Annotation Type EqualsAndHashCode
-
@Documented @Retention(RUNTIME) @Target(TYPE) public @interface EqualsAndHashCode
Class annotation used to assist in creating appropriateequals()
andhashCode()
methods.It allows you to write classes in this shortened form:
import groovy.transform.EqualsAndHashCode
The@EqualsAndHashCode
class Person { String first, last int age } def p1 = new Person(first:'John', last:'Smith', age:21) def p2 = new Person(first:'John', last:'Smith', age:21) assert p1 == p2 def map = [:] map[p1] = 45 assert map[p2] == 45@EqualsAndHashCode
annotation instructs the compiler to execute an AST transformation which adds the necessary equals and hashCode methods to the class.The
hashCode()
method is calculated using Groovy'sHashCodeHelper
class which implements an algorithm similar to the one outlined in the book Effective Java.The
equals()
method compares the values of the individual properties (and optionally fields) of the class. It can also optionally call equals on the super class. Two different equals method implementations are supported both of which support the equals contract outlined in the javadoc forjava.lang.Object
To illustrate the 'canEqual' implementation style (see http://www.artima.com/lejava/articles/equality.html for further details), consider this class:
@EqualsAndHashCode
class IntPair { int x, y }equals
andcanEqual
methods will be something like below:public boolean equals(java.lang.Object other) if (other == null) return false if (this.is(other)) return true if (!(other instanceof IntPair)) return false if (!other.canEqual(this)) return false if (x != other.x) return false if (y != other.y) return false return true } public boolean canEqual(java.lang.Object other) { return other instanceof IntPair }
If no further options are specified, this is the default style for@Canonical
and@EqualsAndHashCode
annotated classes. The advantage of this style is that it allows inheritance to be used in limited cases where its purpose is for overriding implementation details rather than creating a derived type with different behavior. This is useful when using JPA Proxies for example or as shown in the following examples:import groovy.transform.*
Note that if you create any domain classes which don't have exactly the same contract as@Canonical
class IntPair { int x, y } def p1 = new IntPair(1, 2) // overridden getter but deemed an IntPair as far as domain is concerned def p2 = new IntPair(1, 1) { int getY() { 2 } } // additional helper method added through inheritance but // deemed an IntPair as far as our domain is concerned@InheritConstructors
class IntPairWithSum extends IntPair { def sum() { x + y } } def p3 = new IntPairWithSum(1, 2) assert p1 == p2&&
p2 == p1 assert p1 == p3&&
p3 == p1 assert p3 == p2&&
p2 == p3IntPair
then you should provide an appropriateequals
andcanEqual
method. The easiest way to achieve this would be to use the@Canonical
or@EqualsAndHashCode
annotations as shown below:@EqualsAndHashCode
@TupleConstructor(includeSuperProperties=true)
class IntTriple extends IntPair { int z } def t1 = new IntTriple(1, 2, 3) assert p1 != t1&&
p2 != t1&&
t1 != p3@EqualsAndHashCode(useCanEqual=false)
class IntPair { int x, y }public boolean equals(java.lang.Object other) if (other == null) return false if (this.is(other)) return true if (IntPair != other.getClass()) return false if (x != other.x) return false if (y != other.y) return false return true }
This style is appropriate for final classes (where inheritance is not allowed) which have onlyjava.lang.Object
as a super class. Most@Immutable
classes fall in to this category. For such classes, there is no need to introduce thecanEqual()
method.Note that if you explicitly set
useCanEqual=false
for child nodes in a class hierarchy but have ittrue
for parent nodes and you also havecallSuper=true
in the child, then your generated equals methods will not strictly follow the equals contract.Note that when used in the recommended fashion, the two implementations supported adhere to the equals contract. You can provide your own equivalence relationships if you need, e.g. for comparing instances of the
IntPair
andIntTriple
classes discussed earlier, you could provide the following method inIntPair
:boolean hasEqualXY(other) { other.x == getX()
Then for the objects defined earlier, the following would be true:&&
other.y == getY() }assert p1.hasEqualXY(t1)
There is also support for including or excluding fields/properties by name when constructing the equals and hashCode methods as shown here:&&
t1.hasEqualXY(p1) assert p2.hasEqualXY(t1)&&
t1.hasEqualXY(p2) assert p3.hasEqualXY(t1)&&
t1.hasEqualXY(p3)import groovy.transform.*
Note:@EqualsAndHashCode
(excludes="z")@TupleConstructor
public class Point2D { int x, y, z } assert new Point2D(1, 1, 1).equals(new Point2D(1, 1, 2)) assert !new Point2D(1, 1, 1).equals(new Point2D(2, 1, 1))@EqualsAndHashCode
(excludes=["y", "z"])@TupleConstructor
public class Point1D { int x, y, z } assert new Point1D(1, 1, 1).equals(new Point1D(1, 1, 2)) assert new Point1D(1, 1, 1).equals(new Point1D(1, 2, 1)) assert !new Point1D(1, 1, 1).equals(new Point1D(2, 1, 1))@EqualsAndHashCode
is a transform to help reduce boilerplate in the common cases. It provides a useful implementation ofequals()
andhashCode()
but not necessarily the most appropriate or efficient one for every use case. You should write custom versions if your scenario demands it. In particular, if you have mutually-referential classes, the implementations provided may not be suitable and may recurse infinitely (leading to aStackOverflowError
). In such cases, you need to remove the infinite loop from your data structures or write your own custom methods. If your data structures are self-referencing, the code generated by this transform will try to avoid infinite recursion but the algorithm used may not suit your scenario, so use with caution if you have such structures. A future version of this transform may better handle some additional recursive scenarios.More examples:
import groovy.transform.EqualsAndHashCode @EqualsAndHashCode(includeFields=true) class User { String name boolean active List likes private int age = 37 } def user = new User(name: 'mrhaki', active: false, likes: ['Groovy', 'Java']) def mrhaki = new User(name: 'mrhaki', likes: ['Groovy', 'Java']) def hubert = new User(name: 'Hubert Klein Ikkink', likes: ['Groovy', 'Java']) assert user == mrhaki assert mrhaki != hubert Set users = new HashSet() users.add user users.add mrhaki users.add hubert assert users.size() == 2
- Since:
- 1.8.0
- See Also:
HashCodeHelper
-
-
Optional Element Summary
Optional Elements Modifier and Type Optional Element Description boolean
allNames
Whether to include all fields and/or properties in equals and hashCode calculations, including those with names that are considered internal.boolean
allProperties
Whether to include all properties (as per the JavaBean spec) in the generated constructor.boolean
cache
Whether to cache hashCode calculations.boolean
callSuper
Whether to include super in equals and hashCode calculations.String[]
excludes
List of property names (and field names if includeFields is true) to exclude from the equals and hashCode calculations.boolean
includeFields
Include fields as well as properties in equals and hashCode calculations.String[]
includes
List of property names (and field names if includeFields is true) to include within the equals and hashCode calculations.boolean
useCanEqual
Generate a canEqual method to be used by equals.
-
-
-
Element Detail
-
excludes
String[] excludes
List of property names (and field names if includeFields is true) to exclude from the equals and hashCode calculations. Must not be used if 'includes' is used. For convenience, a String with comma separated names can be used in addition to an array (using Groovy's literal list notation) of String values.- Default:
- {}
-
-
-
includes
String[] includes
List of property names (and field names if includeFields is true) to include within the equals and hashCode calculations. Must not be used if 'excludes' is used. For convenience, a String with comma separated names can be used in addition to an array (using Groovy's literal list notation) of String values. The default value is a special marker value indicating that no includes are defined; all fields and/or properties are included if 'includes' remains undefined and 'excludes' is explicitly or implicitly an empty list.- Default:
- {"<DummyUndefinedMarkerString-DoNotUse>"}
-
-
-
allProperties
boolean allProperties
Whether to include all properties (as per the JavaBean spec) in the generated constructor. When true, Groovy treats any explicitly created setXxx() methods as property setters as per the JavaBean specification. JavaBean properties come after any Groovy properties but before any fields for a given class (unless 'includes' is used to determine the order).- Since:
- 2.5.0
- Default:
- false
-
-