number factor -> delegate.pow(factor) }

-> delegate.opposite() }

]
NN N SN

The repetition, here, looks obvious. But with the ExpandoMetaClass DSL, we can streamline the code by regrouping the operators per type:

Number.metaClass {
multiply { Amount amount -> amount.times(delegate) }
div { Amount amount -> amount.inverse().times(delegate) }

}

Amount .metaClass {
div << { Number factor -> delegate.divide (factor) }

div << { Amount factor -> delegate.divide (factor) }
multiply { Number factor -> delegate.times(factor) }
power { Number factor -> delegate.pow(factor) }
negative { -> delegate.opposite() }

A metaClass() method takes a closure as single argument, containing the various definitions of the methods and properties, instead of repeating
the Type.metaClass on each line. When there is just one method of a given name, use the pattern methodName

{ I* closure */ }, but when there are several, you should use the append operator and follow the patten methodName <<

{ /* closure */ }. Static methods can also be added through this mechanism, so instead of the classical approach:

// add a fgn() method to Class to get the fully
// qualified name of the class (ie. simply Class#getName)
Class.metaClass.static.fqgn = { delegate.name }

assert String.fgn() == "java.lang.String"

You can now do:

Class.metaClass {
'static' {
fqn { delegate.name }

Note here that you have to quote the statickeyword, to avoid this construct to look like a static initializer. For one off method addition, the classical
approach is obviously more concise, but when you have several methods to add, the EMC DSL makes sense.

The usual approach for adding properties to existing classes through ExpandoMetaClass is to add a getter and a setter as methods. For instance,
say you want to add a method that counts the number of words in a text file, you could try this:

File.metaClass.getWordCount = {
delegate.text.split (/\w/) .size()

}

new File ('myFile.txt') .wordCount

When there is some logic inside the getter, this is certainly the best approach, but when you just want to have new properties holding simple
values, through the ExpandoMetaClass DSL, it is possible to define them. In the following example, a lastAccessed property is added to a Car
class — each instance will have its property. Whenever a method is called on that car, this property is updated with a newer timestamp.

class Car {
void turnon() {}
void drive() {}
void turnOff() {}

}

Car.metaClass {
lastAccessed = null
invokeMethod = { String name, args ->
def metaMethod = delegate.metaClass.getMetaMethod(name, args)
if (metaMethod) {
delegate.lastAccessed = new Date ()
metaMethod.doMethodInvoke (delegate, args)
} else {
throw new MissingMethodException(name, delegate.class, args)

}

def car = new Car()
println "Last accessed: ${car.lastAccessed ?: 'Never'}"

car.turnon()
println "Last accessed: ${car.lastAccessed ?: 'Never'}"

car.drive()
sleep 1000

println "Last accessed: ${car.lastAccessed ?: 'Never'}"

sleep 1000
car.turnoff ()

println "Last accessed: ${car.lastAccessed ?: 'Never'}"

In our example, in the DSL, we access that property through the delegate of the closure, with delegate.lastAccessed = new Date(). And we
intercept any method call thanks to invokeMethod(), delegating to the original method for the call, and throwing an exception in case the method
doesn't exist. Later on, you can see by executing this script that lastAccessed is updated as soon as we call a method on our instance.

ExpandoMetaClass - Dynamic Method Names

ExpandoMetaClass - Dynamic method/property name creation
Since Groovy allows you to use Strings as property names this in turns allows you to dynamically create method and property names at runtime.

The Basics

To create a method with a dynamic name simply use Groovy's feature of reference property names as strings. You can combine this with
Groovy's string interpolation (Gstrings) to create method and property names on the fly:

class Person {

String name = "Fred"
}
def methodName = "Bob"
Person.metaClass."changeNameTo${methodName}" = {-> delegate.name = "Bob" }

def p = new Person()
assert "Fred" == p.name
p.changeNameToBob ()

assert "Bob" == p.name

The same concept can be applied to static methods and properties.

A more elaborate example

In Grails we have a concept of dynamic codecs, classes that can encode and decode data.

These classes are called HTMLCodec, JavaScriptCodec etc. an example of which can be seen below:

import org.springframework.web.util.HtmlUtils
class HTMLCodec {
static encode = { theTarget ->
HtmlUtils.htmlEscape (theTarget.toString())

static decode = { theTarget ->
HtmlUtils.htmlUnescape (theTarget.toString())

}

So what we do with these classes is to evaluate the convention and add "encodeAsXXX" methods to every object based on the first part of the
name of the codec class such as "encodeAsHTML". The pseudo code to achieve this is below:

def codecs = classes.findAll { it.name.endsWith('Codec') }

codecs.each { codec ->

Object.metaClass. "encodeAss${codec.name-'Codec'}" = { codec.newInstance() .encode (delegate) }
Object.metaClass."decodeFroms$ {codec.name-'Codec'}" = { codec.newInstance().decode (delegate) }
}
def html = '<html><body>hello</body></html>"'
assert '<html><body>hello</body></html>' == html.encodeAsHTML ()

As you can see from the above we dynamically construct the names of the methods using GString expressions!
ExpandoMetaClass - GroovyObject Methods

ExpandoMetaClass - Overriding invokeMethod, getProperty and setProperty

It is also possible to override the methods invokeMethod, getProperty and setPropety on ExpandoMetaClass thus allowing even more dynamic
behaviour.

Overriding invokeMethod

As an example of overring invokeMethod, take this simple example:

class Stuff {
def invokeMe() { "foo" }

}

Stuff.metaClass.invokeMethod = { String name, args ->
def metaMethod = Stuff.metaClass.getMetaMethod (name, args)
def result
if (metaMethod) result = metaMethod.invoke (delegate,args)
else {
result = "bar"

}

result

def stf = new Stuff()

assert "foo" == stf.invokeMe ()
assert "bar" == stf.doStuff ()

So what is happening here? Well firstly we've overriden invokeMethod by assigning it an appropriate closure, but in addition we first look-up a
MetaMethod with the line:

def metaMethod = delegate.class.metaClass.getMetaMethod (name)

A MetaMethod in Groovy is a method that is known to exist on the MetaClass whether added at runtime or whatever, thus we check if there is an
existing MetaMethod and if there isn't we simply return "bar", hence the behaviour of the assert statements is correct.

Overriding getProperty and setProperty

Again overriding getProperty and setProperty is similar to the above:

class Person {
String name = "Fred"

}

Person.metaClass.getProperty = { String name ->
def metaProperty = Person.metaClass.getMetaProperty (name)
def result
if (metaProperty) result = metaProperty.getProperty (delegate)
else {
result = "Flintstone"

}
result
def p = new Person()

assert "Fred" == p.name
assert "Flintstone" == p.other

The important thing to note here is that instead of a MetaMethod we look-up a MetaProperty instance if that exists we call the getProperty method
of the MetaProperty passing the delegate (ie the instance of the class).

The only different with setProperty is you need the value in the method signature and to call setProperty on the MetaProperty:

Person.metaClass.setProperty = { String name, value ->

if (metaProperty) metaProperty.setProperty(delegate, value)

Useful References

® MetaMethod
® MetaProperty

ExpandoMetaClass - Interfaces

ExpandoMetaClass - Adding methods to interfaces

It is possible to add methods onto interfaces with ExpandoMetaClass. To do this however, it MUST be enabled globally using the
ExpandoMetaClass.enableGlobally() method before application start-up.

As an example this code adds a new method to all implementors of java.util.List:

List.metaClass.sizeDoubled = {-> delegate.size() * 2 }

def list = []

list << 1

list << 2

assert 4 == list.sizeDoubled()

Another example taken from Grails, this code allows access to session attributes using Groovy's subscript operator to all implementors of the
HttpSession interface:

HttpSession.metaClass.getAt = { String key ->
delegate.getAttribute (key)

}

HttpSession.metaClass.putAt = { String key, Object val ->
delegate.setAttribute (key, val

}

def session = new MockHttpSession()

session.foo = "bar"

ExpandoMetaClass - Methods

ExpandoMetaClass - Adding & Overriding instance methods

Once you have an ExpandoMetaClass to add new methods to it is trivial:

class Book {
String title
}
Book.metaClass.titleInUpperCase << {-> title.toUpperCase() }

def b = new Book (title:"The Stand"

assert "THE STAND" == b.titleInUpperCase ()

Note that in this case the left shift << operator is used to "append" the new method. If the method already exists an exception will be thrown. If you
want to replace an instance method you can use the = operator:

Book.metaClass.toString = {-> title.toUpperCase() }

ExpandoMetaClass - Overriding static invokeMethod

ExpandoMetaClass - Overriding invokeMethod for static methods
It is also possible to override invokeMethod for static methods.
Overriding invokeMethod for static

As an example of overriding invokeMethod for static methods, take this simple example:

class Stuff {
static invokeMe() { "foo" }

}

Stuff.metaClass.'static'.invokeMethod = { String name, args ->
def metaMethod = Stuff.metaClass.getStaticMetaMethod (name, args)
def result
if (metaMethod) result = metaMethod.invoke (delegate,args)

else {
result = "bar"
}
result
}
assert "foo" == Stuff.invokeMe ()
assert "bar" == Stuff.doStuff ()

So what is happening here? Well firstly we've overridden invokeMethod using the 'static' qualifier and by assigning it an appropriate closure, but
in addition we first look-up a MetaMethod with the line:

def metaMethod = delegate.class.metaClass.getStaticMetaMethod (name)

A MetaMethod in Groovy is a method that is known to exist on the MetaClass whether added at runtime or whatever, thus we check if there is an
existing MetaMethod and if there isn't we simply return "bar", hence the behaviour of the assert statements is correct.

Useful References

® MetaMethod
® MutableMetaClass
® MetaObjectProtocol

ExpandoMetaClass - Properties

Adding properties

Properties can be added in a couple of ways. Firstly you can use the instance method syntax seen previously:

class Book {
String title

}
Book.metaClass.getAuthor << {-> "Stephen King" }

def b = new Book ("The Stand")

assert "Stephen King" == b.author

In this case the property is dictated by the closure and is a read-only property. You can add the equivalent setter but then remember you will have
to store the property somewhere for retrieval later so make sure you use thread safe code. For example you could store values in a synchronized
Map using the object identity as the key:

def properties = Collections.synchronizedMap([:])

Book.metaClass.setAuthor = { String value ->
properties[System.identityHashCode (delegate) + "author"] = value

}

Book.metaClass.getAuthor = {->
properties[System.identityHashCode (delegate) + "author"]

}

This is not the only technique however. For example in a servlet container you may store the values in the currently executing request as request
attributes (as is done in some cases in Grails).

Alternatively you can simply assign a value as follows:

Book.metaClass.author = "Stephen King"
def b = new Book ("The Stand")

assert "Stephen King" == b.author

In this case the property is mutable and has both a setter and getter.

However, using this technique the property is stored in a ThreadLocal, WeakHashMap so don't expect the value to stick around
forever!

ExpandoMetaClass - Runtime Discovery

ExpandoMetaClass - Runtime MetaClass Analysis

At runtime it is often useful to know what other methods or properties exist at the time the method is executed. To this end ExpandoMetaClass
provides the following methods as of this writing:

® getMetaMethod

® hasMetaMethod

® getMetaProperty

® hasMetaProperty

Why can't you just use reflection? Well because Groovy is different, it has the methods that are "real" methods and methods that are available
only at runtime. These are sometimes (but not always) represented as MetaMethods. The MetaMethods tell you what methods are available at
runtime, thus your code can adapt.

This is of particular use when overriding invokeMethod, getProperty and/or setProperty for example:

class Stuff {
def invokeMe() { "foo" }

}

Stuff.metaClass.invokeMethod = { String name, args ->
def metaMethod = Stuff.metaClass.getMetaMethod (name,args)
def result
if (metaMethod) result = metaMethod.invoke (delegate,args)
else {
result = "bar"

}

result
}

def stf = new Stuff()

assert "foo" == stf.invokeMe ()
assert "bar" == stf.doStuff ()

Here we are using the getMetaMethod method to obtain a reference to a method that may or may not exist. If it doesn't exist the getMetaMethod
method will return null and the code can adapt to this fact.

Useful References

® MetaMethod
® MetaProperty

ExpandoMetaClass - Static Methods

ExpandoMetaClass - Adding static methods

Static methods can also be added using the same technique as instance methods with the addition of the "static" qualifier before the method
name:

class Book {
String title

}

Book.metaClass.static.create << { String title -> new Book (title:title) }

def b = Book.create("The Stand"

Global AST Transformations

Groovy 1.6 offers offers several approaches to transforming the AST of code within the compiler. You can write a custom AST visitor, you can use
annotations and a local AST transformation, or you can use a global AST transformation.

This page explains how to write and debug a global AST transformation.

Sticking with the naive and simple example from the local transformation page, consider wanting to provide console output at the start and stop of
method calls within your code. The following "Hello World" example would actually print "Hello World" along with a start and stop message:

def greet() {
println "Hello World"

}

greet ()

Not a great use case, but it is useful to explain the mechanics of global transformations.

A global transformation requires four steps: 1) write an ASTTransformation subclass, 2) create a Jar metadata file containing the name of your
ASTTransformation, 3) create a Jar containing the class and metadata, and 4) invoke groovyc with that Jar on your classpath.

Writing an ASTTransformation

This is almost exactly the same step you'll need if writing a local transformation. You must define an ASTTransformation subclass that reads, and
possibly rewrites, the syntax tree of the compiling code. Here is the transformation that will add a console start message and end message to all
method invocations:

@GroovyASTTransformation (phase=CompilePhase.CONVERSION)
public class LoggingASTTransformation implements ASTTransformation {

static final def TARGET = WithLogging.getName ()

public void visit (ASTNode[] astNodes, SourceUnit sourceUnit) {
List methods = sourceUnit.getAST()?.getMethods ()
methods?.each { MethodNode method ->
Statement startMessage = createPrintlnAst ("Starting $method.name")
Statement endMessage = createPrintlnAst ("Ending S$method.name')

List existingStatements = method.getCode() .getStatements ()
existingStatements.add (0, startMessage)
existingStatements.add (endMessage)

}

private Statement createPrintlnAst (String message) {
return new ExpressionStatement (
new MethodCallExpression (
new VariableExpression("this"),
new ConstantExpression("println")
new ArgumentListExpression (
new ConstantExpression(message)

)

The first line (@GroovyASTTransformation) line tells the Groovy compiler that this is an AST transformation that should occur in the conversion
CompilePhase. Unlike local transformations, global transformations can occur in any phase.

The publicvisit(ASTNode[], SourceUnit) method is invoked for each source unit compiled. In this example, I'm just pulling out all the methods
defined in the source. A method to the compiler is simply a list of Statement objects, so I'm adding a statement zero logging the start message
and appending a statement to the end of the list with the end message.

Notice the complexity in creating a simple printin Statement in the createPrintinAst method. A method call has a target(this), a name(printin), and

an argument list(the message). An easy way to create AST is to write the Groovy code you expect to create, then observe what AST the compiler
generates within the IDE's debugger. This requires a test harness with a custom GroovyClassLoader and an AST Visitor.

Writing Jar Metadata

The Groovy compiler discovers your ASTTransformation through a file named "org.codehaus.groovy.transform.AST Transformation". This file must
contain the fully qualified package and name of your transformation. In my example, the file simply has one line:

gep.LoggingASTTransformation

Creating the Jar

The ASTtransformation and the metadata must be packaged into a single Jar file. The org.codehaus.groovy.transform.AST Transformation file
must be in the META-INF/services directory. The Jar layout for this example follows:

LogMethodTransform.jar

--gep

----LoggingASTTransformation.class
----LoggingASTTransformation$_visit_closurel.class
--META-INF

----services

—————— org.codehaus.groovy.transform.ASTTransformation

Compiling the Example

The new Jar must be put on the groovyc classpath for the transformation to be invoked. If the sample script at the top of the post is in a file named
"LoggingExample.groovy", then the command line to compile this is:

groovyc -cp LogMethodTransform.jar LoggingExample.groovy

This generates a LoggingExample.class that, when run with Java, produces:

Starting greet
Hello World
Ending greet

Debugging Global Transformations

Local transformations are simple to debug: the IDE (at least IDEA) supports it with no extra effort. Global transformations are not so easy. To test
this you might write a test harness that invoked LoggingASTTransformation on a file explicitly. The test harness source is available and could
easily be modified to fit your needs. Let me know if you know an easier way to debug this!

Local AST Transformations

Groovy 1.6 provides two options for hooking into the Groovy compiler for compile-time metaprogramming: local and global AST transformations.
This page explains how to write and debug a local AST transformation.

As a naive and simple example, consider wanting to write a @WithLogging annotation that would add console messages at the start and end of a
method invocation. So the following "Hello World" example would actually print "Hello World" along with a start and stop message:

@WithLogging
def greet() {
println "Hello World"

}

greet ()

A poor man's aspect oriented programming, if you will.

A local AST transformation is an easy way to do this. It requires two things: a definition of the @WithLogging annotation and an implementation of
ASTTransformation that adds the logging expressions to the method.

An ASTTransformation is a callback that gives you access to the SourceUnit, through which you can get a reference to the AST. The AST is a
tree structure of Expression objects that the source code has been transformed into. An easy way to learn about the AST is to explore it in a
debugger, which will be shown shortly. Once you have the AST, you can analyze it to find out information about the code or rewrite it to add new
functionality.

The local transformation annotation is the simple part. Here is the @WithLogging one:

import org.codehaus.groovy.transform.GroovyASTTransformationClass

@Retention (RetentionPolicy.SOURCE)

@Target ([ElementType.METHOD])

@GroovyASTTransformationClass (["gep.LoggingASTTransformation"])
public @interface WithLogging {

}

The annotation retention can be SOURCE, you won't need the annotation past that. The element type here is METHOD, the @WithLogging
annotation applies to methods. But the most important part is the @GroovyASTTransformationClass annotation. This links the @WithLogging
annotation to the ASTTransformation subclass you will write. gep.LoggingTransformation is the full package and class of my ASTTransformation.
This line wires the annotation to the transformation.

With this in place, the Groovy compiler is going to try to invoke gep.LoggingAST Transformation every time an @WithLogging is found in a source
unit. Any breakpoint set within LoggingAST Transformation will now be hit within the IDE when running the sample script.

The ASTTransformation subclass is a little more complex. Here is the very simple, and very naive, transformation to add a method start and stop
message for @WithLogging:

@GroovyASTTransformation (phase=CompilePhase.SEMANTIC ANALYSIS)
public class LoggingASTTransformation implements ASTTransformation {

public void visit (ASTNode[] nodes, SourceUnit sourceUnit) {

List methods = sourceUnit.getAST()?.getMethods ()

// find all methods annotated with @WithLogging

methods.findAll { MethodNode method ->
method.getAnnotations (new ClassNode (WithLogging))

}.each { MethodNode method ->
Statement startMessage = createPrintlnAst ("Starting $method.name")
Statement endMessage = createPrintlnAst ("Ending Smethod.name")

List existingStatements = method.getCode () .getStatements ()
existingStatements.add (0, startMessage)
existingStatements.add (endMessage)

}

private Statement createPrintlnAst (String message) {
return new ExpressionStatement (
new MethodCallExpression (
new VariableExpression("this"),
new ConstantExpression("println"),
new ArgumentListExpression(
new ConstantExpression (message)

)

Starting at the top...

The @GroovyAST Transformation(phase=CompilePhase.SEMANTIC_ANALYSIS) line tells the Groovy compiler that this is a local transformation
that applies to the SEMANTIC_ANALYSIS CompilePhase. Local transformations can only be applied at semantic analysis or later phases, and
this line is required!

The public visit(ASTNode[], SourceUnit) method is called once per annotated node (class, method, or field; method parameters don't seem to be
supported). The first element in the ASTNode array holds the annotation, the second one the annotated node. The AST you receive is not for the
@WithLogging annotated method, it is for the entire file that contains @WithLogging. This example is just using findAll to locate methods that are
annotated with @WithLogging, then using an each statement to wrap any annotated method with print lines. A method to the compiler is simply a
list of Statement objects, so the example adds a statement zero logging the start message and appending a statement to the list with the end
message.

Note the creation of the new printin statements in the createPrintinAst(String) method. Creating AST for code is not always simple. In this case we
need to construct a new method call, passing in the receiver/variable, the name of the method, and an argument list. When creating AST, it might
be helpful to write the code you're trying to create in a Groovy file and then inspect the AST of that code in the debugger to learn what to create.
Then write a function like createPrintinAst using what you learned through the debugger.

The final result:

def

}

@WithLogging

println "Hello World"

greet ()

greet () {

Produces:

Starting greet
Hello World
Ending greet

Per-Instance MetaClass

Adding Methods to an Instance

Normally when you add a MetaMethod, it is added for all instances of that class. However, for GroovyObjects, you can dynamically add
methods to individual instances by giving that instance its own MetacClass:

def
def

def

emc.
emc.

gstr.metaClass = emc
gstr.test() // prints "test"

test = "test"
gstr = "hello Stest" // this is a GString, which implements GroovyObject

emc = new ExpandoMetaClass(gstr.class, false)
test = { println "test" }
initialize ()

Note that you cannot do this:

gstr.metaClass = new ExpandoMetaClass(gstr.class)
gstr.metaClass.test = { println "test" }

because you must call emc.initialize () before making any method calls on the instance. But you can't add MetaMethods after calling
initialize ()! This is bit of a catch 22 because the ExpandoMetaClass is intercepting methods to itself. The solution is (as shown in the first
example) to simply add the MetaMethods before assigning the new MetaClass to your instance.

The other option is to set the set emc.allowChangesAfterInit = true. This will allow you to add additional methods on the MetaClass after

itis in use.

i)

Note
Be sure to use the proper constructor, new ExpandoMetaClass (MyClass, false). The false parameter keeps the

MetaClass from being inserted into the Registry. Otherwise your new MetaClass will be used for all instances of MyClass, not
just the instance it is assigned to.

Compatibility

Only works in Groovy 1.1-beta-3 and above. Use the Proxy class in older versions to achieve a per-instance behaviour change.

If your Instance is not a GroovyObject

If your instance is a plain Java type, it will not implement GroovyObject, and consequently, will not have a metaClass property. In this case
you must wrap your instance in a groovy.util.Proxy:

ExpandoMetaClass emc = new ExpandoMetaClass(Object, false)
emc.boo = { "Surprise!" }
emc.initialize()

def obj = new groovy.util.Proxy () .wrap(new Object ())
obj.setMetaClass(emc)
assert obj.boo() == "Surprise!"

Note that this example is calling the setMetaClass (. .) method rather than using the property notation in the previous example. This is
because Proxy intercepts method calls only, not property access.

Runtime mixins

Last metaprogramming feature we'll cover today: runtime mixins. @Mixin allowed you to mixin new behavior to classes you owned and were
designing. But you could not mixin anything to types you didn't own. Runtime mixins propose to fill that gap by letting you add a mixin on any type
at runtime. If we think again about our example of vehicles with some mixed-in capabilities, if we didn't own James Bond's vehicle and give it
some diving ability, we could use this mechanism:

// provided by a third-party
interface Vehicle {
String getName ()

}

// provided by a third-party
class JamesBondVehicle implements Vehicle {
String getName () { "James Bond's vehicle" }

}

JamesBondVehicle.mixin DivingAbility, FlyingAbility

assert new JamesBondVehicle() .fly() ==
"I'm the James Bond's vehicle and I fly!"
assert new JamesBondVehicle () .dive ()
"I'm the James Bond's vehicle and I dive!"

One or more mixins can be passed as argument to the static mixin() method added by Groovy on Class.
Using invokeMethod and getProperty

Using invokeMethod & getProperty

Since 1.0, Groovy supports the ability to intercept all method and property access via the invokeMethod and get/setProperty hooks. If you
only want to intercept failed method/property access take a look at Using methodMissing and propertyMissing.

Overriding invokeMethod

In any Groovy class you can override invokeMethod which will essentially intercept all method calls (to intercept calls to existing methods, the
class additionally has to implement the GroovyInterceptable interface). This makes it possible to construct some quite interesting DSLs and

builders.

For example a trivial Xm1Builder could be written as follows (note Groovy ships with much richer XML APIs and this just serves as an example):

class XmlBuilder {
def out
XmlBuilder (out) { this.out = out }
def invokeMethod(String name, args) {
out << "<Snames>"
if (args [0] instanceof Closure) {
args[0] .delegate = this
args[0] .call()
}
else {
out << args[0].toString/()

}

out << "</$name>"

}
}
def xml = new XmlBuilder (new StringBuffer())
xml.html {

head {

title "Hello World"
}

body {
p "Welcome!"

}

Another simple usage of invokeMethod is to provide simple AOP style around advice to existing methods. Here is a simple logging example
implemented with invokeMethod:

class MyClass implements GroovylInterceptable {
def invokeMethod(String name, args) {

System.out.println ("Beginning S$name")

def metaMethod = metaClass.getMetaMethod (name, args)
def result = metaMethod.invoke(this, args)
System.out.println ("Completed $name")

return result

Overriding getProperty and setProperty

You can also override property access using the getProperty and setProperty property access hooks. For example it is possible to write a
trival "Expandable" object using this technique:

class Expandable {
def storage = [:]
def getProperty(String name) { storage[name] }
void setProperty(String name, value) { storage[name] = value }

}

def e = new Expandable()
e.foo = "bar"
println e.foo

Using methodMissing and propertyMissing

Using methodMissing & propertyMissing

Since 1.5, Groovy supports the concept of "methodMissing". This differs from invokeMethod in that it is only invoked in the case of failed method
dispatch.

There are a couple of important aspects to this behaviour:

1. Since method/propertyMissing only occur in the case of failed dispatch, they are expensive to execute
2. Since method/propertyMissing aren't intercepting EVERY method call like invokeMethod they can be more efficient with a few
meta-programming tricks

Using methodMissing with dynamic method registration

Typically when using methodMissing the code will react in some way that makes it possible for the next time the same method is called, that it
goes through the regular Groovy method dispatch logic.

For example consider dynamic finders in GORM. These are implemented in terms of methodMissing. How does it work? The code resembles
something like this:

class GORM {

def dynamicMethods = [...] // an array of dynamic methods that use regex
def methodMissing(String name, args) {
def method = dynamicMethods.find { it.match (name) }
if (method) {
GORM.metaClass. "$name" = { Object[] varArgs ->
method.invoke (delegate, name, varArgs)
}

return method. invoke (delegate,name, args)

}

else throw new MissingMethodException(name, delegate, args)

Notice how, if we find a method to invoke then we dynamically register a new method on the fly using ExpandoMetaClass. This is so that the next
time the same method is called it is more efficient. This way methodMissing doesn't have the overhead of invokeMethod AND is not expensive for
the second call

Using propertyMissing

Groovy also supports propertyMissing for dealing with property resolution attempts. For a getter you use a propertyMissing definition that takes a
String argument:

class Foo {
def propertyMissing(String name) { name }

}

def £ = new Foo()

assertEquals "boo", f.boo

For a setters you add a second propertyMissing definition that takes a value argument:

class Foo {
def storage = [:]
def propertyMissing(String name, value) { storage[name] = value }
def propertyMissing(String name) { storage[name] }

}

def £ = new Foo()

f.foo = "bar"

assertEquals "bar", f.foo

As with methodMissing you will likely want to dynamically register new properties at runtime to improve the performance of you code.

Static methods and properties

You can add methodMissing and propertyMissing that deals with static methods and properties via ExpandoMetaClass

GDK Extensions to Object

Groovy adds a number of methods to java.lang.Object, most of which deal with types that serve as collections or aggregates, such as Lists
or DOM Nodes.

Return Value Method Description

Boolean any {closure} returns true if the closure returns true for any item

List collect {closure} returns a list of all items that were returned from the closure
Collection collect(Collection collection) {closure} same as above, but adds each item to the given collection

void each {closure} simply executes the closure for each item

void eachWithindex {closure} same as each{} except it passes two aruments: the item and the index
Boolean every {closure} returns true if the closure returns true for all items

Object find {closure} returns the first item that matches the closure expression

List findAll {closure} returns all items that match the closure expression

Integer findIndexOf {closure} returns the index of the first item that matched the given expression

See the GDK documentation on Object for the complete list of added methods.

Since the "return" keyword is optional in Groovy, closures in this context act as "predicates" and return the boolean result of whatever expression
you given in your closure. These predicates allow you to apply perform operations on aggregate objects in a very concise manner.

Examples
def numbers = [5, 7, 9, 12]
assert numbers.any { it % 2 == 0 } //returns true since 12 is even
assert numbers.every { it > 4 } //returns true since all #s are > 4
assert numbers.findall { it in 6..10 } == [7,9] //returns all #s > 5 and < 11
assert numbers.collect { ++it } == [6, 8, 10, 13] //returns a new list with each # incremented

numbers.eachwithlndex{ num, idx -> println "$idx: Snum" } //prints each index and number

Generics

Java 1.5 introduced Generics. Using generics you can write code that can be statically checked to a greater degree at compile time. In some
ways this is at odds with the emphasis of dynamic languages where in general, the type of objects can not be determined until runtime. But
Groovy aims to accomodate Java's static typing when possible, hence Groovy 1.5 now also understands Generics. Having said that, Groovy's
generics support doesn't aim to be a complete clone of Java's generics. Instead, Groovy aims to allow generics at the source code level (to aid
cut and pasting from Java) and also where it makes sense to allow good integration between Groovy and Java tools and APIs that use generics.

You can include generics in your definitions like this:

import java.lang.reflect.Method
Iterable<Method> methods = String.methods.grep{ it.name.startsWith('get') }
assert methods.name == ["getBytes", "getBytes", "getBytes", "getBytes", "getChars", "getClass"]

Implementation note: Java's generics implementation incorporates a feature known as "type erasure" which "throws away" generic type
information after completing static type checking. This allows Java to easily integrate with legacy "non-generics" libraries. Groovy currently does a
little further and throws away generics information "at the source level". Generics information is kept within signatures where appropriate (see for
example the method foo below within class D).

You can define classes using generics like this:

class A extends ArrayList<Long> {}

class B<T> extends HashMap<T,List<T>> {}

class C<Y,T extends Map<String,Map<Y,Integer>>> {}
class D {

static < T > T foo(T t) {return null}

}

GPath

GPath is a path expression language integrated into Groovy which allows parts of nested structured data to be identified. In this sense, it has
similar aims and scope as XPath does for XML. The two main places where you use GPath expressions is when dealing with nested POJOs or
when dealing with XML.

As an example, you can specify a path to an object or element of interest:
a.b.c -> for XML, yields all the <c> elements inside inside <a>
a.b.c -> all POJOs, yields the <c> properties for all the properties of <a> (sort of like a.getB().getC() in JavaBeans)

For XML, you can also specify attributes, e.g.:
a["@href"] -> the href attribute of all the a elements

a.'@href -> an alternative way of expressing this
a.@href -> an alternative way of expressing this when using Xxml1Slurper

Example

The best example of GPath for xml is test-new/groovy/util/XmISlurperTest.groovy.

package groovy.util
class XmlSlurperTest extends GroovyTestCase {

void testXmlParser () {
def text = "n"v
<characters>
<props>
<prop>dd</prop>
</props>
<character id="1" name="Wallace"s>
<likes>cheese</likes>
</character>
<character id="2" name="Gromit'"s>
<likes>sleep</likes>
</character>
</characters>

def node = new XmlSlurper () .parseText (text) ;

assert node != null
assert node.children().size() == 3 //, "Children ${node.children() }"

def characters = node.character
println "node:" + node.children() .size()
println '"characters:" + node.character.size()
for (c in characters) {

println c['@name']
assert characters.size() == 2

assert node.character.likes.size() == 2 //, "Likes ${node.character.likes}"

// lets find Gromit

def gromit = node.character.find { it['@id'] == '2' }
assert gromit != null //, "Should have found Gromit!"
assert gromit['@name'] == "Gromit"

// lets find what Wallace likes in 1 query

def answer = node.character.find { it['eid'] == '1' }.likes.text()
assert answer == "cheese"

}

}

Outline

1.Accessing element as property

def characters = node.character
def gromit = node.character[1]

2.Accessing attributes

println gromit['@name']
or
println gromit.@name

3.Accessing element body

println gromit.likes[0].text ()
println node.text ()

If the element is a father node, it will print all children's text.

3.Explore the DOM use children() and parent()

def characters = node.children()
for (c in characters) {
println c.@name

4.Find elements use expression

def gromit = node.character.find { it.eid == '2' }

Another Example

Here is a two line example of how to get a list of all the links to .xml files listed on a web page. The Neko parser is used to parse non-well formed
html. It no longer ships as part of the standard Groovy distribution but can be downloaded and dropped into the lib directory of your Groovy
distribution. You'll need to also add a copy of xercesImpl.jar to the groovy lib directory.

def myDocument = new XmlParser (new org.cyberneko.html.parsers.SAXParser ()).parse("http://myUrl.com")
def links = myDocument.depthFirst().A['@href'].findAll{ it.endsWith(".xml") }

More Information

See also: Processing XML

Grape

Grape (The Groovy Adaptable Packaging Engine or Groovy Advanced Packaging Engine) is the infrastructure enabling the grab() calls in Groovy,
a set of classes leveraging Ivy to allow for a repository driven module system for Groovy. This allows a developer to write a script with an
essentially arbitrary library requirement, and ship just the script. Grape will, at runtime, download as needed and link the named libraries and all
dependencies forming a transitive closure when the script is run from existing repositories such as Ibiblio, Codehaus, and java.net.

® Basics
® Usage

® Annotation

® Method call

® Command Line Tool
® Advanced configuration

® Proxy settings

® Customize Ivy settings
® More Examples

Basics

Grape follows the lvy conventions for module version identificaiton, with naming change.

® group - Which module group the module comes from. Translates directly to a Maven groupld or an Ivy Organization. Any group
matching /groovy [x] [\..*]"/ is reserved and may have special meaning to the groovy endorsed modules.

® module - The name of the module to load. Translated directly to a Maven artifactld or an Ivy artifact.

® version - The version of the module to use. Either a literal version '1.1-RC3' or an Ivy Range '[2.2.1,)' meaning 2.2.1 or any greater
version).

The downloaded modules will be stored according to Ivy's standard mechanism with a cache root of ~/ .groovy/grape

Usage

Annotation

One or more groovy.lang.Grab annotations can be added at any place that annotations are accepted to tell the compiler that this code relies on
the specific library. This will have the effect of adding the library to the classloader of the groovy compiler. This annotation is detected and
evaluated before any other resolution of classes in the script, so imported classes can be properly resolved by a @Grab annotation.

import com.jidesoft.swing.JideSplitButton
@Grab (group="'com.jidesoft', module='jide-oss', version='[2.2.1,2.3.0)")
public class TestClassAnnotation {
public static String testMethod () {
return JideSplitButton.class.name

}

An appropriate grab (. . .) call will be added to the static initializer of the class of the containing class (or script class in the case of an annotated

script element).

Multiple Grape Annotations

In order to use a Grape annotation multiple times you must use the Grapes annotation, e.g.:

@Grapes (
@Grab (group="'commons-primitives', module='commons-primitives', version='1.0'),

@Grab (group="'org.ccil.cowan.tagsoup', module='tagsoup', version='0.9.7"'))
class Example {

//
}

Otherwise you'll encounter the following error:

Cannot specify duplicate annotation on the same member

Method call

Typically a call to grab will occur early in the script or in class initialization. This is to insure that the libraries are made available to the
ClassLoader before the groovy code relies on the code. A couple of typical calls may appear as follows:

import groovy.grape.Grape
// random maven library
Grape .grab (group: 'com.jidesoft', module:'jide-oss', version:'[2.2.0,)")

Grape .grab ([group: 'org.apache.ivy', module:'ivy', version:'2.0.0-betal', conf:['default',

‘optional'l],
[group: 'org.apache.ant', module:'ant', version:'1.7.0'])

// endorsed Groovy Module
// FUTURE grab('Scriptom')

* Multiple calls to grab in the same context with the same parameters should be idempotent. However, if the same code is called with a different
ClassLoader context then resolution may be re-run.

® grabis disabled by default. Starting calling Grape . initGrape () will enable grab. Any calls to grab before initGrape () is called will
be ignored. Hence Grape managed classloading is opt in only. Multiple calls ti Grape . initGrape () after the first successful call are
ignored.
® |f the args map passed into the grab call has an attribute noExceptions that evaluates true no exceptions will be thrown.
® grab requires that a RootLoader or GroovyClassLoader be specified or be in the ClassLoader chain of the calling class. By default failure
to have such a ClassLoader available will result in module resolution and an exception being thrown (if initGrape () has been called).
® The ClassLoader passed in via the classLoader: argument and it's parent classloaders.
® The ClassLoader of the object passed in as the referenceObject: argument, and it's parent classloaders.

® The ClassLoader of the class issuing the call to grab

grab (HashMap) Parameters

® group: - <String> - Which module group the module comes from. Translates directly to a Maven groupld. Any group matching
/groovy (I\-- \x|x\. .) / is reserved and may have special meaning to the groovy endorsed modules.

® module: - <String> - The name of the module to load. Translated directly to a Maven artifactld.

® version: - <String> and possibly <Range> - The version of the module to use. Either a literal version '1.1-RC3' or an lvy Range

'[2.2.1,)' meaning 2.2.1 or any greater version).

classifier: - <String> - The Maven classifier to resolve by.

conf : - <String>, default 'default’' - The configuration or scope of the module to download. The default conf is default: which maps to

the maven runtime and master scopes.

force:- <boolean>, defaults true - Used to indicate that this revision must be used in case of conflicts, independently of

conflicts manager

changing: - <boolean>, default false - Whether the artifact can change without it's version designation changing.

transitive: - <boolean>, default true - Whether to resolve other dependencies this module has or not.

There are two principal variants of grab, one with a single Map and one with an arguments Map and multiple dependencies map. A call to the
single map grab is the same as calling grab with the same map passed in twice, so grab arguments and dependencies can be mixed in the same
map, and grab can be called as a single method with named parameters.

There are synonyms for these parameters. Submitting more than one is a runtime exception.

group:, groupId:, organisation:, organization:, org:
module:, artifactId:, artifact:

version:, revision:, rev:

conf:, scope:, configuration:

Arguments Map arguments

® classLoader: - <GroovyClassLaoder> or <RootClassLoader> - The ClassLoader to add resolved Jars to

® refObject: - <Object> - The closest parent ClassLoader for the object's class will be treated as though it were passed in as
classLoader:

® validate: - <boolean>, default false - Should poms or ivy files be validated (true), or should we trust the cache (false).

® noExceptions: - <boolean>, default false - If ClassLoader resolution or repository querying fails, should we throw an exception (false)
or fail silently (true).

Command Line Tool

Grape added a command line executable 'grape' that allows for the inspection and management of the local grape cache.

grape install <groupId> <artifactId> [<versions>]

This installs the specified groovy module or maven artifact. If a version is specified that specific version will be installed, otherwise the most recent
version will be used (as if "' we passed in).

grape list

Lists locally installed modules (with their full maven name in the case of groovy modules) and versions.

grape resolve (<grouplds> <artifactId> <versions>)+

This returns the file locations of the jars representing the artifcats for the specified module(s) and the respective transitive dependencies. You may
optionally pass in -ant, -dos, or -shell to get the dependencies expressed in a format applicable for an ant script, windows batch file, or unix shell
script respectively. -ivy may be passed to see the dependencies expressed in an ivy like format.

Advanced configuration
Proxy settings

If you are behind a firewall and/or need to use Groovy/Grape through a proxy server, you can specify those settings on the command like via the
http.proxyHost and http.proxyPort system properties:

groovy -Dhttp.proxyHost=yourproxy -Dhttp.proxyPort=8080 yourscript.groovy

Or you can make this system wide by adding these properties to your JAVA_OPTS environment variable:

JAVA _OPTS = -Dhttp.proxyHost=yourproxy -Dhttp.proxyPort=8080

Customize Ivy settings

/ITODO expand on discussion of grapeConfig.xml

You can customize the ivy settings that Grape uses by creating a ~/.groovy/grapeConfig.xml file. If no such file exists, here are the default settings
used by Grape:

<ivysettings>
<settings defaultResolver="downloadGrapes"/>
<resolvers>
<chain name="downloadGrapes">
<filesystem name="cachedGrapes'>
<ivy pattern="${user.home}/.groovy/grapes/ [organisation]/[module] /ivy- [revision] .xml"/>
<artifact pattern=
"${user.home}/.groovy/grapes/ [organisation] / [module] / [typel s/ [artifact] - [revision] . [ext]"/>
</filesystem>
<!-- todo add 'endorsed groovy extensions' resolver here -->
<ibiblio name="codehaus" root="http://repository.codehaus.org/" m2compatible="true"/>
<ibiblio name="ibiblio" m2compatible="true"/>
<ibiblio name="java.net2" root="http://download.java.net/maven/2/" m2compatible="true"/>
</chain>
</resolvers>
</ivysettings>

For more information on how to customize these settings, please refer to the vy documentation.

Add your local Maven2 repository

If you find yourself wanting to reuse artifacts that you already have locally in your Maven2 repository, then you can add this line to your
~/.groovy/grapeConfig.xml:

<ibiblio name="local" root="file:${user.home}/.m2/repository/" m2compatible="true"/>

And further customize your Grape configuration:

<?xml version="1.0"?>
<ivysettings>
<settings defaultResolver="downloadGrapes"/>

<resolvers>
<chain name="downloadGrapes">
<!-- todo add 'endorsed groovy extensions' resolver here -->

<ibiblio name="local" root="file:${user.home}/.m2/repository/" m2compatible="true"/>
<filesystem name="cachedGrapes">
<ivy pattern="${user.home}/.groovy/grapes/[organisation]/[module] /ivy- [revision] .xml"
/>
<artifact pattern=
"${user.home}/.groovy/grapes/ [organisation] / [module] / [typel s/ [artifact] - [revision] . [ext]"/>
</filesystem>
<ibiblio name="codehaus" root="http://repository.codehaus.org/" m2compatible="true"/>
<ibiblio name="ibiblio" m2compatible="true"/>
<ibiblio name="java.net2" root="http://download.java.net/maven/2/" m2compatible="true"/>
</chain>
</resolvers>
</ivysettings>

More Examples

Using Apache Commons Collections:

// create and use a primitive array
import org.apache.commons.collections.primitives.ArrayIntList

@Grab (group="'commons-primitives', module='commons-primitives', version='1.0")
def createEmptyInts() { new ArrayIntList() }

def ints = createEmptyInts()
ints.add (0, 42)

assert ints.size()
assert ints.get(0) == 42

Using TagSoup:

// find the PDF links in the Java 1.5.0 documentation
@Grab (group="'org.ccil.cowan.tagsoup', module='tagsoup', version='0.9.7"')
def getHtml () {
def parser = new XmlParser (new org.ccil.cowan.tagsoup.Parser())
parser.parse ("http://java.sun.com/j2se/1.5.0/download-pdf.html")

}

html.body.'**'.a.@href.grep(~/.*\.pdf/) .each{ println it }

Using Google Collections:

// Google Collections example

import com.google.common.collect.HashBiMap

@Grab (group="'com.google.code.google-collections', module='google-collect',
version='snapshot-20080530")

def getFruit() { [grape:'purple', lemon:'yellow',6 orange:'orange'] as HashBiMap }
assert fruit.lemon =

= 'yellow'
assert fruit.inverse().yellow == 'lemon'

Launching a Jetty server to server Groovy templates:

import org.mortbay.jetty.Server
import org.mortbay.jetty.servlet.*
import groovy.servlet.*

@Grab (group = 'org.mortbay.jetty', module = 'jetty-embedded', version = '6.1.0')
def runServer (duration) {

def server = new Server(8080)

def context = new Context (server, "/", Context.SESSIONS) ;

context.resourceBase = "."

context.addServlet (TemplateServlet, "*.gsp")

server.start ()

sleep duration

server.stop ()

runServer (10000)

Grape will download Jetty and its dependencies on first launch of this script, and cache them. We're creating a new Jetty Server on port 8080,
then expose Groovy's TemplateServlet at the root of the context — Groovy comes with its own powerful template engine mechanism. We start the
server and let it run for a certain duration. Each time someone will hit http://localhost:8080/somepage.gsp, it will display the somepage.gsp
template to the user — those template pages should be situated in the same directory as this server script.

See Also:

Using Hibernate with Groovy
http://stackoverflow.com/questions/192432/getting-groovys-grape-going

Groovy and JMX

Introduction

Given that Groovy sits directly on top of Java, Groovy can leverage the tremendous amount of work already done for JMX with Java. In addition,
Groovy provides a GroovyMBean class which makes an MBean look like a normal Groovy object. This simplifies Groovy code for interacting with
MBeans. For example, the following code:

println server.getAttribute (beanName, 'Age')

server.setAttribute (beanName, new Attribute('Name', 'New name'))
Object[] params = [5, 20]
String[] signature = [Integer.TYPE, Integer.TYPE]

println server.invoke (beanName, 'add',6 params, signature)

can be simplified to:

def mbean = new GroovyMBean (server, beanName)
println mbean.Age

mbean.Name = 'New name'

println mbean.add (5, 20

The remainder of this page shows you how to:

Monitor the JVM using MXBeans

Monitor Apache Tomcat and display statistics

Monitor Oracle OC4J and display information

Monitor BEA WebLogic and display information

Leverage Spring's MBean annotation support to export your Groovy beans as MBeans

Note: many of the examples on this page use Java 5 which incorporates JMX 1.2 (more recent versions if JMX or Java will also work). In some
cases, you can run some of these examples using Java 1.4 by including a version of JMX on your CLASSPATH. MX4J is bundled with the full
distribution of Groovy. In most cases, you can delete this jar from your distribution 1ib directory if you are running with Java 5 or above (in fact
you might have to - see the Troubleshooting section below).

Monitoring the JVM

MBeans are not accessed directly by an application but are managed by a repository called an MBean server. Java 5 and above includes a
special MBean server called the platform MBean server, which is built into the JVM. Platform MBeans are registered in this server using unique
names.

You can monitor the JVM through its platform MBeans with the following code:

import java.lang.management .*

def os = ManagementFactory.operatingSystemMXBean

println """OPERATING SYSTEM:
\tarchitecture = $os.arch
\tname = $os.name

\tversion = $os.version
\tprocessors = $os.availableProcessors

def rt = ManagementFactory.runtimeMXBean
println """RUNTIME:

\tname = S$rt.name

\tspec name = $rt.specName

\tvendor = S$rt.specVendor

\tspec version = $rt.specVersion
\tmanagement spec version = S$Srt.managementSpecVersion

def cl = ManagementFactory.classLoadingMXBean
println """CLASS LOADING SYSTEM:

\tisVerbose = ${cl.isVerbose()}

\tloadedClassCount = $cl.loadedClassCount
\ttotalLoadedClassCount = S$cl.totalLoadedClassCount
\tunloadedClassCount = $cl.unloadedClassCount

def comp = ManagementFactory.compilationMXBean
println """COMPILATION:
\ttotalCompilationTime = $comp.totalCompilationTime

def mem = ManagementFactory.memoryMXBean
def heapUsage = mem.heapMemoryUsage

def nonHeapUsage = mem.nonHeapMemoryUsage
println """MEMORY:

HEAP STORAGE:

\tcommitted = $heapUsage.committed
\tinit = SheapUsage.init

\tmax = SheapUsage.max

\tused = SheapUsage.used

NON-HEAP STORAGE:

\tcommitted = $nonHeapUsage.committed
\tinit = S$nonHeapUsage.init

\tmax = $nonHeapUsage.max

\tused = S$nonHeapUsage.used

ManagementFactory.memoryPoolMXBeans.each{ mp ->

println "\tname: " + mp.name

String[] mmnames = mp.memoryManagerNames

mmnames . each{ mmname ->

println "\t\tManager Name: Smmname"

}

println "\t\tmtype = Smp.type"

println "\t\tUsage threshold supported = " + mp.isUsageThresholdSupported ()
}

println()

def td = ManagementFactory.threadMXBean
println "THREADS:"
td.allThreadIds.each { tid ->
println "\tThread name = ${td.getThreadInfo(tid) .threadName}"

}

println()

println "GARBAGE COLLECTION:"
ManagementFactory.garbageCollectorMXBeans.each { gc ->
println "\tname = $gc.name"
println "\t\tcollection count = $gc.collectionCount"
println "\t\tcollection time = $gc.collectionTime"
String[] mpoolNames = gc.memoryPoolNames
mpoolNames.each { mpoolName ->
println "\t\tmpool name = SmpoolName"

—

When run, you will see something like this:

OPERATING SYSTEM:
architecture = x86
name = Windows XP
version = 5.1
processors = 2

RUNTIME:

name = 620@LYREBIRD

spec name = Java Virtual Machine Specification
vendor = Sun Microsystems Inc.

spec version = 1.0

management spec version = 1.0

CLASS LOADING SYSTEM:
isVerbose = false
loadedClassCount = 919
totalLoadedClassCount = 919
unloadedClassCount = 0

COMPILATION:
totalCompilationTime = 91

MEMORY :

HEAP STORAGE:
committed = 3108864
init = 0
max = 66650112
used = 1994728

NON-HEAP STORAGE:
committed = 9240576
init = 8585216
max = 100663296
used = 5897880

name: Code Cache

Manager Name: CodeCacheManager
mtype = Non-heap memory

Usage threshold supported = true
name: Eden Space

Manager Name: MarkSweepCompact
Manager Name: Copy

mtype = Heap memory

Usage threshold supported = false
name: Survivor Space

Manager Name: MarkSweepCompact
Manager Name: Copy

mtype = Heap memory

Usage threshold supported = false
name: Tenured Gen

Manager Name: MarkSweepCompact
mtype = Heap memory

Usage threshold supported = true
name: Perm Gen

Manager Name: MarkSweepCompact
mtype = Non-heap memory

Usage threshold supported = true

THREADS :
Thread name = Monitor Ctrl-Break
Thread name = Signal Dispatcher

Thread name = Finalizer
Thread name = Reference Handler
Thread name = main
GARBAGE COLLECTION:
name = Copy
collection count = 60
collection time = 141

mpool name
mpool name
name =
collection
collection
mpool name
mpool name

Eden Space
Survivor Space

MarkSweepCompact

count = 0
time = 0

Eden Space
Survivor Space

mpool name = Tenured Gen
mpool name = Perm Gen

Monitoring Tomcat

First start up Tomcat with JMX monitoring enabled by setting the following:

set JAVA_OPTS=-Dcom.sun.management .jmxremote -Dcom.sun.management.jmxremote.port=9004
-Dcom.sun.management . jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=false

You can do this in your startup script and may choose any available port - we used 9004.
The following code uses JMX to discover the available MBeans in the running Tomcat, determine which are web modules, extract the processing
time for each web module and displays the result in a graph using JFreeChart:

import javax.management.ObjectName

import javax.management.remote.JMXConnectorFactory as JmxFactory
import javax.management.remote.JMXServiceURL as JmxUrl

import org.jfree.chart.ChartFactory

import org.jfree.data.category.DefaultCategoryDataset as Dataset
import org.jfree.chart.plot.PlotOrientation as Orientation
import groovy.swing.SwingBuilder

import javax.swing.WindowConstants as WC

def serverUrl = 'service:jmx:rmi:///jndi/rmi://localhost:9004/jmxrmi’

def server = JmxFactory.connect (new JmxUrl (serverUrl)) .MBeanServerConnection
def serverInfo = new GroovyMBean (server, 'Catalina:type=Server').serverInfo
println "Connected to: $serverInfo"

def query = new ObjectName('Catalina:*')

String[] allNames = server.queryNames (query, null)

def modules = allNames.findAll{ name ->
name.contains ('j2eeType=WebModule"')

}.collect{ new GroovyMBean (server, it) }

println "Found ${modules.size ()} web modules. Processing ..."
def dataset = new Dataset ()

modules.each{ m ->
println m.name ()
dataset.addValue m.processingTime, 0, m.path

def labels = ['Time per Module', 'Module', 'Time']

def options = [false, true, true]

def chart = ChartFactory.createBarChart (*labels, dataset,

Orientation.VERTICAL, *options)

def swing = new SwingBuilder ()

def frame = swing.frame(title:'Catalina Module Processing Time',
defaultCloseOperation:WC.EXIT_ON_CLOSE) {

panel (id:'canvas') { rigidArea(width:600, height:250) }

}

frame.pack()

frame . show ()

chart .draw(swing.canvas.graphics, swing.canvas.bounds)

When run, we will see a trace of progress being made:

Connected to: Apache Tomcat/6.0.13

Found 5 web modules. Processing

Catalina:j2eeType=WebModule, name=//localhost/,J2EEApplication=none, J2EEServer=none
Catalina:j2eeType=WebModule, name=//localhost/host-manager, J2EEApplication=none, J2EEServer=none
Catalina:j2eeType=WebModule, name=//localhost/docs, J2EEApplication=none,J2EEServer=none
Catalina:j2eeType=WebModule, name=//localhost/examples, J2EEApplication=none, J2EEServer=none
Catalina:j2eeType=WebModule, name=//localhost/manager,J2EEApplication=none, J2EEServer=none

The output will look like this:
Time per Module

175
150
125

100

Time

75

S0

pN
u.

fhost-rmanager fdocs fexamples fmanager

Module

Note: if you get errors running this script, see the Troubleshooting section below.

0OC4J Example

Here is a script to access OC4J and print out some information about the server, its runtime and (as an example) the configured JMS
destinations:

import javax.management.remote.*
import oracle.oc4j.admin.jmx.remote.api.JMXConnectorConstant

def serverUrl = new JMXServiceURL('service:jmx:rmi://localhost:23791")

def serverPath = 'oc4j:j2eeType=J2EEServer,name=standalone’

def jvmPath = 'oc4j:j2eeType=JVM,name=single,J2EEServer=standalone’

def provider = 'oracle.oc4j.admin.jmx.remote'

def credentials = [
(JMXConnectorConstant . CREDENTIALS_LOGIN_KEY) : 'oc4jadmin',
(JMXConnectorConstant . CREDENTIALS_PASSWORD_KEY) : 'admin'

]

def env = [

(JMXConnectorFactory.PROTOCOL PROVIDER_ PACKAGES) : provider,
(JMXConnector.CREDENTIALS) : credentials
]
def server = JmxFactory.connect (serverUrl, env) .MBeanServerConnection
def serverInfo = new GroovyMBean (server, serverPath)
def jvmInfo = new GroovyMBean (server, jvmPath)
println """Connected to $serverInfo.node. \
Server started ${new Date (serverInfo.startTime) }.
0C4J version: SserverInfo.serverVersion from $serverInfo.serverVendor
JVM version: $jvmInfo.javaVersion from $jvmInfo.javavVendor
Memory usage: S$jvmInfo.freeMemory bytes free, \
$jvmInfo.totalMemory bytes total

def query = new javax.management.ObjectName ('oc4j:*')
String[] allNames = server.queryNames (query, null)
def dests = allNames.findAll{ name ->

name.contains ('j2eeType=JMSDestinationResource')
}.collect{ new GroovyMBean (server, it) }

println "Found ${dests.size()} JMS destinations. Listing ..."
dests.each{ d -> println "$d.name: $d.location" }

Here is the result of running this script:

Connected to LYREBIRD. Server started Thu May 31 21:04:54 EST 2007.
0C4J version: 11.1.1.0.0 from Oracle Corp.

JVM version: 1.6.0_01 from Sun Microsystems Inc.

Memory usage: 8709976 bytes free, 25153536 bytes total

Found 5 JMS destinations. Listing

Demo Queue: jms/demoQueue

Demo Topic: jms/demoTopic

jms/Oc4jdmsExceptionQueue: jms/Oc4jImsExceptionQueue
jms/RAExceptionQueue: jms/RAExceptionQueue
OracleASRouter_ store: OracleASRouter_store

As a slight variation, this script displays a pie chart of memory usage using JFreeChart:

import org.jfree.chart.ChartFactory

import javax.swing.WindowConstants as WC

import javax.management.remote.*

import oracle.oc4j.admin.jmx.remote.api.JMXConnectorConstant

def url = 'service:jmx:rmi://localhost:23791"'

def credentials = [:]

credentials [JMXConnectorConstant .CREDENTIALS LOGIN_KEY] = "oc4jadmin"

credentials [JMXConnectorConstant .CREDENTIALS_ PASSWORD_KEY] = "password"

def env = [:]

env [JMXConnectorFactory.PROTOCOL PROVIDER_PACKAGES] = "oracle.oc4j.admin.jmx.remote"

env [JMXConnector.CREDENTIALS] = credentials
def server = JMXConnectorFactory.connect (new JMXServiceURL (url), env).MBeanServerConnection
def jvmInfo = new GroovyMBean (server, 'oc4j:j2eeType=JVM, name=single,J2EEServer=standalone"')

def piedata = new org.jfree.data.general.DefaultPieDataset ()
piedata.setValue "Free", jvmInfo.freeMemory
piedata.setValue "Used", jvmInfo.totalMemory - jvmInfo.freeMemory

def options = [true, true, true]

def chart = ChartFactory.createPieChart ('OC4J Memory Usage', piedata, *options)

chart .backgroundPaint = java.awt.Color.white

def swing = new groovy.swing.SwingBuilder ()

def frame = swing.frame(title:'OC4J Memory Usage', defaultCloseOperation:WC.EXIT ON_CLOSE) {
panel (id: 'canvas') { rigidArea (width:350, height:250) }

}

frame.pack ()

frame . show ()

chart .draw(swing.canvas.graphics, swing.canvas.bounds)

Which looks like:

0C4J Memory Usage

® Free @ Used

WebLogic Example

This script prints out information about the server followed by information about JMS Destinations (as an example). Many other mbeans are
available.

import javax.management.remote.*
import javax.management.*
import javax.naming.Context

def urlRuntime = '/jndi/weblogic.management .mbeanservers.runtime'
def urlBase = 'service:jmx:t3://localhost:7001"'

def serviceURL = new JMXServiceURL(urlBase + urlRuntime)
def h = new Hashtable()

h.put (Context.SECURITY PRINCIPAL, 'weblogic')

h.put (Context.SECURITY_ CREDENTIALS, 'weblogic')

def server = JMXConnectorFactory.connect (serviceURL, h).MBeanServerConnection

def domainName = new ObjectName ('com.bea:Name=RuntimeService,' +
'Type=weblogic.management .mbeanservers.runtime.RuntimeServiceMBean')

def rtName = server.getAttribute (domainName, 'ServerRuntime')

def rt = new GroovyMBean (server, rtName)

println "Server: name=$rt.Name, state=Srt.State, version=Srt.WeblogicVersion"

server.queryNames (new ObjectName ('com.bea:*'), destFilter).each{ name ->
def jms = new GroovyMBean (server, name)
println "JMS Destination: name=$jms.Name, type=$jms.DestinationType'"+
", messages=$jms.MessagesReceivedCount"

h.put (JMXConnectorFactory.PROTOCOL_PROVIDER_ PACKAGES, 'weblogic.management.remote')

def destFilter = Query.match(Query.attr('Type'), Query.value('JMSDestinationRuntime'))

Here is the output:

933139
JMS Destination: name=examples-jms!exampleTopic, type=Topic, messages=0
JMS Destination: name=examples-jms!exampleQueue, type=Queue, messages=0

JMS Destination: name=examples-jms!quotes, type=Topic, messages=0
JMS Destination: name=examples-jms!weblogic.wsee.wseeExamplesDestinationQueue,

Server: name=examplesServer, state=RUNNING, version=WebLogic Server 10.0 Wed May 9 18:10:27 EDT 2007

JMS Destination: name=examples-jms!jms/MULTIDATASOURCE MDB QUEUE, type=Queue, messages=0
JMS Destination: name=examplesJMSServer!examplesJMSServer.TemporaryQueue0l, type=Queue,

JMS Destination: name=examples-jms!weblogic.examples.ejb30.ExampleQueue, type=Queue,

Spring Example
You can also use Spring to automatically register beans as JMX aware.

Here is an example class (Calculator.groovy):

import org.springframework.jmx.export.annotation.*
@ManagedResource (objectName="bean:name=calcMBean", description="Calculator MBean")
public class Calculator {

private int invocations

@ManagedAttribute (description="The Invocation Attribute")
public int getInvocations () {
return invocations

private int base 10
@ManagedAttribute (description="The Base to use when adding strings")
public int getBase() {

return base

@ManagedAttribute (description="The Base to use when adding strings")
public void setBase(int base) {
this.base base

@ManagedOperation (description="Add two numbers")

@ManagedOperationParameters ([
@ManagedOperationParameter (name="x",
@ManagedOperationParameter (name="y"

public int add(int x, {
invocations++

description="The first number"),
description="The second number")])
int y)

return x + y

@ManagedOperation (description="Add two strings representing numbers of a particular base")
@ManagedOperationParameters ([

@ManagedOperationParameter (name="x",
@ManagedOperationParameter (name="y",

invocations++
def result = Integer.valueOf (x, base)
return Integer.toString(result, base)

public String addStrings(String x, String y)

description="The first number"),
description="The second number")])

{

+ Integer.valueOf (y, base)

Here is the Spring configuration file (beans.xml):

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
<bean id="mbeanServer"
class="org.springframework. jmx.support .MBeanServerFactoryBean">
<property name="locateExistingServerIfPossible" value="true"/>
</bean>

<bean id="exporter"
class="org.springframework.jmx.export .MBeanExporter">
<property name="assembler" ref="assembler"/>
<property name='"namingStrategy" ref="namingStrategy"/>
<property name="beans"s>
<map>
<entry key="bean:name=defaultCalcName" value-ref="calcBean"/>
</map>
</property>
<property name="server" ref="mbeanServer"/>
<property name="autodetect" value="true'"/>
</bean>

<bean id="jmxAttributeSource"
class="org.springframework.jmx.export .annotation.AnnotationdJmxAttributeSource"/>

<!-- will create management interface using annotation metadata -->
<bean id="assembler"
class="org.springframework. jmx.export .assembler.MetadataMBeanInfoAssembler">
<property name="attributeSource" ref="jmxAttributeSource"/>
</bean>

<!-- will pick up the ObjectName from the annotation -->
<bean id="namingStrategy"
class="org.springframework. jmx.export .naming.MetadataNamingStrategy">
<property name="attributeSource" ref="jmxAttributeSource"/>
</bean>

<bean id="calcBean"
class="Calculator">
<property name="base" value="10"/>
</bean>
</beans>

Here is a script which uses this bean and configuration:

import org.springframework.context.support.ClassPathXmlApplicationContext
import java.lang.management .ManagementFactory

import javax.management.ObjectName

import javax.management.Attribute

// get normal bean
def ctx = new ClassPathXmlApplicationContext ("beans.xml"
def calc = ctx.getBean("calcBean")

Thread.start{
// access bean via JMX, use a separate thread just to
// show that we could access remotely if we wanted
def server = ManagementFactory.platformMBeanServer
def mbean = new GroovyMBean (server, 'bean:name=calcMBean')

sleep 1000

assert 8 == mbean.add (7, 1)

mbean.Base = 8

assert '10' == mbean.addStrings('7', '1')
mbean.Base = 16

sleep 2000

println "Number of invocations: $mbean.Invocations"
println mbean

assert 15 == calc.add(9, 6)

assert 'll' == calc.addStrings('10', '1')
sleep 2000

assert '20' == calc.addStrings('1f', '1')

And here is the resulting output:

Number of invocations: 5
MBean Name:
bean:name=calcMBean

Attributes:
(rw) int Base
(r) int Invocations
Operations:
int add(int x, int y)
java.lang.String addStrings(java.lang.String x, java.lang.String y)
int getInvocations ()
int getBase ()
void setBase (int p1l)

You can even attach to the process while it is running with jconsole. It will look something like:
liconsole.giflWe started the Groovy application with the -Dcom. sun.management . jmxremote JVM argument using a Java 5 JVM.

See also:

® Dynamic language beans in Spring
® Using Spring Factories with Groovy
® Spring JMX Documentation

Troubleshooting

groovy.lang.MissingMethodException or groovy.lang.GroovyRuntimeException

If you get an error like this

groovy.lang.MissingMethodException: No signature of method:
javax.management.remote.rmi.RMIConnector$RemoteMBeanServerConnection. queryMBeans ()
is applicable for argument types: (javax.management.ObjectName, null)

values: {Catalina:*, null}

or like this:

Caught: groovy.lang.GroovyRuntimeException: Could not find matching constructor for:
groovy.util.GroovyMBean (javax.management .remote.rmi.RMIConnector$RemoteMBeanServerConnection,
java.lang.String)

you have to move away or delete "mx4j-* jar" from "$GROOVY_HOME/lib". MX4J is designed to add javax.management classes to 1.4 JVMs.
If you already have a newer JMX jar on your classpath or are using a Java 5 or higher JVM, the MX4J classes will be incompatible with the ones
from the newer Sun JVMs or newer versions of JMX.

java.lang.SecurityException

If you get the following error, your container's JMX access is password protected:

java.lang.SecurityException: Authentication failed! Credentials required

To fix that, add an environment with the credentials when connecting, like this (password has to be set before that):

def jmxEnv = null
if (password != null)
jmxEnv = [(JMXConnector.CREDENTIALS) : (Stringl[]) ["monitor", password]]
def connector = JMXConnectorFactory.connect (new JMXServiceURL (serverUrl), jmxEnv)

Details for the software you are trying to monitor/manage may differ slightly. Check out the other examples using credentials above if appropriate
(e.g. OC4J and WebLogic). If you still have troubles, you will have to consult the documentation for the software you are trying to monitor/manage
for details on how to provide credentials.

Further JMX Information

Monitoring the Java Virtual Machine

Using Groovy for System Management

JMX Scripts using JRuby - Part |

JMX Scripts using JRuby - Part Il

Groovier jconsole!

JMX Scripts with Eclipse Monkey

Using JMX to monitor Apache ActiveMQ

Jagger project (JMX application monitoring with Groovy)

Groovy JmxBuilder

JmxBuilder is a Groovy-based domain specific language for the Java Management Extension (JMX) API. It uses the builder pattern
(FactoryBuilder) to create an internal DSL that facilitates the exposure of POJO's and Groovy beans as management components via the MBean
server. JmxBuilder hides the complexity of creating and exporting management beans via the JMX API and provides a set of natural Groovy
constructs to interact with the JMX infrastructure.

Instantiating JmxBuilder

To start using JmxBuilder, simply make sure the jar file is on your class path. Then you can do the following in your code

def jmx = new JmxBuilder ()

That's it! You are now ready to use the JmxBuilder.

NOTE:

® You can pass in an instance of your own MBeanServer to the builder (JmxBuilder(MBeanServer))
® |f no MBeanServer is specified, the builder instance will default to the underlying platform MBeanServer.

Once you have an instance of JmxBuilder, you are now ready to invoke any of its builder nodes.

JMX Connectors

Remote connectivity is a crucial part of the JMX architecture. JmxBuilder facilitates the creation of connector servers and connector clients with
nimimal amount of coding.

Connector Server

JmxBuilder.connectoServer() supports the full Connector api syntax and will let you specify properties, override the URL, specify your own host,
etc.

Syntax

jmx.connectorServer (

protocol:"rmi",

host:"...",

port:1099,

url:"...",

properties: [
"authenticate":true|false,
"passwordFile":"...",
"accessFile":"...",
"sslEnabled" : true | false
// any valid connector property

Note that the serverConnector node will accept four ServerConnector property aliases (authenticate, passwordFile,accessFile, and ssIEnabled).
You can use these aliases or provided any of the RMI-supported properties.

Example - Connector Server (see correction below)

jmx.connectorServer (port: 9000) .start ()

The snippet above returns an RMI connector that will start listening on port 9000. By default, the builder will internally generate URL
"service:jmx:rmi:///jndi/rmi://llocalhost:9000/jmxrmi"

NOTE: Sadly you are as likely to get something like the following when attempting to run the previous snippet of code (example is incomplete, see
below):

Caught: java.io.IOException: Cannot bind to URL [rmi://localhost:9000/jmxrmi] :
javax.naming.ServiceUnavailableException [Root exception is java.rmi.ConnectException: Connection
refused to host: localhost; nested exception is:

java.net .ConnectException: Connection refused]

This occurs on Mac and Linux (CentOS 5) with Groovy 1.6 installed. Perhaps there were assumptions made about the configuration of the
/etc/hosts file?

NOTE: The correct example is shown below.
Connector Example (Corrected) - Connector Server

The example above does not create the RMI registry. So, in order to export, you have to first export the RMI object registry (make sure to import
java.rmi.registry.LocateRegistry).

import java.rmi.registry.LocateRegistry

LocateRegistry.createRegistry (9000)
jmx.connectorServer (port: 9000) .start ()

Connector Client
JmxBuilder.connectorClient() node lets you create JMX connector client object to connect to a JMX MBean Server.

Syntax

jmx.connectorClient (
protocol:"rmi",
host:"...",
port:1099,
url:"...",

Example - Client Connector
Creating a connector client can be done just as easily. With one line of code, you can create an instance of a JMX Connector Client as shown
below.

def client = jmx.connectorClient (port: 9000)
client.connect ()

You can then access the MBeanServerConnection associated with the connector using:

client.getMBeanServerConnection ()

JmxBuilder MBean Export

You can export a Java object or a Groovy object with minimal coding. JmxBuilder will even find and export dynamic Groovy methods
injected at runtime.

Implicit vs Explicit Descriptors

When using the builder, you can let JmxBuilder implicitly generate all of your MBean descriptor info. This is useful when you want to write
minimal code to quickly export your beans. You can also explicitly declare all descriptor info for the bean. This gives you total control on how you
want to describe every piece of information that you want to export for the underlying bean.

The JmxBuilder.export() Node

The JmxBuilder.export() node provides a container where all management entities to be exported to the MBeanServer are placed. You can
place one or more bean() or timer() nodes as children of the export() node. JmxBuilder will automatically batch export the entities described
by the nodes to the MBean server for management (see example below).

def beans = jmx.export {
bean (new Foo())
bean (new Bar())
bean (new SomeBar ())

In the code snippet above, JmxBuilder.export() will export three management beans to the MBean server.

JmxBuilder.export() Syntax

JmxBuilder.export() node supports the registrationPolicy parameter to specify how JmxBuilder will behave to resolve bean name collision during
MBean registration:

jmx.export (registrationPolicy: "replace|ignore |error"

replace - JmxBuilder.export() will replance any bean already registered with the MBean during export.
ignore - The bean being exported will be ignored if the same bean is already registered.
error - JmxBuilder.export() throws an error upon bean name collision during registration.

Integration with GroovyMBean Class
When you export an MBean to the MBeanServer, JmxBuilder will return an instance of GroovyMBean representing the management bean

that have been exported by the builder. Nodes such as bean() and timer() will return an instances of GroovyMBean when they are invoked. The
export() node returns an array of all of GroovyMBean[] representing all managed objects exported to the MBean server.

MBean Registration with JmxBuilder.bean()

This portion of this reference uses class RequestController to illustrate how to use JmxBuilder to export runtime management beans. The class
is for illustration purpose and can be a POJO or a Groovy bean.

® RequestController

public class RequestController {
// constructors
public RequestCopntroller ()
public RequestController (Map resource)

// attributes

public boolean isStarted() { ... }
public int getRequestCount(){ ... }
public int getResourceCount() { ... }
public void setRequestLimit (int limit) }
public int getRequestLimit() { ... }

// operations

public void start(){ ... }
public void stop(){ ... }
public void putResource(String name, Object resource){ ... }
public void makeRequest (String res) { ... }
public void makeRequest () { ... }
}
Implicit Export

As mentioned earlier, you can use JmxBuilder's flexible syntax to export any POJO/POGO with no descriptor. The builder can automatically
describe all aspects of the management beans using implicit defaults. These default values can easily be overridden as we'll see in this in the
next section.

The simplest way to export a POJO or POGO is listed below.

jmx.export {
bean (new RequestController (resource:"Hello World"))

}

What this does:

® First, the JmxBuilder.export() node will export an MBean to the MBeanServer representing the declared POJO instance.

® The builder will generate a default ObjectName for the MBean and all other MBean descriptor information.

* JmxBuilder will automatically export all declared attributes (MBean getter/setters), constructors, and operations on the instance.
® The exported attributes will have read-only visibility.

Remember, JmxBuilder.export() returns an array of GroovyMBean[] objects for all exported instances. So, once you call JmxBuilder.export(),
you have immediate access to the underlying MBean proxy (via GroovyMBean).

JConsole view of Exported Bean

Java Monitoring it Management Console - localhost: 9000 | [_E |
|# Qonnection Window Help = |
Overvisw | Memory | Threads | Classes | WM Summary | MBeans s
#123) Mimpbemeritation HMBeanlnfo
10 java.lang I
®1D) va.uti.logging “ET0
S Jnue budar Infa: | a~
-3 ExportedObject b jectiiame irmc-b\idu:tm-Exwtcﬁht,m*mﬂCm@ﬁlﬁﬂ
B [RequestController
|3 Managed Object RequestCentrolier
equestControllar
WCorstructor For class RequestController
I 156)
putResource = | L
oExists o -
e - descriptorType fbesn
e displayblame I:'Dcﬂawped Object RequestControber
qgetSkarted = +
QeRaquestCount T !met(omuler
qgetiflesourceCount persistPolcy freveer
- Motifications: isibility !1 J
Canstriboe-i: I 158)

JmxBuilder.bean() Syntax

The JmxBuilder.bean() node supports an extensive set of descriptors to describe your bean for management. The JMX MBeanServer uses these
descriptors to expose meta data about the bean exposed for management.

jmx.export {
bean (
target:bean instance,
name :ObjectName,
desc:"...",
attributes:"*",
attributes: []

defaultvalue:value,
writable:true|false,
editable:true|false,

1,
constructors:"*",

constructors: [
"Constructor Name":[],

attributes: ["AttrubuteNamel", "AttributeName2", ...,
attributes: [
"AttributeName":"*",
"AttributeName" : [
desc:"...",

onChange: {event-> // event handler}

"AttributeName n"]

"Constructor Name":["ParamTypel", "ParamType2, ...,ParamType n"],
"Constructor Name": [
desc:"...",
params: [
"ParamTypel" :"*",
"ParamType2": [desc:"...", name:"..."], ,
"ParamType n":[desc:"...", name:"..."]
]
]
1,
operations:"*",
operations: ["OperationNamel", "OperationName2", ..., "OperationNameN"],
operations: [
"OperationNamel":"*",
"OperationName2":["typel", "type2, "type3"]
"OperationName3": [
desc:"...",
params: [
"ParamTypel" :"*"
"ParamType2": [desc:"...", name:"..."], ,
"ParamType n":[desc:"...", name:"..."]
1,
onInvoked:{event-> JmxBuilder.send(event:"", to:"")}
]
1,
listeners: [
"ListenerNamel": [event: "...", from:ObjectName, call:{event->}],
"ListenerName2": [event: "...", from:ObjectName, call:&methodPointer]

Instead of describing the entire node, the following section explore each attribute separately.

Bean() Node - Specifying MBean ObjectName

Using the bean() node descriptors, you can specify your own MBean ObjectName.

def ctrl = new RequestController (resource:"Hello World")
def beans = jmx.export {
bean (target:ctrl, name:"jmx.tutorial:type=Object")

}

The ObjectName can be specified as a String or an instance of the ObjectName.

Bean() Node - Attribute Export

JMX attributes are the setters and getters on the underlying bean. The JmxBuilder.bean() node provides several ways to flexibly describe and
export MBean attributes. You can combine them however you want to achieve any level of attribute visibility. Let's take a look.

Export All Attributes with Wildcard "*"

The following code snippet will describe and export all attributes on the bean as read-only. JmxBuilder will use default values to describe
the attributes that exported for management.

def objName = new ObjectName ("jmx.tutorial:type=0Object")
def beans = jmx.export {

bean (target: new RequestController (),

name: objName,

attributes: "*")

Export Attribute List

JmxBuilder will let you specify a list of attributes to export.

def objName = new ObjectName ("jmx.tutorial:type=0Object")
def beans = jmx.export {
bean (
target: new RequestController (),
name: objName,
attributes: ["Resource", "RequestCount"]

In the snippet above, only the "Resource” and "RequestCount” attributes will be exported. Again, since no descriptors are provided,
JmxBuilder will use sensible defaults to describe the exported attributes.

Export Attribute with Explicit Descriptors

One of the strengths of JmxBuilder is its flexibility in describing MBean. With the builder you can describe all aspects of the MBeans attribute that
you want to export to the MBeanServer (see syntax above).

def objName = new ObjectName ("jmx.tutorial:type=0Object")
def beans = jmx.export {
bean (
target: new RequestController (),
name: objName,
attributes: [
"Resource": [desc: "The resource to request.", readable: true, writeable: true,
defaultvalue:"Hello"],
"RequestCount":"*"

1

In the snippet above, attribute "Resource" is fully-described using all supported descriptors (i.e. desc, readable, writable, defaultValue) for a
JMX attribute. However, we use the wildcard to describe attribute RequestCount and it will be exported and described using defaults.

Bean() Node - Constructor Export

JmxBuilder supports the explicit description and export of constructors defined in the underlying bean. There are several options available
when exporting constructors. You can combine them however you want to achieve the desired level of manageability.

Export all Constructors with "*"

You can use the builder's special """ notation to *export all constructors declared on the underlying bean. The builder will use default values
to describe the MBean constructors.

def objName = new ObjectName ("jmx.tutorial:type=0Object")
def beans = jmx.export {
bean (
target: new RequestController (),
name: objName,
constructors: "*"

Export Constructors using Parameter Descriptor

JmxBuilder lets you target specific constructor to export by describing the parameter signature. This is useful when you have several
constructors with different parameter signature and you want to export specific constructors.

def objName = new ObjectName ("jmx.tutorial:type=0Object")
def beans = jmx.export {
bean (
target: new RequestController (),
name: objName,
constructors: [
"RequestController":["Object"]

Here, JmxBuilder will export a constructor that takes one parameter of type "Object". Again, JmxBuilder will use default values to fill in the
description of the constructor and the parameters.

Export Constructor with Explicit Descriptors

JmxBuilder allows you to fully-describe the constructor that you want to target for export (see syntax above).

def objName = new ObjectName ("jmx.tutorial:type=0Object")
def beans = jmx.export {

bean (target: new RequestController (), name: objName,
constructors: [
"RequestController": [
desc: "Constructor takes param",
params: ["Object" : [name:"Resource", desc:"Resource for controller"]]

In the code above, JmxBuilder will target a constructor that takes one parameter for export to the MBeanServer. Notice how the constructor can
be fully-described using all optional descriptor keys including parameter descriptors.

Bean() Node - Operation Export

Similar to constructors, JmxBuilder supports the description and export of MBean operations using a flexible notation (see above for syntax). You
can combine these notations however you want to achieve the level of operation manageability desired.

Export All Operations with "*"

You can use the builder's special """ notation to *export all operations defined on the bean to be exposed for management. The builder will
use default descriptor values for the operations being exported.

def objName = new ObjectName ("jmx.tutorial:type=0Object")
def beans = jmx.export {
bean (
target: new RequestController (),
name: objName,
operations: "*!

In this snippet, JmxBuilder will export all bean operations and will use default values to describe them in the MBeanServer.

Export Operation List

JmxBuilder has a shorthand notation that lets you quickly target operations to be exported by providing a list of methods to export.

def objName = new ObjectName ("jmx.tutorial:type=0Object")
def beans = jmx.export {
bean (
target: new RequestController (),
name: objName,
operations: ["start", "stop"]

In the snippet above, the builder will only export methods start() and stop(). All other methods will be ignored. JmxBuilder will use default
descriptor values to describe the operations being exported.

Export Operations by Signature

Using JmxBuilder, you can target methods to export for management using the methods's parameter signature. This is useful when you want to
distinguish methods with the same name that you want to export (i.e. stop() instead of stop(boolean)).

def objName = new ObjectName ("jmx.tutorial:type=0Object")
def beans = jmx.export {
bean (
target: new RequestController (),
name: objName,
operations: [
"makeRequest": ["String"]

1

In the snipet above, JmxBuilder would select method makeRequest(String) to be exported instead of the other version makeRequest() which
takes no parameter. In this shorthand context, the signature is specified as a list of type (i.e. "String").

Export Operations with Explicit Descriptors

JmxBuilder supports detailed descriptors for bean operations. You can supply deep descriptor info about any operation on your bean including a
name, description, method parameters, parameter type, and parameter description.

def objName = new ObjectName ("jmx.tutorial:type=0Object")
def beans = jmx.export {

bean (target: new RequestController (), name: objName,
operations: [

"start": [desc:"Starts request controller"],
"stop": [desc:"Stops the request controller"],
"setResource": [params: ["Object" 1],
"makeRequest": [

desc: "Executes the request.",

params: [

"String": [name: "Resource",desc:"The resource to request"]

The snippet above shows all of the ways JmxBuilder allows you to describe an operation targeted for management:
® Operations start() and stop() are described by the "desc" key (this is enough since there are no params).

® |n operation setResource() uses of a shorthand version of params: to describe the parameters for the method.
* makeRequest() uses the the extended descriptor syntax to describe all aspects of the operation.

Embedding Descriptor

JmxBuilder supports the ability to embed descriptors directly in your Groovy class. So, instead of wrapping your description around the
declared object (as we've seen here), you can ebmed your JMX descriptors directly in your class.

® RequestControllerGroovy *

public class RequestController {
// attributes
boolean started
int requestCount
int resourceCount
int requestLimit
Map resources

// operations

void start(){ ... }
void stop(){ ... }
void putResource(String name, Object resource){ ... }
void makeRequest (String res) { ... }
void makeRequest () { ... }

static descriptor = [
name: "jmx.builder:type=EmbeddedObject",
operations: ["start", "stop", "putResource"]
attributes:"*"

// export
jmx . export (
bean (new RequestControllerGroovy ())

There are two things going on in the code above:

1. Groovy class RequestControllerGroovy is defined and includes a static descriptor member. That member is used to declare a
JmxBuilder descriptor to describe member of the class targeted for JMX export.
2. The second part of the code shows how to use JmxBuilder to export that class for management.

Timer Export
JMX standards mandate that the implementation of the APl makes available a timer service. Since JMX is a component-based architecture,

timers provide an excellent signaling mechanism to communicate to registered listener components in the MBeanServer. JmxBuilder supports the
creation and export of timers using the same easy syntax we've seen so far.

Timer Node Syntax

timer (
name :ObjectName,
event:"...",
message:"...",
data:datavValue
startDate: "now" |dateValue
period:"99d"|"99h" | "99m" | "99s" |99
occurences: long

The timer() node supports several attributes:

name: - Required The qualified JMX ObjectName instance (or String) for the timer.

event: - The JMX event type string that will be broadcast with every timing signal (default "jmx.builder.event™).

message: - An optional string value that can be sent to listneners.

data: - An optional object that can be sent to listeners of timing signal.

startDate: - When to start timer. Set of valid values ["now", date object]. Default is "now"

period: - A timer's period expressed as either a number of millisecond or time unit (day, hour, minute, second). See description below.
occurences: - A number indicating the number of time to repeat timer. Default is forever.

Exporting a Timer

def timer = jmx.timer (name: "jmx.builder:type=Timer", event: "heartbeat", period: "1s")
timer.start()

This snippet above describes, creates, and exports a standard JMX Timer component. Here, the timer() node returns a GroovyMBean that
represents the registered timer MBean in the MBeanServer.

An alternative way of exporting timers is within the JmxBuilder.export() node.

def beans = jmx.export {
timer (name: "jmx.builder:type=Timerl", event: "event.signal", period: "1ls")
timer (name: "jmx.builder:type=Timer2", event: "event.log", period: "ls")

}

beans [0] .start ()

beans [1] .start ()

Timer Period

The timer() node supports a flexible notation for specifying the timer period values. You can specify the time in second, minutes, hour, and
day. The default is millisecond.

timer(period: 100) = 100 millisecond
timer(period: "1s") = 1 second
timer(period: "1m") = 1 minute
timer(period: "1h") = 1 hour
timer(period: "1d") = 1 day

The node will automatically translate.

JmxBuilder and Events

An integral part of JMX is its event model. Registered management beans can communicate with each other by broadcasting events on the
MBeanServer's event bus. JmxBuilder provides several ways to easily listen and react to events broadcasted on the MBeanServer's event

bus. Developers can capture any event on the bus or throw their own to be consumed by other components registered on the MBeanServer.

Event Handling Closures

JmxBuilder leverages Groovy's use of closures to provide simple, yet elegant, mean of reacting to JMX events. JmxBuilder supports two closure
signatures:

Parameterless

callback = {->
// event handling code here.

}

JmxBuilder executes the closure and passes no information about the event that was captured on the bus.

With Event Parameter

callback = {event ->
// event handling code

}

JmxBuilder will pass an "event" object to the closure using this format. The event object contains information about the event was
intercepted so that it can be handled by the handler. The parameter will contain different set of info depending on the event that was captured.

Handling Attribute onChange Event

When describing attributes (see bean() node section above), you can provide a closure (or method pointer) for callback to be executed
when the value of the attribute is updated on the exported MBean. This gives developers an opportunity to listen to and react to state changes
on the MBean.

jmx.export {

bean (
target: new RequestController (), name: "jmx.tutorial:type=Object",
attributes: [
"Resource": [
readable: true, writeable: true,

onChange:{e ->
println e.oldvalue
println e.newValue

The sample snippet above shows how to specify an "onChange" callback closure when describing MBean attributes. In this sample code,
whenever attribute "Resource" is updated via the exported MBean, the onChange event will be executed.

Attribute onChange Event Object
When handling the attribute onChange event, the handler closure will receive an event object with the following info:

event.oldValue - the previous attribute value before the change event.

event.newValue - the new value of the attribute after the change.

event.attribute - the name of the attribute on which the event occured.
event.attributeType - the data type of the attribute that causes the event.
event.sequenceNumber - a numeric value representing the sequence number of event.
event.timeStamp - a time stamp for the event occurence.

Handling Operation onCall Event

Similar to mbean attributes, JmxBuilder affords developers the ability to listen for operation invokation on an MBean registered in the

MBeaServer. JmxBuilder accepts a callback closure that will be executed after the MBean method has invoked.

class EventHandler {
void handleStart (e) {
println e
}
}

def handler = new EventHandler ()

def beans = jmx.export {
bean (target: new RequestController (), name: "jmx.tutorial:type=Object",
operations: [
"start": [
desc: "Starts request controller"
onCall:handler. &handleStart

The snippet above shows how to declare an "onCall" closure to be used as listener when operation "start()" is invoked on the MBean. This
sample uses the method pointer syntax to illustrate the versatility of JmxBuilder.

Operation onCall Event Object
When handling the operation onCall event, the callback closure will receive an event object with the following info:

event.event - the event type string that was broadcasted.

event.source - The object on which the method was invoked.

event.data - the data type of the attribute that causes the event.
event.sequenceNumber - a numeric value representing the sequence number of event.
event.timeStamp - a time stamp for the event occurence.

Listener MBean

When you export an MBean with the bean() node, you can define events the MBean can listen and react to. The bean() node provides a
"listeners:" attribute that lets you define event listeners that your bean can react to.

def beans = jmx.export {
timer (name: "jmx.builder:type=Timer", event: "heartbeat", period: "1s").start()
bean (target: new RequestController (), name: "jmx.tutorial:type=Object",
operations: "*",
listeners: [
heartbeat: [
from: "jmx.builder:type=Timer",
call:{e ->
println e

}

In the sample above, we see the syntax for adding listeners to an exported MBean.
® Fist, a timer is exported and started.
® Then an MBean is declared that will listen to the timer event and do something meaningful.
® The "heartbeat:" name is arbitrary and has no correlation to the timer declared above.
® The source of the event is specified using the "from:" attribute.

You can also specify an event type you are interested in receiving from a broadcaster (since a broadcaster can be emitting multiple events).

Listening to JMX Events

In some cases, you will want to create stand-alone event listensers (not attached to exported MBeans). JmxBuilder provides the Listener() node
to let you create JMX listeners that can listen to MBeanServer events. This is useful when creating JMX client applications to monitor/manage
JMX agents on remote JMX MBeanServers.

Listener Node Syntax

jmx.listener (
event: "...",
from:"object name"|ObjectName,
call:{event->}

Here is the description of the lisetener() node attributes:
® event: An optional string that identifies the JMX event type to listen for.
® from (required): The JMX ObjectName of the component to listen to. This can be specified as a string or an instance of ObjectName
® call: The closure to execute when the event is captured. This can also be specified as a Groovy method pointer.

Here is an example of JmxBuilder's listener node:

jmx.timer (name: "jmx.builder:type=Timer", period: "1s").start()

jmx.listener (
from: "jmx.builder:type=Timer",
call: {e ->
println "beep..."

}

This example shows how you can use a stand alone listener (outside of an MBean export). Here, we export a timer with a 1 second resolution.
Then, we specify a listener to that timer that will print "beep" every second.

Emitting JMX Events

JmxBuilder provides the tools needed to broadcast your own events on the MBeanServer's event bus. There are no restrictions on the event
type you can broadcast. You simply declare your emitter and the event type that you want to send, then broadcast your event at any time. Any
registered component in the MBeanServer can register themselves to listen to your events.

Emitter Syntax

jmx.emitter (name:"Object:Name", event:"type")

The attributes for the node Emitter() can be summarized as follows:
® name: an optional JMX ObjectName used to register your emitter in the MBeanServer. Default is

jmx.builder:type=Emitter,name=Emitter@OBJECT_HASH_VALUE
® event: an option string value that describes the JMX event type. Default is "jmx.builder.event.emitter".

Declare the Emitter

def emitter = jmx.emitter()

The snippet declares the emitter using implicit descriptor syntax. JmxBuilder will do the followings:
® Create and register an emitter MBean with a default ObjectName.
® Setup a default event type with value "jmx.builder.event.emitter".
® Return a GroovyMBean representing the emitter.

As with other nodes in the builder, you can override all keys in the emitter() node. You can specify the ObjectName and the event type.

Broadcast Event

Once you have declared your emitter, you can broadcast your event.

emitter.send ()

The sample above shows the emitter sending an event, once it has been declared. Any JMX component registered in the MBeanServer can
register to receive message from this emitter.

Sending Event Objects

You can optionally pass data to the receiver when you send the message.

emitter.send ("Hello!")

If you use an event listener closure (see above) that accpets a parameter, you can access that value.

Groovy Categories

There are many situations where you might find that it would be useful if a class not under your control had additional methods that you define. In
order to enable this capability, Groovy implements a feature borrowed from Objective-C , called Categories. There are a few categories that are
included in the system for adding functionality to classes that make them more usable within the Groovy environment.

® DOMCategory
® ServletCategory

The first category allows you to treat DOM objects as arrays and maps so that you can use them in conjunction with the Groovy path expression
language and treat them like JavaBeans. Here is an example from the tests of using the DOMCategory:

DOMTest.groovy
import groovy.xml.*
def html = DOMBuilder.newInstance().html {
head
title (class:'mytitle', 'Test')
}
body {
p (class:'mystyle', 'This is a test.')
}
}
use (groovy.xml.dom.DOMCategory) {
assert html.head.title.text () == 'Test'
assert html.body.p.text() == 'This is a test.'
assert html.find{ it.tagName == 'body' }.tagName == 'body'
assert html.getElementsByTagName('*').grep{ it.'@class' }.size() == 2

}

try {
html.head

} catch(MissingPropertyException mpe) {
println "Categories wear off"

}

As you can see here we are treating DOM objects just as if they were JavaBeans and are accessing them with GPath. The ServletCategory is
similarly used when we want to treat the attributes of Servlet API objects as if they were properties since they don't follow the typical conventions
for JavaBeans or Maps either. In the GroovyServlet that lets you use scripts as servlets we call GroovyCategorySupport from Java in order to
make it possible to use property accessors against the request:

GroovyServlet.java

Closure closure = new Closure (gse) {
public Object call()
try {
return ((GroovyScriptEngine) getDelegate()) .run(scriptUri, binding);
} catch (ResourceException e)
throw new RuntimeException(e) ;
} catch (ScriptException e) ({
throw new RuntimeException(e) ;
}
}
}i

GroovyCategorySupport .use (ServletCategory.class, closure);

This allows users to access things like Session attributes and request Attributes by name instead of through the API within their Groovy servlet
scripts. For example, without this you would have to do:

if (session.getAttribute("count") == null) then session.setAttribute ("count", 1);

With this you can say it more tersely as:

if (session.count == null) session.count = 1;

In order to create your own Categories and extend classes yourself you'll need to understand what the "use" keyword expects to be defined within
the class you pass to it. To add a method to a class T, simply define a new class with a static method whose first parameter is of type T. Here is a
simple example from the tests:

CategoryTest.groovy

class StringCategory {
static String lower (String string) {
return string.toLowerCase ()

}

use (StringCategory) ({
assert "test" == "TeSt".lower()

}

This code will print out the string "test". This facility is extremely powerful and essentially lets you change the way any class in the system works
when it is called from Groovy code. Note though that you can't add methods to classes, pass them to Java code, and expect the Java code to be
able to call them. Since most people use statically typed Java with little reflection | doubt this case would come up much anyway.

Here is an example of using this as an end user in order to add methods to Apple's own NSDictionary and NSArray class in order to manipulate
their Cocoa objects as if they were native Groovy objects:

bookmarks.groovy

#!/Users/sam/bin/groovy

// Put /System/Library/Java in your CLASSPATH
import groovy.xml.*;

import groovy.xml.dom.*;

import java.io.*;

import com.apple.cocoa.foundation.*;

class PropertyListCategory {
static Object get (NSDictionary dictionary, String key) {
return dictionary.objectForKey (key) ;
}
static Object getAt (NSArray array, int i) {
return array.objectAtIndex(i);
}
static void each(NSArray array, Closure closure)
for (i in 0..array.count ()-1) {
closure.call (array[i]) ;

}

filename = "${System.getProperty ("user.home") }/Library/Safari/Bookmarks.plist";

data = new NSData(new File (filename)) ;

errorString = new Stringl[1l];

format = new int[1];

plist = NSPropertyListSerialization.propertyListFromData (data,
NSPropertyListSerialization.PropertyListImmutable, format, errorString);

if (errorStringl[0])
println "Error: s{errorstring [0] } ",
System.exit (1) ;

def getURLs (NSArray array, list) {
array.each {
getURLs (it, list);

}

def getURLs (NSDictionary dict, list)
if (dict.Children != null) getURLs(dict.Children, list);
if (dict.URIDictionary != null) {
list.add([title:dict.URIDictionary.title, url:dict.URLString]) ;

def getURLs (NSDictionary dict) {
use (PropertyListCategory) {
def list = [];
getURLs (dict, list);
return list;

println getURLs (plist) ;

Notice how we can even create Category classes in Groovy code. They essentially look just like built-in ones within Defaul tGroovyMethods.
Define them by creating a static method that takes the type you want to extend, then the additional parameters that the new method will take.

Advanced Usage

A category needs not to be directly exposed to the user code, the following will also do:

Closure, Category and JPA example

class JPACategory{

// Let's enhance JPA EntityManager without getting into the JSR committee

static void persistAll (EntityManager em , Object[] entities) { //add an interface to save all

entities?.each { em.persist (it) }
}
}

def transactionContext = {

EntityManager em, Closure c ->
def tx = em.transaction
try {

tx.begin ()

use (JPACategory) {

c()

}

tx.commit ()
} catch (e) {

tx.rollback ()
} finally {

//cleanup your resource here

// user code, they always forget to close resource in exception,
rely on them.
EntityManager em; //probably injected
transactionContext (em) {

em.persistAll (objl, obj2, obj3)

// let's do some logics here to make the example sensible
em.persistAll (obj2, obj4, objé

}

Groovy CLI

Using Groovy from the command line

some even forget to commit,

The Groovy command line (groovy or groovy.bat) is the easiest way to start using the Groovy Language.

let's not

$Sgroovy -help
usage: groovy

-a,--autosplit <splitPattern> automatically split current line

(defaults to '\s')

-c,--encoding <charset> specify the encoding of the files

-e <scripts> specify a command line script

-h,--help usage information

-1 <extension> modify files in place

-1 <port> listen on a port and process inbound lines
-n process files line by line

-p process files line by line and print result
-v,--version display the Groovy and JVM versions

If yo

u have a groovy script, you can edit and run the script immediately.

$ cat test.groovy
println 'Hello Bonson'

$ groovy test.groovy
Hello Bonson

Here is an example with your own command line arguments.

$ cat test.groovy
println 'Hello ' + args[0]

$ groovy test.groovy Jeeves
Hello Jeeves

However you can also run such a simple groovy program by providing the script in the command line arguments.

$ groovy -e "println 'Hello Bob'"
Hello Bob

This may not look useful, but it fits in with the UNIX tradition of chaining simple programs together to build powerful commands. Tools like perl,
sed, awk and grep do these jobs very well. But many users have limited experience with these tools' arcane syntax and will be more familiar with
Java and therefore Groovy.

$ grep -i “groov /usr/share/dict/words | groovy -e 'print System.in.text.toUpperCase()'
GROOVE

GROOVELESS

GROOVELIKE

GROOVER

GROOVERHEAD

GROOVINESS

GROOVING

GROOVY

Because looping through STDIN or input files tends to be a common thing to do, groovy (and ruby, perl etc) provide shortcuts for this. currently
broken, groovy not flushing output (still so 0609277?)

-n will loop through each line of the input, and provide it to your script in the line variable.

grep -i “groov /usr/share/dict/words | groovy -n -e 'println line.toUpperCase()'

If we definitely want to print the output of each line we can use -p and shorten it to

grep -i “groov /usr/share/dict/words | groovy -p -e 'line.toUpperCase()'

We can use the looping constructs along with -i, which writes the output back to the original files (and creates a backup copy with the given
extension). And wreak havoc on our local file system, with wide-scale search and replace.

groovy -p -i .bak -e '(line =~ "<h\\d>(.*)</h\\d>").replaceAll ("$1")' ~/Desktop/cooluri.html

TIP: Never ever use the option -i without a backup extension.

Or to really get into groovy (literally)

find . -name *.java | xargs groovy -p -i -e '(line =~ "@author James Strachan").replaceAll ("@author
Bobby Bonson") '

Additionally you have access to the line number in the current file you are reading via the variable count. This can be used for a number of
convenient groovy one-liners.

Let us assume you want to prefix every line in a file with the line number. Doing this requires next to no work in Groovy (we additionally create a
copy of the original file with the extension .bak).

groovy -pi .bak -e "count + ': ' + line"

Or let us create a grep-like command that prints the line number where it found matching strings for a regular expression.

groovy -p -e "if (line =~ /groovy/)count + ': ' + line"

Print the first 50 lines of all files:

groovy -p -e "if (count < 50) line"

until one file is longer than 50 lines:

groovy -p -e "if (count >= 50)System.exit (0) ;line"

Add a Groovy-Shebang (the string '#!/usr/bin/groovy') to all Groovy files:

groovy -1i .bak -pe "if (count == 1) println '#!/usr/bin/groovy'" *.groovy

Another very convenient option is -a, which splits the current input line into the array split. By default the split pattern is " " (one space). The option
-a optionally takes another split pattern which is then used instead.

Print processes owned by root:

ps aux|groovy -a -ne "if (split[0] =~ 'root')println split[10..-1]"

Print all logins from /etc/passwd that are not commented:

groovy -a':' -ne "if (! (split[0] =~ /*#/))println split[0]" /etc/passwd

Add the first and the penultimate column of a file:

groovy -a -pe "split[0].toInteger()+split[-2].toInteger ()" accounts.txt

For more examples or inspiration browse through the search results for Perl One Liners

listen mode

Another groovy command line option is the ability to startup groovy in listen mode, which will attach groovy to a TCP port on your machine (-l
<port> with a default port of 1960).

For each connection that is made to this port, groovy executes the supplied script on a line by line basis.

This oneliner will reverse every line that is thrown at it, try telnet to your machine on port 1960 to interact with this script.

groovy -1 -e "println line.reverse()"

you can combine the -p option from earlier, to automatically print the result of your script

The following one liner is equivalent to the one liner immediately above.

groovy -1 -p -e "line.reverse()"

More examples of useful command line scripts in SVN

Groovy Console

The Groovy Swing Console allows a user to enter and run Groovy scripts. This page documents the features of this user interface.

Basics

The Groovy Console:

@) GroowConsole (= | E i
File Edit View History Script Help
. — L h =
EEEe|dDDitwa €26

d = 'dog'

£ = 'fox!

println "The quick brown $£ jumped over the lazv 47 J-‘nput

println "Hello, it's §{new Date()}" Arao

groowy> d = 'dog' :

groovy> £ = 'fox'

groovys println "The quick browm $#£f jumped owver the lazy 4"

groovys println "Hello, it's #{new Datei)}" =
Outout

The guick browm fox jumped owver the la=zy dog Arag

Hello, it's Wed CQet 31 17:17:04 EST 2007 g

Execution complete, Result was null, i 4:36

. The Console has an input area and an output area.

. You type a Groovy script in the input area.

. When you select "Run" from the "Actions" menu, the console compiles the script and runs it.
. Anything that would normally be printed on System.out is printed in the output area.

. If the script returns a non-null result, that result is printed.

A wWN -

Features

Running Scripts

Handy tips for running scripts:

® Ctrl+Enter and Ctrl+R are both shortcut keys for "Run Script".

® If you highight just part of the text in the input area, then Groovy runs just that text.

® The result of a script is the the value of the last expression executed.

® You can turn the System.out capture on and off by selecting "Capture System.out" from the "Actions" menu

Editting Files

You can open any text file, edit it, run it (as a Groovy Script) and then save it again when you are finished.
® Select File -> Open (shortcut key ctrl+O) to open a file
® Select File -> Save (shortcut key ctrl+S) to save a file

® Select File -> New File (shortcut key ctrl+Q) to start again with a blank
input area

History and results

® You can pop-up a gui inspector on the last (non-null) result by selecting "Inspect Last" from the "Actions" menu. The inspector is a
convenient way to view lists and maps.

The console remembers the last ten script runs. You can scroll back and forth through the history by selecting "Next" and "Previous" from
the "Edit" menu. Ctrl-N and ctrl-P are convenient shortcut keys.
® The last (non-null) result is bound to a variable named '_' (an underscore).

® The last result (null and non-null) for every run in the history is bound into a list variable named '__' (two underscores). The result of the
lastrunis _[-1], the result of the second to last runis ___[-2] and so forth.
And more

You can attempt to interrupt a long running task by clicking the "interrupt" button on the small dialog box that pops up when a script is
executing.

You can change the font size by selecting "Smaller Font" or "Larger Font" from the "Actions menu"

The console can be run as an Applet thanks to groovy.ui.ConsoleApplet

Code is auto indented when you hit return

You can drag'n drop a Groovy script over the text area to open a file

You can modify the classpath with which the script in the console is being run by adding a new JAR or a directory to the classpath from
the Script menu

® Error hyperlinking from the output area when a compilation error is expected or when an exception is thrown

Embedding the Console

To embed a Swing console in your application, simply create the Console object,
load some variables, and then launch it. The console can be embedded in either Java or Groovy code.
The Java code for this is:

import groovy.ui.Console;

Console console = new Console() ;
console.setVariable ("varl", getValueOfvarl());
console.setVariable ("var2", getValueOfvar2());
console.run() ;

Once the console is launched, you can use the variable values in Groovy code.

An example of how to embed either the GroovyConsole or GroovyShell in a Spring Web application can be found at Embedding a Groovy
Console in a Java Server Application

Visualizing script output results

You can customize the way script output results are visualized. Let's see how we can customize this. For example, viewing a map result would
show something like this:

(&) 00 Cmow(:onsote
DIolE)[5]e] 4100 (n%) (e

def jazz = [trumpet: "Louis Armstrong”, saxophone: "Charlie Parker"]

["trumpet":"Louis Armstrong”, "saxophone":"Charlie Parker']

Execution complete. 1:69

What you see here is the usual textual representation of a Map. But, what if we enabled custom visualization of certain results? The Swing
console allows you to do just that. First of all, you have to ensure that the visualization option is ticked: View -> Visualize Script Results — for the

record, all settings of the Groovy Console are stored and remembered thanks to the Preference API. There are a few result visualizations built-in:
if the script returns a java.awt.Image, a javax.swing.lcon, or a java.awt.Component with no parent, the object is displayed instead of its toString()
representation. Otherwise, everything else is still just represented as text. Now, create the following Groovy script in
~/.groovy/OutputTransforms.groovy:

import javax.swing.*

transforms << { result ->
if (result instanceof Map)

def table = new JTable(

result.collect{ k, v ->

[k, v?.inspect()] as Object[]

} as Object[]I],

['Key', 'Value'l as Object|[])
table.preferredvViewportSize = table.preferredSize
return new JScrollPane (table)

The Groovy Swing console will execute that script on startup, injecting a transforms list in the binding of the script, so that you can add your own
script results representations. In our case, we transform the Map into a nice-looking Swing JTable. And we're now able to visualize maps in a
friendly and attractive fashion, as the screenshot below shows:

e

DIEE[D]e [«]Dln)] %] =l [E]

def jazz = [trumpet: "Louis Armstrong”, saxophone: "Charlie Parker"]|

Key | Value
trumpet “Louis Armstrong”
saxophone “Charlie Parker”

Execution complete.

AST browser

In Groovy 1.7 (not yet released), it'll be possible to visualize the AST (Abstract Syntax Tree) representing the currently edited script, as shown by
the screenshot below. This is particularly handy when you want to develop AST transformations.

Prase: | Semantic Amsysis e

e

v [BlockSapement Flarg Wl Twps
b ol Expeession St mint gl:l'.l!ﬁél]'l'iﬂime l]dl;fl l:l:ljiﬂil;.;l.tfr'l}':l'l.ﬂﬂ Elill'.“ﬂl'llli:lkl‘:l:; n ::l';l ik
I I Evpayi Ka oMk coemureirb e e
L ﬂ EJPf.SSIMmI'II‘I'ﬁ coluTnNUTERr 5 Nt
T @ Espressionduane men dyramicTyped rue oo
L -l:leﬂ.,'rilljﬂ - |H|BIM - il\“lmp{!l‘ﬂl‘“!l’ _i{l tf inSiatoC onba i falsi booleam
* Vanahie - calBamboo - java. lang Diject Il uprastian "'-_'" Depeeision
¥ il Orerebapression :g:fxﬁ:m“' ;‘ ::
¥ I BlockStcement i Humisa 7 it
¥ [Evprassiontis wmant 2 me url bring
v il Daclaiation - e = niw @ ALLRLGS b Tyl s larwy. Objace Clads hita
. w » uperExpression false booein
il il SIFing
" ?Tf:ﬂiﬂ':r;m?rm thisExgression false boolean
ok fava.lang. Chject Class boste

[CEanngE xpris sion
= Consmanl - | java.lang. S
= Congrant - | javaJarg.swic
® COnSTant - aonion? | jaa, e
u CanARanr - ¢ e lang, teimd
* Narisble - hamboofloai - jas
= Yariabde - action : pawa.lang®
& & MethadCalEspressicn

] —— I
===y an

Groovy Math

Groovy supports access to all Java math classes and operations. However, in order to make scripting math operations as intuitive as possible to
the end user, the groovy math model supports a 'least surprising' approach to literal math operations for script programmers. To do this, groovy
uses exact, or decimal math for default calculations.

This means that user computations like:

1.1+ 0.1 == 1.2

will return true rather than false (using float or double types in Java returns a result of 1.2000000000000002).

Numeric literals

To support the 'least surprising' approach, groovy literals with decimal points are instantiated as java.math.BigDecimal types rather than binary
floating point types (Float, Double). Float and Double types can of course be created explicitly or via the use of a suffix (see table below).
Exponential notation is supported for decimal types (BigDecimal, Double Float) with or without a signed

exponent (1.23e-23). Hexadecimal and octal literals are also supported. Hexadecimal numbers are specified

in the typical format of "0x" followed by hex digits (e.g. 0x77).

Integral numeric literals (those without a decimal point) which begin with a 0 are treated as octal. Both octal and hexadecimal literals may have an
integral suffix (G,L,l). Integral numeric literals without a suffix will be the smallest type into which the value will fit (Integer, Long, or Biglnteger).
See the numeric literal grammar at the end of this page for more details on syntax.

Type Suffix
Biginteger G
Long L
Integer |
BigDecimal = G
Double D
Float F

Examples:

assert 42I == new Integer("42");

assert 123L == new Long("123");

assert 2147483648 == new Long("2147483648"); //Long type used, value too large for an Integer
assert 456G == new java.math.BigInteger ("456");

assert 123.45 == new java.math.BigDecimal ("123.45"); //default BigDecimal type used

assert 1.200065D == new Double("1.200065") ;

assert 1.234F == new Float("1.234");

assert 1.23E23D == new Double("1.23E23");

Math operations

While the default behavior is to use decimal math, no attempt is made to preserve this if a binary floating point number is introduced into an
expression (i.e. groovy never automatically promotes a binary floating point number to a BigDecimal). This is done for two reasons: First, doing so
would imply a level of exactness to a result that is not guaranteed to be exact, and secondly, performance is slightly better under binary floating
point math, so once it is introduced it is kept.

Finally, Groovy's math implementation is as close as practical to the Java 1.5 BigDecimal math model which implements precision based floating
point decimal math (ANSI X3.274-1996 and ANSI X3.274-1996/AM 1-2000
(section 7.4).

Therefore, binary operations involving subclasses of java.lang.Number automatically convert their arguments according to the following matrix
(except for division, which is discussed below).

BigDecimal @ Biginteger Double Float Long Integer
BigDecimal ' BigDecimal @ BigDecimal = Double Double ' BigDecimal @ BigDecimal

Biginteger = BigDecimal @ Biginteger ' Double @ Double @ Biginteger @ Biginteger

Double Double Double Double = Double Double Double
Float Double Double Double ' Double Double Double
Long BigDecimal | Biginteger ' Double | Double @ Long Long

Integer BigDecimal | Biginteger ' Double | Double @ Long Integer

Note - Byte, Character, and Short arguments are considered to be Integer types for the purposes of this matrix.

Division

The division operators "/" and "/=" produce a Double result if either operand is either Float or Double and a BigDecimal result otherwise (both
operands are any combination of Integer, Long, Biglnteger, or BigDecimal). BigDecimal Division is performed as follows:

BigDecimal.divide (BigDecimal right, <scale>, BigDecimal.ROUND_HALF_UP)

where <scale> is MAX(this.scale(), right.scale(), 10).Finally, the resulting BigDecimal is normalized (trailing zeros are removed).
For example:

1/2 == new java.math.BigDecimal ("0.5") ;
1/3 == new java.math.BigDecimal ("0.3333333333");
2/3 == new java.math.BigDecimal ("0.6666666667") ;

Integer division can be performed on the integral types by casting the result of the division. For example:

assert (int) (3/2) == 1I;

Future versions of Groovy may support an integer division operator such as div and/or +.

Power Operator

Since groovy 1.0 beta 10 release, the power operator "**" is supported for math calculation.
For example, 5**3 equals to Math.pow(5,3).

Java code:

//y =2x"3 +5x%x"2 -3 x+ 2
def x = 5.0;
def y = 2.0 * Math.pow(x,3) + 5.0 * Math.pow(x,2) - 3.0*x + 2.0

Groovy code:

// y =2 x"3 +5x%x™"2 -3 x+ 2
def x = 5.0;
def y = 2.0%x**3 4+ 5.0*x**2 - 3.0*x + 2.0

More In-depth Information

Groovy and Java Math is explained in more depth in these pages:
Integer Math
Decimal Math

Floating Point Math

Numeric literal grammar

IntegerLiteral:
BaselOIntegerLiteral
HexIntegerLiteral
OctalIntegerLiteral

BaselOIntegerLiteral:
BaselONumeral IntegerTypeSuffix (optional)

HexIntegerLiteral:
HexNumeral IntegerTypeSuffix (optional)

OctalIntegerLiteral:
OctalNumeral IntegerTypeSuffix (optional)

IntegerTypeSuffix: one of
iIlLggG

BaselONumeral:
0
NonZeroDigit Digits (optional)

Digits:

Digit

Digits Digit
Digit:

0

NonZeroDigit

NonZeroDigit: one of

\123456789

HexNumeral:
0 x HexDigits
0 X HexDigits

HexDigits:
HexDigit
HexDigit HexDigits

HexDigit: one of
0123456789 abcdefABCDETF

OctalNumeral :
0 OctalDigits

OctalDigits:
OctalDigit
OctalDigit OctalDigits

OctalDigit: one of
012345¢67

DecimalPointLiteral:

Digits . Digits ExponentPart (optional) DecimalTypeSuffix (optional
Digits ExponentPart (optional) DecimalTypeSuffix (optional)

Digits ExponentPart DecimalTypeSuffix (optional)

Digits ExponentPart (optional) DecimalTypeSuffix (optional)

ExponentPart :
ExponentIndicator SignedInteger

ExponentIndicator: one of
e E

SignedInteger:
Signopt Digits

Sign: one of

+ -

DecimalTypeSuffix: one of
f FdDggaG

Groovy Shell

Groovy Shell

The Groovy Shell, aka. groovysh is a command-line application which allows easy access to evaluate Groovy expressions, define classes and
run simple experiments.

® Features
® Command-line Options and Arguments
® Evaluating Expressions
® Simple Expressions
Evaluation Result
Multi-line Expressions
® Variables
® Functions
® Commands
® Recognized Commands
® Preferences
® Recognized Preferences
® Listing Preferences
® Clearing Preferences (ie. Resetting to Defaults)
® User Profile Scripts and State
® Profile Scripts
® State
® Screen Shots
® Troubleshooting
® Platform Problems

Features

No need for go command to execute buffer.

Rich cross-platform edit-line editing, history and completion thanks to JLine.

ANSI colors (prompt, exception traces, etc).

Simple, yet robust, command system with online help, user alias support and more.
User profile support

Command-line Options and Arguments

The shell supports several options to control verbosity, ANSI coloring and other features.

./bin/groovysh --help
usage: groovysh [options] [...]
-C, --color[=FLAG] Enable or disable use of ANSI colors
-D, --define=NAME=VALUE Define a system property
-T, --terminal=TYPE Specify the terminal TYPE to use
-V, --version Display the version
-d, --debug Enable debug output
-h, --help Display this help message
-qg, --quiet Suppress superfluous output
-v, --verbose Enable verbose output

In addition to options, commands or expressions can be given on the command-line which will invoke the shell in non-interactive mode. The
commands or expressions will be evaluated and the shell will exit. If no additional arguments are given the shell will startup interactively.

Execute a Command

./bin/groovysh 'show preferences'
No preferences are set

Evaluate an Expression

./bin/groovysh 'System.properties.each { k, v -> println("$k = $v") }!'

java.runtime.name = Java(TM) 2 Runtime Environment, Standard Edition

sun.boot .library.path = /System/Library/Frameworks/JavaVM.framework/Versions/1.5.0/Libraries
java.vm.version = 1.5.0_07-87

awt .nativeDoubleBuffering = true

gopherProxySet = false

Evaluating Expressions

Simple Expressions

println "Hello"

Evaluation Result

When a complete expression is found, it is compiled and evaluated. The result of the evaluation is stored into the {_} variable.

Multi-line Expressions

Multi-line/complex expressions (like closure or class definitions) may be defined over several lines. When the shell detects that it has a complete
expression it will compile and evaluate it.

Define a Class

class Foo {
def bar() {
println "baz"

}

Use the Class

foo = new Foo()
foo.bar ()

Variables
Shell variables are all untyped (ie. no de £ or other type information.

This will set a shell variable:

foo = "bar"

But, this will evaluate a local variable and will not be saved to the shell's environment:

—-~

def foo = "bar"

Functions

Functions can be defined in the shell, and will be saved for later use.

Defining a function is easy:

groovy:000> def hello(name) {
groovy:001> println("Hello $name")
groovy:002> }

And then using it is as one might expect:

hello("Jason")

Internally the shell creates a closure to encapsulate the function and then binds the closure to a variable. So variables and
functions share the same namespace.

Commands

The shell has a number of different commands, which provide rich access to the shell's environment.

Commands all have a name and a shortcut (which is something like \h). Commands may also have some predefined system aliases. Users may
also create their own aliases.

Recognized Commands

help

Display the list of commands (and aliases) or the help text for specific command.

The Command List

groovy:000> help

For information about Groovy, visit:
http://groovy.codehaus.org

Available commands:
help (\h) Display this help message

? \? Alias to: help

exit \x Exit the shell

quit \g@) Alias to: exit

import \i Import a class into the namespace

display \d Display the current buffer

clear \c Clear the buffer

show \S Show variables, classes or imports

inspect \n Inspect a variable or the last result with the GUI object browser

()
()
()
()
()
()
()
()
purge (\p) Purge variables, classes, imports or buffers
()
()
()
()
()
()
()
()

edit \e Edit the current buffer
load \1 Load a file or URL into the buffer
\. Alias to: load
save \s Save the current buffer to a file
record \r Record the current session to a file
history \H Display, manage and recall edit-line history
alias \a Create an alias
set \= Set (or list) preferences

For help on a specific command type:
help <command>

Help for a Command

While in the interactive shell, you can ask for help for any command to get more details about its syntax or function. Here is an example of what
happens when you ask for help for the help command:

groovy:000> help help
usage: help [<commands>]

Display the list of commands or the help text for <commands.

exit

Exit the shell.

This is the only way to exit the shell. Well, you can still CTRL-¢, but the shell will complain about an abnormal shutdown of the JVM.
import

Add a custom import which will be included for all shell evaluations.

This command can be given at any time to add new imports.

display

Display the contents of the current buffer.

This only displays the buffer of an incomplete expression. Once the expression is complete, the buffer is rest. The prompt will update to show the
size of the current buffer as well.

Example

groovy:000> class Foo {
groovy:001> def bar
groovy:002> def baz() {
groovy:003> display

001> class Foo {

002> def bar

003> def baz() {

clear

Clear the current buffer.

show

Show variables, classes or preferences or imports.

show variables

groovy:000> show variables
Variables:
_ = true

show classes

show imports

show preferences

show all

inspect

Opens the GUI object browser to inspect a variable or the result of the last evaluation.
purge

Purges objects from the shell.

purge variables

purge classes

purge imports

purge preferences

purge all

edit

Edit the current buffer in an external editor.

Currently only works on UNIX systems which have the EDITOR environment variable set, or have configured the editor preference.

load

Load one or more files (or urls) into the buffer.

save

Saves the buffer's contents to a file.

record

Record the current session to a file.

record start

record stop

record status

history

Display, manage and recall edit-line history.

history show

history recall

history flush

history clear

alias
Create an alias.
set

Set or list preferences.

Preferences

Some of aspects of groovysh behaviors can be customized by setting preferences. Preferences are set using the set command or the \=
shortcut.

Recognized Preferences

verbosity

Set the shell's verbosity level. Expected to be one of:

DEBUG
VERBOSE
INFO
QUIET

Default is INFO.

If this preference is set to an invalid value, then the previous setting will be used, or if there is none, then the preference is removed and the
default is used.

show-last-result

Show the last result after an execution.
Default is true.
sanitize-stack-trace
Sanitize (trim-down/filter) stack traces.
Default is true.

editor

Configures the editor used by the edit command.

Default is the value of the system environment variable EDITOR.

kW Mac OS X

To use TextEdit, the default text editor on Mac OS X, configure:

set editor /Applications/TextEdit.app/Contents/MacOS/TextEdit

Setting a Preference

set verbosity DEBUG

Listing Preferences

To list the current set preferences (and their values):

show preferences

%, Limitation

At the moment, there is no way to list all of the known/available preferences to be set.

Clearing Preferences (ie. Resetting to Defaults)

purge preferences

User Profile Scripts and State

Profile Scripts

$HOME/.groovy/groovysh.profile

This script, if it exists, is loaded when the shell starts up.

$HOME/ .groovy/groovysh.rc

This script, if it exists, is loaded when the shell enters interactive mode.

State

$HOME/ .groovy/groovysh.history

Edit-line history is stored in this file.

Screen Shots

These shots have been taken over the development of the new shell, so some of the content might look slightly different. Also, note the yellow
colors here are the shell's bold color, so the colors might look different depending on how the enclosing shell has its colors setup.

a6 Default (108,32) ==
i stal L/bing |

Default (108,32) =]

‘help' or '“h' for help.

ilable c
help

2

Alins te
exit Exit the
guit Alioz to
import

display

r

history
alias
5 shadow

Default (108,32) =]

] buffer.

ffer

about the buffe

Troubleshooting

Please report any problems you run into. Please be sure to mark the JIRA issue with the Groovysh component.

Platform Problems

Problems loading the JLine DLL

On Windows, JLine (which is used for the fancy shell input/history/completion fluff), uses a tiny DLL file to trick the evil Windows faux-shell (
CMD . EXE or COMMAND . COM) into providing Java with unbuffered input. In some rare cases, this might fail to load or initialize.

One solution is to disable the frills and use the unsupported terminal instance. You can do that on the command-line using the - -terminal flag
and set it to one of:

® none

® false

® off

® jline.UnsupportedTerminal

groovysh --terminal=none

Problems with Cygwin on Windows

Some people have issues when running groovysh with cygwin. If you have troubles, the following may help:

stty -icanon min 1 -echo
groovysh --terminal=unix
stty icanon echo

Groovy Truth

Boolean expressions

Groovy supports the standard conditional operators on boolean expressions, e.g.:

def a = true
def b = true
def ¢ = false

assert a
assert a && b
assert a || ¢

assert !c

In addition, Groovy has special rules for coercing non-boolean objects to a boolean value.

Collections

Empty collections are coerced to false.

def numbers = [1,2,3]
assert numbers //true, as numbers in not empty
numbers = []

assert !numbers //false, as numbers is now an empty collection

Iterators and Enumerations

Iterators and Enumerations with no further elements are coerced to false.

) // false because the Iterator is empty
) // true because the Iterator has a next element

assert ![].iterator(
assert [0].iterator(
def v = new Vector (
assert !v.elements() // false because the Enumeration is empty
v.add (new Object())

)

assert v.elements (// true because the Enumeration has more elements

Maps

Non-empty maps are coerced to true.

assert ['one':1]
assert ![:]

Matchers

Matching regex patterns are coerced to true.

assert ('Hello World' =~ /World/) //true because matcher has at least one match

Strings

Non-empty Strings, GStrings and CharSequences are coerced to true.

// Strings

assert 'This is true'
assert !'!'

//GStrings

def s = '!'

assert ! ("ss")

s = 'x!'

assert ("ss")

Numbers

Non-zero numbers are coerced to true.

assert !0 //yeah, 0s are false, like in Perl
assert 1 //this is also true for all other number types

Object references

Non-null object references are coerced to true.

assert new Object (
assert !null

Groovy Utils

Groovy Utils

This page documents the utility classes available in the groovy .utils.* package.
1. ConfigSlurper

2. ObjectGraphBuilder
3. ObservableMap

ConfigSlurper

ConfigSlurper

ConfigSlurper is a utility class within Groovy for writing properties file like scripts for performing configuration. Unlike regular Java properties files
ConfigSlurper scripts support native Java types and are structured like a tree.

Below is an example of how you could configure Log4j with a ConfigSlurper script:

log4j .appender.stdout = "org.apache.log4j.ConsoleAppender"
log4j .appender. "stdout.layout"="org.apache.log4j.PatternLayout"
log4j .rootLogger="error, stdout"
log4j.logger.org.springframework="info, stdout"
log4j.additivity.org. springframework=false

To load this into a readable config you can do:

def config = new ConfigSlurper () .parse(new File ('myconfig.groovy"') .toURL())

assert "info,stdout" == config.log4j.logger.org.springframework
assert false == config.log4j.additivity.org.springframework

As you can see from the example above you can navigate the config using dot notation and the return values are Java types like strings and
booleans.

You can also use scoping in config scripts to avoid repeating yourself. So the above config could also be written as:

log4j {
appender.stdout = "org.apache.log4j.ConsoleAppender"
appender."stdout.layout"="org.apache.log4j.PatternLayout"
rootLogger="error, stdout"
logger {
org.springframework="info, stdout"
}
additivity {
org. springframework=false

}

Converting to and from Java properties files

You can convert ConfigSlurper configs to and from Java properties files. For example:

java.util.Properties props = // load from somewhere
def config = new ConfigSlurper () .parse (props)

props = config.toProperties ()

Merging configurations

You can merge config objects so if you have multiple config files and want to create one central config object you can do:

def configl = new ConfigSlurper () .parse(..)
def config2 = new ConfigSlurper () .parse(..)

configl = configl.merge (config2)

Serializing a configuration to disk

You can serialize a config object to disk. Each config object implements the groovy.lang.Writable interface that allows you to write out the config
to any java.io.Writer:

def config = new ConfigSlurper() .parse(..)

new File("..").withWriter { writer ->
config.writeTo(writer)

Special "environments" Configuration

The ConfigSlurper class has a special constructor other than the default constructor that takes an "environment" parameter. This special
constructor works in concert with a property setting called environments. This allows a default setting to exist in the property file that can be
superceded by a setting in the appropriate environments closure. This allows multiple related configurations to be stored in the same file.

Given this groovy property file:

Sample.groovy

sample {
foo = "default foo"
bar = "default bar"

}

environments {
development {

sample {
foo = "dev foo"
}
}
test {
sample {
bar = "test bar"

Here is the demo code that exercises this configuration:

def config = new ConfigSlurper ("development") .parse (new File ('Sample.groovy') .toURL())

assert config.sample.foo == "dev foo"
assert config.sample.bar == "default bar"

config = new ConfigSlurper("test").parse(new File ('Sample.groovy') .toURL())

assert config.sample.foo == "default foo"
assert config.sample.bar == "test bar"

Note: the environments closure is not directly parsable. Without using the special environment constructor the closure is ignored.

The value of the environment constructor is also available in the configuration file, allowing you to build the configuration like this:

switch (environment) {

case 'development':
baseUrl = "devServer/"
break

case 'test':
baseUrl = "testServer/"
break

default:
baseUrl = "localhost/"

Further information

Using Groovy ConfigSlurper to Configure Spring Beans

ObjectGraphBuilder

ObjectGraphBuilder is a builder for an arbitrary graph of beans that follow the JavaBean convention, its useful for creating test data for example.

Let's say that the following classes belong into your domain model:

package com.acme

class Company {
String name
Address address
List employees = []

}

class Address {
String linel
String line2
int zip
String state

}

class Employee {
String name
int employeeId
Address address
Company company

With ObjectGraphBuilder building a Company with three employees is as easy as

def builder = new ObjectGraphBuilder ()

// uncomment the following line if running this script with GroovyConsole
//builder.classloader = getClass() .classLoader

builder.classNameResolver = "com.acme"

def acme = builder.company(name: 'ACME') {

3.times {
employee(id: it.toString(), name: 'Drone ${it}')
}
}
assert acme != null
assert acme.employees.size() == 3

Here is what's happening behind the scenes:

1. the builder will try to match a node name into a Class, using a default ClassNameResolver strategy that requires a package name.
2. then an instance of said class must be created, using a default NewInstanceResolver strategy that calls a no-args constructor.
3. the parent/child relationship must be resolved for nested nodes, here it gets a little tricky as two other strategies come into play.

RelationNameResolver will yield the name of the child property in the parent, and the name of the parent property in the child (if any, in
this case, Employee has a parent property aptly named 'company'). ChildPropertySetter will 'insert' the child into the parent taking into
account if the child belongs to a Collection or not (in this case employees should be a list of Employee instances in Company).

All 4 strategies have a default implementation that work as expected if the code follows the usual conventions for writing JavaBeans. But if by any
chance any of your beans does not follow the convention you may plug your own implementation of each strategy. Each strategy setter is Closure

friendly, for example

builder.newInstanceResolver
if (attributes.foo) {

}

klass.newInstance ()

}

return klass.newInstance (

// default no-args constructor

= { klass, attributes ->

[attributes.foo] as Object[])

ObjectGraphBuilder supports ids per node as SwingBuilder does, meaning that you can 'store' a reference to a node in the builder, this is useful to
relate one instance with many others as well. Because a property named 'id' may be of business meaning in some domain models
ObjectGraphBuilder has a strategy named IdentifierResolver that you may configure to change the default name value ('id"). The same may
happen with the property used for referencing a previously saved instance, a strategy named ReferenceResolver will yield the appropriate value

(default is 'refld"):

def company = builder.company(name: 'ACME') {
address(id: 'al', linel: '123 Groovy Rd', zip: 12345, state: 'JV')
employee(name: 'Duke', employeeId: 1, address: al)
}
def company = builder.company(name: 'ACME') {
address(id: 'al', linel: '123 Groovy Rd', zip: 12345, state: 'JV')
employee(name: 'Duke', employeeId: 1) {
address (refId: 'al')
}
}

Its worth mentioning that you cannot modify the properties of a referenced bean.

For those rare occasions where ObjectGraphBuilder can't locate your classes (it happens when you run a script using groovyConsole) you may

define a classLoader for ObjectGraphBuilder to resolve classes. Try for example running the following script inside groovyConsole and then
comment out the classLoader property.

class Conference {
String name
List speakers = []

}

class Speaker {
String name

}

def ogb = new ObjectGraphBuilder(classLoader: getClass() .classLoader)
def j1 = ogb.conference(name: 'JavaOne')
speaker (name: 'Duke')
}
assert jl.speakers.size() == 1
assert jl.speakers[0] .name == 'Duke’

ObservableMap

An observable map will trigger a PropertyChangeEvent every time a value changes. We can convert a map into an observable one with the 'as'
keyword too:

// don't forget the imports
import java.beans.*
def map = [:] as ObservableMap
map.addPropertyChangeListener ({ evt ->
println "${evt.propertyName}: ${evt.oldValue} -> ${evt.newValue}"
} as PropertyChangeListener)

map.key = 'value' // prints key: null -> value
map.key = 'Groovy' // prints key: value -> Groovy

We can also wrap an existing map with an ObservableMap

import java.beans.*
def sorted = [a:1,b:2] as TreeMap
def map = new ObservableMap (sorted)
map.addPropertyChangeListener ({ evt ->
println "${evt.propertyName}: ${evt.oldvalue} -> ${evt.newValue}"
} as PropertyChangeListener)

map.key = 'value'
assert ['a','b',K6 'key'] == (sorted.keySet() as List)
assert ['a','b', 'key'] == (map.keySet() as List)

Lastly we can specify a closure as an additional parameter, it will work like a filter for properties that should or should not trigger a
PropertyChangeEvent when their values change, this is useful in conjunction with Expando. The filtering closure may take 2 parameters (the
property name and its value) or less (the value of the property).

import java.beans.*
def map = new ObservableMap({! (it instanceof Closure)})
map.addPropertyChangeListener ({ evt ->
println "${evt.propertyName}: ${evt.oldValue} -> ${evt.newValue}"
} as PropertyChangeListener)
def bean = new Expando(map)
bean.lang = 'Groovy' // prints lang: null -> Groovy
bean.sayHello = { name -> "Hello ${name}" } // prints nothing, event is skipped
assert 'Groovy' == bean.lang
assert 'Hello Groovy' == bean.sayHello(bean.lang)

GUI Programming with Groovy

Introduction

Groovy has several options available for writing GUI code:

® you can directly use any of the AWT and Swing classes built in to Java
® you can use any Java libraries which sit on top of or alongside Swing, e.g.:
* JGoodies (home) (example)
® JFreeChart (home) (example) (builder)
you can use Groovy's SwingBuilder (see Further Details)
you can use GraphicsBuilder to access Java 2D features
you can use SwingXBuilder (see Further Details)
you can use the JIDE builder for the open source JIDE Common Layer
you can use the GroovySWT module
you can use the PrefuseBuilder for creating pretty representations of graphs of objects
you can use the wingS framework: WingSBuilder - (example) (comparison to swing)

You might also consider using FEST for testing your GUI application as shown here.

Further Details

® Swing Builder

® Alphabetical Widgets List

SwingBuidler.borderlLayout
SwingBuilder.action
SwingBuilder.actions
SwingBuilder.bind
SwingBuilder.borderlLayout
SwingBuilder.boundedRangeModel
SwingBuilder.box
SwingBuilder.boxLayout
SwingBuilder.button
SwingBuilder.buttonGroup
SwingBuilder.cardLayout
SwingBuilder.checkBox
SwingBuilder.checkBoxMenultem
SwingBuilder.closureColumn
SwingBuilder.colorChooser
SwingBuilder.comboBox
SwingBuilder.compoundBorder
SwingBuilder.container
SwingBuilder.desktopPane
SwingBuilder.dialog
SwingBuilder.editorPane
SwingBuilder.emptyBorder
SwingBuilder.etchedBorder
SwingBuilder.fileChooser
SwingBuilder.flowLayout
SwingBuilder.formattedTextField
SwingBuilder.frame
SwingBuilder.gridBagConstraints
SwingBuilder.gridBagLayout
SwingBuilder.gridLayout
SwingBuilder.imagelcon
SwingBuilder.internalFrame
SwingBuilder.JComponent
SwingBuilder.label
SwingBuilder.layeredPane
SwingBuilder.lineBorder
SwingBuilder.list
SwingBuilder.loweredBevelBorder
SwingBuilder.map
SwingBuilder.matteBorder
SwingBuilder.menu
SwingBuilder.menuBar
SwingBuilder.menultem
SwingBuilder.optionPane
SwingBuilder.overlayLayout
SwingBuilder.panel
SwingBuilder.passwordField
SwingBuilder.popupMenu
SwingBuilder.progressBar
SwingBuilder.propertyColumn
SwingBuilder.radioButton
SwingBuilder.radioButtonMenultem
SwingBuilder.raisedBevelBorder
SwingBuilder.raisedEtchedBorder
SwingBuilder.scrollBar
SwingBuilder.scrollPane
SwingBuilder.separator
SwingBuilder.slider
SwingBuilder.spinner
SwingBuilder.spinnerDateModel
SwingBuilder.spinnerListModel
SwingBuilder.spinnerNumberModel
SwingBuilder.splitPane
SwingBuilder.springLayout
SwingBuilder.tabbedPane
SwingBuilder.table
SwingBuilder.tableColumn
SwingBuilder.tableLayout
SwingBuilder.tableModel
SwingBuilder.td

SwingBuilder.textArea
SwingBuilder.textField
SwingBuilder.textPane
SwingBuilder.titledBorder
SwingBuilder.toggleButton
SwingBuilder.toolBar
SwingBuilder.tr
SwingBuilder.tree
SwingBuilder.viewport
SwingBuilder.widget
® SwingBuilder.window

® Categorical Widget List

® Extending Swing Builder

® Multithreading with SwingBuilder
® SwingXBuilder
Effects
Extending SwingXBuilder
Graphs
MultiSplitPane
Painters
Widgets and Common Attributes

Swing Builder

SwingBuilder allows you to create full-fledged Swing GUIs in a declarative and concise fashion. It accomplishes this by employing a common
idiom in Groovy, builders. Builders handle the busywork of creating complex objects for you, such as instantiating children, calling Swing methods,
and attaching these children to their parents. As a consequence, your code is much more readable and maintainable, while still allowing you
access to the full range of Swing components.

Here's a simple example of using SwingBuilder:

import groovy.swing.SwingBuilder
import java.awt.BorderLayout as BL

def swing = new SwingBuilder ()

count = 0

def textlabel

def frame = swing.frame(title:'Frame', size:[300,300]) {

borderLayout ()
textlabel = label (text:"Click the button!", constraints: BL.NORTH)
button (text:'Click Me',
actionPerformed: {count++; textlabel.text = "Clicked ${count} time(s)."; println "clicked"},

constraints:BL.SOUTH)

}

frame . show ()

Here is what it will look like:

=101x]

Clicked 12 time(s),

This hierarchy of components would normally be created through a series of repetitive instantiations, setters, and finally attaching this child to its
respective parent. Using SwingBuilder, however, allows you to define this hierarchy in its native form, which makes the interface design
understandable simply by reading the code.

The flexibility shown here is made possible by leveraging the many programming features built-in to Groovy, such as closures, implicit constructor
calling, import aliasing, and string interpolation. Of course, these do not have to be fully understood in order to use SwingBuilder; as you can see
from the code above, their uses are intuitive.

Here is a slightly more involved example, with an example of SwingBuilder code re-use via a closure.

import groovy.swing.SwingBuilder
import javax.swing.*
import java.awt.*

def swing = new SwingBuilder ()

def sharedpanel = {
swing.panel () {
label ("Shared Panel")

count = 0
def textlabel
def frame =
true) {
vbox {
textlabel =
button (
text:'Click Me',
actionPerformed: {
count++
textlabel.text =

)
widget (sharedPanel ())
widget (sharedPanel ())

swing.frame (title:'Frame', defaultCloseOperation:JFrame.EXIT ON_CLOSE, pack:true,

show:

label("Click the button!")

"Clicked ${count} time(s)."

println "Clicked!"

Mailer User Interface example

import javax.swing.*
import javax.swing.tree.DefaultMutableTreeNode as TreeNode
import groovy.swing.SwingBuilder

mboxes = [
[name: "roote@example.com", folders: [[name: "Inbox"], [name: "Trash"]]],
[name: "test@foo.com", folders: [[name: "Inbox"], [name: "Trash"]]]

]

def swing = new SwingBuilder ()

JTree mboxTree

swing.frame (title: 'Mailer', defaultCloseOperation: JFrame.DISPOSE_ON_CLOSE,

size: [800, 600], show: true, locationRelativeTo: null)
lookAndFeel ("system")
menuBar () {
menu (text: "File", mnemonic: 'F') {
menultem(text: "Exit", mnemonic: 'X', actionPerformed: {dispose() })

}
}

splitPane {
scrollPane (constraints: "left", preferredSize:
mboxTree = tree (rootVisible: false)

[160, -11) {

}

splitPane (orientation:JSplitPane.VERTICAL SPLIT, dividerLocation:280) {
scrollPane (constraints: "top") { mailTable = table() }
scrollPane (constraints: "bottom") { textArea() }

}

["From", "Date", "Subject"].each { mailTable.model.addColumn (it) }

mboxTree.model. root.removeAllChildren ()

mboxes.each {mbox ->
def node = new TreeNode (mbox.name)
mbox.folders.each { folder -> node.add(new TreeNode (folder.name)) }
mboxTree.model . root .add (node)

}

mboxTree.model.reload (mboxTree.model. root)

® Alphabetical Widgets List

® Categorical Widget List

® Extending Swing Builder

® Multithreading with SwingBuilder

@Bindable and @Vetoable AST transformations

Although not specific to SwingBuilder, Groovy 1.6 introduced two Bindable and Vetoable transformation of interest to Swing developers.

Alphabetical Widgets List

Element Principal Java Class Notes

action javax.swing.Action

actions java.util.Collection

bind org.codehaus.groovy.binding.FullBinding ' used to bind attribute to other bean properties
borderLayout java.awt.BorderLayout

boundedRangeModel = javax.swing.DefaultBoundedRangeModel

box javax.swing.Box

boxLayout javax.swing.BoxLayout

button javax.swing.JButton

buttonGroup
cardLayout
checkBox
checkBoxMenultem
closureColumn
compoundBorder
colorChooser
comboBox
container
desktopPane
dialog

editorPane
emptyBorder
etchedBorder
fileChooser
flowLayout
formattedTextField
frame

gbc

glue
gridBagConstraints
gridBagLayout
gridLayout

hbox

hglue

hstrut
internalFrame
imagelcon

label

layeredPane
lineBorder

list
loweredBevelBorder
loweredEtchedBorder
map

matteBorder

menu

menuBar

menultem

javax.swing.ButtonGroup
java.awt.CardLayout
javax.swing.JCheckBox
javax.swing.JCheckBoxMenultem
groovy.model.DefaultTableColumn
javax.swing.border.CompoundBorder
javax.swing.JColorChooser

javax.swing.JComboBox

placeholder for external container widget

javax.swing.JDesktopPane
javax.swing.JDialog
javax.swing.JEditorPane
javax.swing.border.EmptyBorder
javax.swing.border.EtchedBorder
javax.swing.JFileChooser
java.awt.FlowLayout
javax.swing.JFormattedTextField
javax.swing.JFrame
java.awt.GridBagConstraints alias for gridBagConstraints
calls Box.createGlue()
java.awt.GridBagConstraints
java.awt.GridBagLayout
java.awt.GridLayout

calls Box.createHorizionalBox()

calls Box.createHorizionalGlue()

calls Box.createHorizionalStrut()
javax.swing.JInternalFrame
javax.swing.Imagelcon
javax.swing.JLabel
javax.swing.JLayeredPane
javax.swing.border.LineBorder
javax.swing.JList
javax.swing.border.BevelBorder
javax.swing.border.EtchedBorder
java.util.Map returns the attributes
javax.swing.border.MatteBorder
javax.swing.JMenu
javax.swing.JMenuBar

javax.swing.JMenultem

optionPane
overlayLayout
panel
passwordField
popupMenu
progressBar
propertyColumn
radioButton
raisedBevelBorder
raisedEtchedBorder
radioButtonMenultem
rigidArea

scrollBar
scrollPane
separator

slider

spinner
spinnerDateModel
spinnerListModel
spinnerNumberModel
splitPane
springLayout
tabbedPane

table

tableColumn
tableLayout
tableModel

td

textArea

textField

textPane
titledBorder
toggleButton
toolBar

tr

tree

vbox

vglue

viewport

javax.swing.JOptionPane
javax.swing.OverlayLayout
javax.swing.JPanel
javax.swing.JPasswordField
javax.swing.JPopupMenu
javax.swing.JProgressBar
groovy.model.DefaultTableColumn
javax.swing.JRadioButton
javax.swing.border.BevelBorder
javax.swing.border.EtchedBorder
javax.swing.JRadioButtonMenultem
calls Box.createRigidArea()
javax.swing.JScrollBar
javax.swing.JScrollPane
javax.swing.JSeparator
javax.swing.JSlider
javax.swing.JSpinner
javax.swing.SpinnerDateModel
javax.swing.SpinnerListModel
javax.swing.SpinnerNumberModel
javax.swing.JSplitPane
javax.swing.SpringLayout
javax.swing.JTabbedPane
javax.swing.JTable
javax.swing.table.TableColumn
groovy.swing.impl.TableLayout
javax.swing.table.TableModel can pass value through
groovy.swing.impl.TableLayoutCell
javax.swing.JTextArea
javax.swing.JTextField
javax.swing.JTextPane
javax.swing.border.TitledBorder
javax.swing.JToggleButton
javax.swing.JToolBar
groovy.swing.impl.TableLayoutRow
javax.swing.JTree
calls Box.createVerticleBox()
calls Box.createVerticleGlue()

javax.swing.JViewport

vstrut calls Box.createVerticleStrut()
widget pass through, should have no child content

window javax.swing.JWindow

SwingBuidler.borderLayout
(Automatically generated from Beanlinfo)

Generated Object

A java.awt.BorderLayout is returned, unless the user passes in a subclass of BorderLayout as the value argument, in which case the value
argument is returned.

Attributes

Declared in java.awt.BorderLayout

* *hgap* <int>
* *vgap* <int>

Events
Content
Usage
Examples

Observable Attributes

SwingBuilder.action

Generated Object

A javax.swing.Action object, of some sort.

Value Argument

A pre-existing javax.swing.Action instance can be provided. In this cases the attributes will be applied to that action instead of createing a new
groovy.swing.impl.DefaultAction.

Attributes

® closure <Closure> The action to be performed when the actionPerformend method is called. The actionEvent will be the only parameter
passed in.

name <String> The name to be shown on a button or menu item

shortDescription <String> The text to be displayed as a button's tool tip

smalllcon <String> The icon shown on the button or menu item

actionCommandKey <String> Sets the actionCommand on the button or menu item

accelerator <String> or <KeyStroke> The keyboard accelerator for a menu item to associate with this action

mnemonic <char> or <String> The mnemonic for the action in the button or menu item

enabled <boolean> Whether this action is enabled. Will be reflected in enabled state of button or menu item

unused Action magic values
® longDescription <String> Intended for context sensitive help (like a status bar).
Content
No content is accepted by an action() node.
Usage

Actions are the lifeblood of a full fledged swing application. Other sources can expound on their usefullness.

Examples

//TBD

SwingBuilder.actions
(Automatically generated from Beanlinfo)
Generated Object

A java.util.Collection is returned, unless the user passes in a subclass of Collection as the value argument, in which case the value argument is
returned.

Attributes

Declared in java.util.Collection
®* empty <boolean>

Events

Content

Usage

Examples

Observable Attributes

SwingBuilder.bind

Generated Object
An internal class that currently should not be relied on.
Attributes
® source <Object> The object that triggers the binding update
® sourceProperty <String> A property that is read for the update and whose change triggers the update

® sourceEvent <String> The event name trigger an update
® sourceValue <Closure> A closure providing the value when sourceEvent triggers

® target <Object> The object to be updated when a bound value changes
® targetProperty <String> The property on the target update to which the queried value will be written

® validator <Closure> If the closure returns null or Boolean.FALSE then a triggered binding will be canceled

® converter <Closure> Takes the queried value and converts it to another object to be written to the targetProperty. The queried value is
passed in "it" to the closure.

Content

bind accepts no content

Usage

bind can be used as a stand alone element or as a value for any attribute of any object.

When used as an attribute value the target and targetProperty values implicitly become the current object being constructed and the property
being written to.

Until the external APl is finalized, it is not recommended to use the object returned from bind
Examples

Example binding one property to another:

swing.frame () {
panel {
textField('Change Me!', id:'tf')
button(text: bind(source:tf, sourceProperty:'text'))
}
}

Example when triggering on a particular event with a value closure

swing.frame() {
panel {
textField('Change Me!', id:'tf')
button(text: bind (source:tf.document, sourceEvent:'undoableEditHappened',
sourceValue: {System.currentTimeMillis () }))

Note that the source value can get any arbitrary value.

Example with validator and converter:

swing.frame () {
panel
{
textField('Change Me!', id:'tf')
button(text: bind(source:tf, sourceProperty:'text',
validator: { tf.text.length() >= 1}, converter: { it.toLowerCase() }))

In this example the validator prevents the button text from having less than 1 char and the converter makes the button text all lowercase.
Note: Tested on Groovy 1.5.1

SwingBuilder.borderLayout

(Automatically generated from Beanlinfo)

Generated Object

A java.awt.BorderLayout is returned, unless the user passes in a subclass of BorderLayout as the value argument, in which case the value
argument is returned.

Attributes

Declared in java.awt.BorderLayout

® hgap <int>
® vgap <int>

Events
Content
Usage
Examples

Observable Attributes

SwingBuilder.boundedRangeModel
(Automatically generated from Beanlinfo)

Generated Object

A javax.swing.DefaultBoundedRangeModel is returned, unless the user passes in a subclass of DefaultBoundedRangeModel as the value
argument, in which case the value argument is returned.

Attributes

Declared in javax.swing.DefaultBoundedRangeModel

extent <int>

maximum <int>

minimum <int>

value <int>
valuelsAdjusting <boolean>

Events
Declared in javax.swing.DefaultBoundedRangeModel
® stateChanged (ChangeEvent) - part of ChangeListener
Content
Usage
Examples

Observable Attributes
SwingBuilder.box

Generated Object
Attributes

Events

Content

Usage

Examples
Observable Attributes

(Automatically generated from Beanlinfo)

Generated Object

A javax.swing.Box is returned, unless the user passes in a subclass of Box as the value argument, in which case the value argument is returned.

Attributes

Declared in javax.swing.JComponent

autoscrolls <boolean> Determines if this component automatically scrolls its contents when dragged.
border <Border> The component's border.

componentPopupMenu <JPopupMenu> Popup to show

debugGraphicsOptions <int> Diagnostic options for graphics operations.

inheritsPopupMenu <boolean> Whether or not the JPopupMenu is inherited

inputVerifier <InputVerifier> The component's input verifier.

opaque <boolean> The component's opacity

toolTipText <String> The text to display in a tool tip.

transferHandler <TransferHandler> Mechanism for transfer of data to and from the component
verifylnputWhenFocusTarget <boolean> Whether the Component verifies input before accepting focus.

UIClassID <String>

accessibleContext <AccessibleContext>
actionMap <ActionMap>
doubleBuffered <boolean>

graphics <Graphics>

height <int>

managingFocus <boolean>
nextFocusableComponent <Component>
optimizedDrawingEnabled <boolean>
paintingTile <boolean>
registeredKeyStrokes <KeyStroke[]>
requestFocusEnabled <boolean>
rootPane <JRootPane>
topLevelAncestor <Container>
validateRoot <boolean>

visibleRect <Rectangle>

width <int>

x <int>

y <int>

Declared in java.awt.Container

alignmentX <float>

alignmentyY <float>

componentCount <int>

components <Component[]>
focusCycleRoot <boolean>
focusTraversalPolicy <FocusTraversalPolicy>
focusTraversalPolicyProvider <boolean>
focusTraversalPolicySet <boolean>
insets <Insets>

layout <LayoutManager>

maximumsSize <Dimension>
minimumsSize <Dimension>
preferredSize <Dimension>

Declared in java.awt.Component

background <Color>
enabled <boolean>
focusable <boolean>
font
foreground <Color>
name <String>
visible <boolean>

Events

Declared in javax.swing.JComponent

vetoableChange (PropertyChangeEvent) - part of VetoableChangeListener
ancestorMoved (AncestorEvent) - part of AncestorListener
ancestorAdded (AncestorEvent) - part of AncestorListener
ancestorRemoved (AncestorEvent) - part of AncestorListener

Declared in java.awt.Container

® componentAdded (ContainerEvent) - part of ContainerListener
* componentRemoved (ContainerEvent) - part of ContainerListener

Declared in java.awt.Component

keyPressed (KeyEvent) - part of KeyListener

keyReleased (KeyEvent) - part of KeyListener

keyTyped (KeyEvent) - part of KeyListener

componentHidden (ComponentEvent) - part of ComponentListener
componentMoved (ComponentEvent) - part of ComponentListener
componentResized (ComponentEvent) - part of ComponentListener
componentShown (ComponentEvent) - part of ComponentListener
hierarchyChanged (HierarchyEvent) - part of HierarchyListener
mouseClicked (MouseEvent) - part of MouseListener
mouseEntered (MouseEvent) - part of MouseListener
mouseExited (MouseEvent) - part of MouseListener
mousePressed (MouseEvent) - part of MouseListener
mouseReleased (MouseEvent) - part of MouseListener

mouseDragged (MouseEvent) - part of MouseMotionListener

mouseMoved (MouseEvent) - part of MouseMotionListener

propertyChange (PropertyChangeEvent) - part of PropertyChangeListener
ancestorMoved (HierarchyEvent) - part of HierarchyBoundsListener
ancestorResized (HierarchyEvent) - part of HierarchyBoundsListener
focusGained (FocusEvent) - part of FocusListener

focusLost (FocusEvent) - part of FocusListener

mouseWheelMoved (MouseWheelEvent) - part of MouseWheelListener
caretPositionChanged (InputMethodEvent) - part of InputMethodListener
inputMethodTextChanged (InputMethodEvent) - part of InputMethodListener

Content
Usage
Examples

Observable Attributes

alignmentX

alignmentY

background

border

component
componentCount
componentPopupMenu
components
containerListeners
enabled
focusCycleRoot
focusTraversalKeys
focusTraversalPolicy
focusTraversalPolicyProvider
focusTraversalPolicySet
focusable

font

foreground
inheritsPopupMenu
inputVerifier

insets

layout

maximumSize
minimumSize

opaque

preferredSize
transferHandler
verifylnputWhenFocusTarget

SwingBuilder.boxLayout

Generated Object
Attributes

Events

Content

Usage

Examples

(Automatically generated from Beanlinfo)
Generated Object

A javax.swing.BoxLayout is returned, unless the user passes in a subclass of BoxLayout as the value argument, in which case the value
argument is returned.

Attributes
Events

Content

Usage

Examples

SwingBuilder.button

Generated Object

A javax.swing.JButton is returned, unless the user passes in a subclass of JButton as the value argument, in which case the value argument is
returned.

Attributes
See also: JComponent
Declared in JButton

® defaultButton <boolean> Whether or not this button is the default button
® defaultCapable <boolean> Whether or not this button can be the default button

Declared in AbstractButton

action <Action> the Action instance connected with this ActionEvent source
actionCommand <String> actionCommand

model <ButtonModel> Model that the Button uses.

multiClickThreshhold <long> multiClickThreshhold

selected <boolean> selected

Text related

text <String> The button's text.

label <String> Replace by setText(text)

mnemonic <int> the keyboard character mnemonic

displayedMnemonicindex <int> the index into the String to draw the keyboard character mnemonic at
horizontalTextPosition <int> The horizontal position of the text relative to the icon.
verticalTextPosition <int> The vertical position of the text relative to the icon.

Rendering related

borderPainted <boolean> Whether the border should be painted.

contentAreaFilled <boolean> Whether the button should paint the content area or leave it transparent.
focusPainted <boolean> Whether focus should be painted

rolloverEnabled <boolean> Whether rollover effects should be enabled.

margin <Insets> The space between the button's border and the label

iconTextGap <int> If both the icon and text properties are set, this property defines the space between them.

Icon related

icon <lcon> The button's default icon

disabledlcon <lcon> The disabled icon for the button.

pressedlcon <lcon> The pressed icon for the button.

rolloverlcon <lcon> The rollover icon for the button.

selectedlcon <Icon> The selected icon for the button.
disabledSelectedlcon <lcon> The disabled selection icon for the button.
rolloverSelectedlcon <lcon> The rollover selected icon for the button.

Alignment Related

® horizontalAlignment <int> The horizontal alignment of the icon and text.
® verticalAlignment <int> The vertical alignment of the icon and text.

Content

No child content is accepted in a button.
Usage

button creates a slider-bar type widget.

/ITODO add an image
/ITODO describe how to fire code on a button press

The selected property is not very interesting for the Button class, as it is not user changeable. This is mostly a leaky abstraction for checkBox and
radioButton

Examples

This will run as a Groovy script.

import groovy.swing.SwingBuilder
import java.awt.Insets
import javax.swing.JFrame

println 'hello, world'

new SwingBuilder () .frame (title: 'demo using buttons', defaultCloseOperation: JFrame.EXIT ON_CLOSE,
show: true, pack: true) ({

vbox () {
button(action: action(name: 'basic', closure: {println "basic"}))
button(action: action(name: 'mnemonic', mnemonic: 'P', closure: {println 'with mnemonic'}))

button(action: action(name: 'default', defaultButton: true, closure: {println 'this is the
default button'}))

button (borderPainted:false, action: action(name: 'unpainted border', closure: {println
'unpainted border'}))

button (contentAreaFilled:false, action: action(name: 'unfilled content area', closure:
{println 'unfilled content area'}))

button (focusPainted:false, action: action(name: 'unpainted focus (select it and you\'ll see)',
closure: {println 'unpainted focus'}))

button(margin: new Insets(5, 10, 15, 20), action: action(name: 'margins', closure: {println
'margins'}))

}

/ITBD further examples for icon related behaviour
Observable Attributes

defaultCapable
selected - via synthetic observation
action

borderPainted
contentAreaFilled
disabledlcon
disabledSelectedicon
displayedMnemoniclndex
focusPainted
hideActionText
horizontalAlignment
horizontalTextPosition
icon

iconTextGap

label

margin

mnemonic

model

pressedicon
rolloverEnabled
rollovericon
rolloverSelectedicon
selectedlcon

text

verticalAlignment
verticalTextPosition

SwingBuilder.buttonGroup

® Generated Object
® Attributes

® Events

® Content

® Usage

® Examples
(Automatically generated from Beanlinfo)
Generated Object

A javax.swing.ButtonGroup is returned, unless the user passes in a subclass of ButtonGroup as the value argument, in which case the value
argument is returned.

Attributes
Declared in javax.swing.ButtonGroup
® buttonCount <int>
® elements <Enumeration>
® selection <ButtonModel>
Events
Content

Usage

Examples

SwingBuilder.cardLayout

Generated Object
Attributes

Events

Content

Usage

Examples

(Automatically generated from Beanlinfo)

Generated Object

A java.awt.CardLayout is returned, unless the user passes in a subclass of CardLayout as the value argument, in which case the value argument
is returned.

Attributes

Declared in java.awt.CardLayout

® hgap <int>
® vgap <int>

Events
Content
Usage

Examples

SwingBuilder.checkBox

Generated Object

A javax.swing.JCheckBox is returned, unless the user passes in a subclass of JCheckBox as the value argument, in which case the value
argument is returned.

Attributes

See also: JComponent

Declared in JCheckBox

borderPaintedFlat <boolean> Whether the border is painted flat.

Declared in AbstractButton

selected <boolean> If the checkbox is currently selected

action <Action> the Action instance connected with this ActionEvent source
actionCommand <String> actionCommand

model <ButtonModel> Model that the Button uses.

multiClickThreshhold <long> multiClickThreshhold

Text related

text <String> The button's text.

label <String> Replace by setText(text)

mnemonic <int> the keyboard character mnemonic

displayedMnemonicindex <int> the index into the String to draw the keyboard character mnemonic at
horizontalTextPosition <int> The horizontal position of the text relative to the icon.
verticalTextPosition <int> The vertical position of the text relative to the icon.

Rendering related

borderPainted <boolean> Whether the border should be painted.

contentAreaFilled <boolean> Whether the button should paint the content area or leave it transparent.
focusPainted <boolean> Whether focus should be painted

rolloverEnabled <boolean> Whether rollover effects should be enabled.

margin <Insets> The space between the button's border and the label

iconTextGap <int> If both the icon and text properties are set, this property defines the space between them.

Icon related

icon <lcon> The button's default icon. The Icon is the checkbox in the unselected state. Set it to null to get the platform default.

disabledlcon <lcon> The disabled icon for the button.
pressedlcon <lcon> The pressed icon for the button.
rolloverlcon <lcon> The rollover icon for the button.

selectedlcon <Icon> The selected icon for the button. The Icon is the checkbox in the selected state. Set it to null to get the platform

default.
disabledSelectedlcon <lcon> The disabled selection icon for the button.
rolloverSelectedlcon <lcon> The rollover selected icon for the button.

Alignment Related

Content
No child

Usage

horizontalAlignment <int> The horizontal alignment of the icon and text.
verticalAlignment <int> The vertical alignment of the icon and text.

content is accepted in a checkBox.

checkBox creates a visual toggleing checkbox type widget.

/ITODO

add an image

Examples

/ITODO

Observable Attributes

borderPaintedFlat
selected - via synthetic observation
action

borderPainted
contentAreaFilled
disabledlcon
disabledSelectedicon
displayedMnemoniclndex
focusPainted
hideActionText
horizontalAlignment

horizontalTextPosition
icon

iconTextGap

label

margin

mnemonic

model

pressedicon
rolloverEnabled
rollovericon
rolloverSelectedicon
selectedlcon

text
verticalAlignment
verticalTextPosition

SwingBuilder.checkBoxMenultem

Generated Object
Attributes

Events

Content

Usage

Examples
Observable Attributes

(Automatically generated from Beanlinfo)

Generated Object

A javax.swing.JCheckBoxMenultem is returned, unless the user passes in a subclass of JCheckBoxMenultem as the value argument, in which
case the value argument is returned.

Attributes

Declared in javax.swing.JCheckBoxMenultem

state <boolean> The selection state of the check box menu item

Declared in javax.swing.JMenultem

accelerator <KeyStroke> The keystroke combination which will invoke the JMenultem's actionlisteners without navigating the menu
hierarchy
armed <boolean> Mouse release will fire an action event

subElements <MenuElement[]>

Declared in javax.swing.AbstractButton

Ul <ButtonUI> The Ul object that implements the LookAndFeel.

action <Action> the Action instance connected with this ActionEvent source

borderPainted <boolean> Whether the border should be painted.

contentAreaFilled <boolean> Whether the button should paint the content area or leave it transparent.
disabledlcon <lcon> The disabled icon for the button.

disabledSelectedlcon <Icon> The disabled selection icon for the button.

displayedMnemonicindex <int> the index into the String to draw the keyboard character mnemonic at
focusPainted <boolean> Whether focus should be painted

horizontalAlignment <int> The horizontal alignment of the icon and text.

horizontalTextPosition <int> The horizontal position of the text relative to the icon.

icon <Icon> The button's default icon

iconTextGap <int> If both the icon and text properties are set, this property defines the space between them.
label <String> Replace by setText(text)

margin <Insets> The space between the button's border and the label.

mnemonic <int> the keyboard character mnemonic

model <ButtonModel> Model that the Button uses.

pressedlcon <Icon> The pressed icon for the button.

rolloverEnabled <boolean> Whether rollover effects should be enabled.

rolloverlcon <Icon> The rollover icon for the button.

rolloverSelectedicon <Icon> The rollover selected icon for the button.

selectedlcon <Icon> The selected icon for the button.

text <String> The button's text.

verticalAlignment <int> The vertical alignment of the icon and text.
verticalTextPosition <int> The vertical position of the text relative to the icon.

actionCommand <String>
multiClickThreshhold <long>
selected <boolean>
selectedObjects <Object[]>

Declared in javax.swing.JComponent

autoscrolls <boolean> Determines if this component automatically scrolls its contents when dragged.
border <Border> The component's border.

componentPopupMenu <JPopupMenu> Popup to show

debugGraphicsOptions <int> Diagnostic options for graphics operations.

inheritsPopupMenu <boolean> Whether or not the JPopupMenu is inherited

inputVerifier <InputVerifier> The component's input verifier.

opaque <boolean> The component's opacity

toolTipText <String> The text to display in a tool tip.

transferHandler <TransferHandler> Mechanism for transfer of data to and from the component
verifylnputWhenFocusTarget <boolean> Whether the Component verifies input before accepting focus.

UIClassID <String>

accessibleContext <AccessibleContext>
actionMap <ActionMap>
doubleBuffered <boolean>

graphics <Graphics>

height <int>

managingFocus <boolean>
nextFocusableComponent <Component>
optimizedDrawingEnabled <boolean>
paintingTile <boolean>
registeredKeyStrokes <KeyStroke[]>
requestFocusEnabled <boolean>
rootPane <JRootPane>
topLevelAncestor <Container>
validateRoot <boolean>

visibleRect <Rectangle>

width <int>

x <int>

y <int>

Declared in java.awt.Container

alignmentX <float>

alignmentyY <float>

componentCount <int>

components <Component[]>
focusCycleRoot <boolean>
focusTraversalPolicy <FocusTraversalPolicy>
focusTraversalPolicyProvider <boolean>
focusTraversalPolicySet <boolean>
insets <Insets>

layout <LayoutManager>

maximumsSize <Dimension>
minimumsSize <Dimension>
preferredSize <Dimension>

Declared in java.awt.Component

Events

background <Color>
enabled <boolean>
focusable <boolean>
font
foreground <Color>
name <String>
visible <boolean>

Declared in javax.swing.JMenultem

menuKeyPressed (MenuKeyEvent) - part of MenuKeyListener

menuKeyReleased (MenuKeyEvent) - part of MenuKeyListener

menuKeyTyped (MenuKeyEvent) - part of MenuKeyListener
menuDragMouseDragged (MenuDragMouseEvent) - part of MenuDragMouseListener
menuDragMouseEntered (MenuDragMouseEvent) - part of MenuDragMouseListener
menuDragMouseExited (MenuDragMouseEvent) - part of MenuDragMouseListener
menuDragMouseReleased (MenuDragMouseEvent) - part of MenuDragMouseListener

Declared in javax.swing.AbstractButton

® jtemStateChanged (ltemEvent) - part of ItemListener
® actionPerformed (ActionEvent) - part of ActionListener
® stateChanged (ChangeEvent) - part of ChangeListener

Declared in javax.swing.JComponent

vetoableChange (PropertyChangeEvent) - part of VetoableChangeListener
ancestorMoved (AncestorEvent) - part of AncestorListener
ancestorAdded (AncestorEvent) - part of AncestorListener
ancestorRemoved (AncestorEvent) - part of AncestorListener

Declared in java.awt.Container

* componentAdded (ContainerEvent) - part of ContainerListener
® componentRemoved (ContainerEvent) - part of ContainerListener

Declared in java.awt.Component

keyPressed (KeyEvent) - part of KeyListener

keyReleased (KeyEvent) - part of KeyListener

keyTyped (KeyEvent) - part of KeyListener

componentHidden (ComponentEvent) - part of ComponentListener
componentMoved (ComponentEvent) - part of ComponentListener
componentResized (ComponentEvent) - part of ComponentListener
componentShown (ComponentEvent) - part of ComponentListener
hierarchyChanged (HierarchyEvent) - part of HierarchyListener
mouseClicked (MouseEvent) - part of MouseListener

mouseEntered (MouseEvent) - part of MouseListener

mouseExited (MouseEvent) - part of MouseListener

mousePressed (MouseEvent) - part of MouseListener

mouseReleased (MouseEvent) - part of MouseListener

mouseDragged (MouseEvent) - part of MouseMotionListener
mouseMoved (MouseEvent) - part of MouseMotionListener
propertyChange (PropertyChangeEvent) - part of PropertyChangeListener
ancestorMoved (HierarchyEvent) - part of HierarchyBoundsListener
ancestorResized (HierarchyEvent) - part of HierarchyBoundsListener
focusGained (FocusEvent) - part of FocusListener

focusLost (FocusEvent) - part of FocusListener

mouseWheelMoved (MouseWheelEvent) - part of MouseWheelListener
caretPositionChanged (InputMethodEvent) - part of InputMethodListener
inputMethodTextChanged (InputMethodEvent) - part of InputMethodListener

Content
Usage

Examples

An example of binding a checkBox state with a model. This is a one way binding (checkBox -> model).

def cbiMerge = checkBoxMenultem(setMergeData) //setMergeData is an action
bind(source: cbiMerge, sourceProperty:'selected',6 target:model, targetProperty:'isMergeData')
//model class
class Model {
/] ...

@Bindable boolean isMergeData

}

Observable Attributes

Ul

accelerator

action

alignmentX
alignmentY
background

border

borderPainted
componentCount
componentPopupMenu
components
containerListeners
contentAreaFilled
disabledlcon
disabledSelectedicon
displayedMnemoniclndex
enabled
focusCycleRoot
focusPainted
focusTraversalKeys
focusTraversalPolicy
focusTraversalPolicyProvider
focusTraversalPolicySet
focusable

font

foreground
horizontalAlignment
horizontalTextPosition
icon

iconTextGap
inheritsPopupMenu
inputVerifier

insets

label

layout

margin

maximumSize
minimumSize
mnemonic

model

opaque

preferredSize
pressedicon
rolloverEnabled
rollovericon
rolloverSelectedicon
selectedlcon

text

transferHandler
verifylnputWhenFocusTarget
verticalAlignment
verticalTextPosition

SwingBuilder.closureColumn

® Generated Object
® Attributes
® Events

® Content

® Usage

® Examples

® Observable Attributes

(Automatically generated from Beanlinfo)

Generated Object

A groovy.model.DefaultTableColumn is returned, unless the user passes in a subclass of DefaultTableColumn as the value argument, in which
case the value argument is returned.

Attributes

Declared in groovy.model.DefaultTableColumn

® type <Class>
® valueModel <ValueModel>

Declared in javax.swing.table.TableColumn

cellEditor <TableCellEditor>
cellRenderer <TableCellRenderer>
headerRenderer <TableCellRenderer>
headerValue <Object>

identifier <Object>

maxWidth <int>

minWidth <int>

modellndex <int>

preferredWidth <int>

resizable <boolean>

width <int>

Events
Declared in javax.swing.table.TableColumn
® propertyChange (PropertyChangeEvent) - part of PropertyChangeListener
Content
Usage

Examples

table {
tableModel (list:1listOfItems) {
closureColumn (
header:'Location',
read: {row -> return row.location},
write: {row, newValue -> println "write: $row new value: $newValue"}
}
}

Observable Attributes

cellEditor

cellRenderer
headerRenderer
headerValue

identifier

maxWidth

minWidth

modelindex
preferredWidth
propertyChangeListeners

resizable
type
valueModel
width

SwingBuilder.colorChooser

Generated Object
Attributes

Events

Content

Usage

Examples
Observable Attributes

(Automatically generated from Beanlinfo)
Generated Object

A javax.swing.JColorChooser is returned, unless the user passes in a subclass of JColorChooser as the value argument, in which case the value
argument is returned.

Attributes

Declared in javax.swing.JColorChooser

Ul <ColorChooserUI> The Ul object that implements the color chooser's LookAndFeel.
chooserPanels <AbstractColorChooserPanel[]> An array of different chooser types.

color <Color> The current color the chooser is to display.

dragEnabled <boolean> Determines whether automatic drag handling is enabled.
previewPanel <JComponent> The Ul component which displays the current color.
selectionModel <ColorSelectionModel> The model which contains the currently selected color.

Declared in javax.swing.JComponent

autoscrolls <boolean> Determines if this component automatically scrolls its contents when dragged.
border <Border> The component's border.

componentPopupMenu <JPopupMenu> Popup to show

debugGraphicsOptions <int> Diagnostic options for graphics operations.

inheritsPopupMenu <boolean> Whether or not the JPopupMenu is inherited

inputVerifier <InputVerifier> The component's input verifier.

opaque <boolean> The component's opacity

toolTipText <String> The text to display in a tool tip.

transferHandler <TransferHandler> Mechanism for transfer of data to and from the component
verifylnputWhenFocusTarget <boolean> Whether the Component verifies input before accepting focus.

UIClassID <String>

accessibleContext <AccessibleContext>
actionMap <ActionMap>
doubleBuffered <boolean>

graphics <Graphics>

height <int>

managingFocus <boolean>
nextFocusableComponent <Component>
optimizedDrawingEnabled <boolean>
paintingTile <boolean>
registeredKeyStrokes <KeyStroke[]>
requestFocusEnabled <boolean>
rootPane <JRootPane>
topLevelAncestor <Container>
validateRoot <boolean>

visibleRect <Rectangle>

width <int>

x <int>

y <int>

Declared in java.awt.Container

® alignmentX <float>
® alignmentY <float>
® componentCount <int>

components <Component[]>
focusCycleRoot <boolean>
focusTraversalPolicy <FocusTraversalPolicy>
focusTraversalPolicyProvider <boolean>
focusTraversalPolicySet <boolean>

insets <Insets>

layout <LayoutManager>

maximumsSize <Dimension>

minimumsSize <Dimension>

preferredSize <Dimension>

Declared in java.awt.Component

background <Color>
enabled <boolean>
focusable <boolean>
font
foreground <Color>
name <String>
visible <boolean>

Events

Declared in javax.swing.JComponent

vetoableChange (PropertyChangeEvent) - part of VetoableChangelListener
ancestorMoved (AncestorEvent) - part of AncestorListener
ancestorAdded (AncestorEvent) - part of AncestorListener
ancestorRemoved (AncestorEvent) - part of AncestorListener

Declared in java.awt.Container

* componentAdded (ContainerEvent) - part of ContainerListener
® componentRemoved (ContainerEvent) - part of ContainerListener

Declared in java.awt.Component

keyPressed (KeyEvent) - part of KeyListener

keyReleased (KeyEvent) - part of KeyListener

keyTyped (KeyEvent) - part of KeyListener

componentHidden (ComponentEvent) - part of ComponentListener
componentMoved (ComponentEvent) - part of ComponentListener
componentResized (ComponentEvent) - part of ComponentListener
componentShown (ComponentEvent) - part of ComponentListener
hierarchyChanged (HierarchyEvent) - part of HierarchyListener
mouseClicked (MouseEvent) - part of MouseListener

mouseEntered (MouseEvent) - part of MouseListener

mouseExited (MouseEvent) - part of MouseListener

mousePressed (MouseEvent) - part of MouseListener

mouseReleased (MouseEvent) - part of MouseListener

mouseDragged (MouseEvent) - part of MouseMotionListener
mouseMoved (MouseEvent) - part of MouseMotionListener
propertyChange (PropertyChangeEvent) - part of PropertyChangeListener
ancestorMoved (HierarchyEvent) - part of HierarchyBoundsListener
ancestorResized (HierarchyEvent) - part of HierarchyBoundsListener
focusGained (FocusEvent) - part of FocusListener

focusLost (FocusEvent) - part of FocusListener

mouseWheelMoved (MouseWheelEvent) - part of MouseWheelListener
caretPositionChanged (InputMethodEvent) - part of InputMethodListener
inputMethodTextChanged (InputMethodEvent) - part of InputMethodListener

Content

Usage

Examples

Observable Attributes

e ul

alignmentX

alignmentY
background

border

chooserPanels
component
componentCount
componentPopupMenu
components
containerListeners
enabled
focusCycleRoot
focusTraversalKeys
focusTraversalPolicy
focusTraversalPolicyProvider
focusTraversalPolicySet
focusable

font

foreground
inheritsPopupMenu
inputVerifier

insets

layout

maximumSize
minimumSize

opaque

preferredSize
previewPanel
selectionModel
transferHandler
verifylnputWhenFocusTarget

SwingBuilder.comboBox

(Automatically generated from Beanlinfo)

Generated Object
Attributes

Events

Content

Usage

Examples
Observable Attributes

Generated Object

A javax.swing.JComboBox is returned, unless the user passes in a subclass of JComboBox as the value argument, in which case the value

argument is returned.

Attributes

Declared in javax.swing.JComboBox

Ul <ComboBoxUI> The Ul object that implements the Component's LookAndFeel.

action <Action> the Action instance connected with this ActionEvent source

editable <boolean> If true, the user can type a new value in the combo box.

editor <ComboBoxEditor> The editor that combo box uses to edit the current value
keySelectionManager <KeySelectionManager> The objects that changes the selection when a key is pressed.
lightWeightPopupEnabled <boolean> Set to <code>false</code> to require heavyweight popups.
maximumRowCount <int> The maximum number of rows the popup should have

model <ComboBoxModel> Model that the combo box uses to get data to display.
prototypeDisplayValue <Object> The display prototype value, used to compute display width and height.
renderer <ListCellRenderer> The renderer that paints the item selected in the list.

selectedIndex <int> The item at index is selected.

selectedltem <Object> Sets the selected item in the JComboBox.

actionCommand <String>
itemCount <int>
popupVisible <boolean>
selectedObjects <Object[]>

Declared in javax.swing.JComponent

autoscrolls <boolean> Determines if this component automatically scrolls its contents when dragged.
border <Border> The component's border.

componentPopupMenu <JPopupMenu> Popup to show

debugGraphicsOptions <int> Diagnostic options for graphics operations.

inheritsPopupMenu <boolean> Whether or not the JPopupMenu is inherited

inputVerifier <InputVerifier> The component's input verifier.

opaque <boolean> The component's opacity

toolTipText <String> The text to display in a tool tip.

transferHandler <TransferHandler> Mechanism for transfer of data to and from the component
verifylnputWhenFocusTarget <boolean> Whether the Component verifies input before accepting focus.

UIClassID <String>

accessibleContext <AccessibleContext>
actionMap <ActionMap>
doubleBuffered <boolean>

graphics <Graphics>

height <int>

managingFocus <boolean>
nextFocusableComponent <Component>
optimizedDrawingEnabled <boolean>
paintingTile <boolean>
registeredKeyStrokes <KeyStroke[]>
requestFocusEnabled <boolean>
rootPane <JRootPane>
topLevelAncestor <Container>
validateRoot <boolean>

visibleRect <Rectangle>

width <int>

x <int>

y <int>

Declared in java.awt.Container

alignmentX <float>

alignmentY <float>

componentCount <int>

components <Component[]>
focusCycleRoot <boolean>
focusTraversalPolicy <FocusTraversalPolicy>
focusTraversalPolicyProvider <boolean>
focusTraversalPolicySet <boolean>
insets <Insets>

layout <LayoutManager>

maximumSize <Dimension>
minimumsSize <Dimension>
preferredSize <Dimension>

Declared in java.awt.Component

background <Color>
enabled <boolean>
focusable <boolean>
font
foreground <Color>
name <String>
visible <boolean>

Events

Declared in javax.swing.JComboBox

itemStateChanged (ltemEvent) - part of ItemListener

actionPerformed (ActionEvent) - part of ActionListener

popupMenuCanceled (PopupMenuEvent) - part of PopupMenuListener
popupMenuWillIBecomelnvisible (PopupMenuEvent) - part of PopupMenuListener
popupMenuWillIBecomeVisible (PopupMenuEvent) - part of PopupMenulListener

Declared in javax.swing.JComponent

® vetoableChange (PropertyChangeEvent) - part of VetoableChangeListener

® ancestorMoved (AncestorEvent) - part of AncestorListener
® ancestorAdded (AncestorEvent) - part of AncestorListener
® ancestorRemoved (AncestorEvent) - part of AncestorListener

Declared in java.awt.Container

* componentAdded (ContainerEvent) - part of ContainerListener
* componentRemoved (ContainerEvent) - part of ContainerListener

Declared in java.awt.Component

keyPressed (KeyEvent) - part of KeyListener

keyReleased (KeyEvent) - part of KeyListener

keyTyped (KeyEvent) - part of KeyListener

componentHidden (ComponentEvent) - part